

BMAS 2007, San Jose, 20-21 September 2007

An efficient and accurate MEMS accelerometer model with sense finger dynamics for applications in mixed-technology control loops

Chenxu Zhao, Leran Wang and Tom J Kazmierski University of Southampton, UK {cz05r,Iw04r,tjk}@ecs.soton.ac.uk

School of Electronics and Computer Science

Outline

- Introduction
- MEMS capacitive accelerometer
- Accurate VHDL-AMS accelerometer model with sense finger dynamics
- Simulation results
- Conclusion

School of Electronics and Computer Science

Introduction

- Effects of sense finger dynamics in MEMS capacitive accelerometer studied and modeled accurately
- Distributed mechanical sensing element model
- Finite Difference Approximation (FPA) approach
- Well known failure of Sigma-Delta accelerometers when fingers resonate is modeled correctly

School of Electronics and Computer Science

MEMS capacitive accelerometer

School of Electronics and Computer Science

Electronic Systems Design Group

2nd-order electromechanical Sigma-Delta modulation accelerometer

MEMS sensing element is an integral part of the system

Sampling

Conventional sensing element model

• Mass-Damper-Spring system is modeled by a 2nd order differential equation:

$$\mathbf{F}(\mathbf{t}) = \mathbf{M} \frac{d^2 x}{dt^2} + D \frac{dx}{dt} + Kx$$

- Too simple and inaccurate
- Does not reflect finger dynamics

School of Electronics and Computer Science

Mechanical Sensing Element

- Higher resonant modes of sense finger cannot be reflected Feedback in conventional model
- Distributed model for sense fingers is needed
- Non-collocated system

ACCURATE MODEL WITH SENSE FINGER DYNAMICS

• Motion of fingers could be modeled by following partial differential equation (PDE):

$$\rho S \frac{\partial^2 y(x,t)}{\partial t^2} + C_D I \frac{\partial^5 y(x,t)}{\partial x^4 \partial t} + E I \frac{\partial^4 y(x,t)}{\partial x^4} = F_e(x,t)$$

- E, I, C_D, ρ , S are all physical properties of the beam.
- Fe(x, t) distributed electrostatic force along the beam:

$$F_{e}(x,t) = \frac{1}{2} \varepsilon A[\frac{V_{0}^{2}}{(d_{0} - y(x,t))^{2}} - \frac{V_{0}^{2}}{(d_{0} + y(x,t))^{2}}]$$

School of Electronics and Computer Science

Finite Difference Approximation (FDA) approach

- VHDL-AMS cannot support PDEs
- Convert PDE to a series of ODEs
- Finger is divided into N segments (5 segments in this design)
- Partial derivatives wrt position can be replaced with:

$$\frac{\partial y_n(t)}{\partial x} = \frac{y_n(t) - y_{n-1}(t)}{\Delta x} \qquad n = 0, 1, 2...N$$

School of Electronics and Computer Science

and Computer Science

Distributed model for sense finger

Partial differential equation (PDE) for the motion of the sense fingers:

$$\rho S \frac{\partial^2 y(x,t)}{\partial t^2} + C_D I \frac{\partial^5 y(x,t)}{\partial x^4 \partial t} + E I \frac{\partial^4 y(x,t)}{\partial x^4} = F_e(x,t)$$

Series of ODE (Ordinary Differential Equations) converted from the PDE by FDA:

$$\rho S \frac{d^2 y_n}{dt^2} + \frac{C_D I}{(\Delta x)^4} \left(\frac{dy_{n+2}}{dt} - 4\frac{dy_{n+1}}{dt} + 6\frac{dy_n}{dt} - 4\frac{dy_{n-1}}{dt} + \frac{dy_{n-2}}{dt}\right) + \frac{EI}{(\Delta x)^4} (y_{n+2} - 4y_{n+1} + 6y_n - 4y_{n-1} + y_{n-2}) = \frac{f_{E_n}(t)}{\Delta x}$$

$$n = 0, 1, 2 \dots N$$
School of Electronics
University of Southampton, UK

and the

Boundary conditions

• Equations for the border segments are a little different

• At root (x=0) y(0,t) = z(t) $\frac{\partial y(0,t)}{\partial x} = 0$

• At free end (x=l)
$$\frac{\partial^2 y(l,t)}{\partial x^2} = 0$$

$$\frac{\partial^3 y(l,t)}{\partial x^3} = 0$$

School of Electronics and Computer Science

Simulation results of conventional model

- **Frequency response of** conventional model
- Lowest resonant mode caused by the dynamics of the structure mass

$$\omega_0 = \sqrt{K/M}$$

School of Electronics and Computer Science

Simulation results of conventional model

- Output bitstream
- Pulse density is inversely proportional to the input signal

School of Electronics and Computer Science

Higher resonant mode

- The higher resonant mode is related to the sense finger resonance
- Fingers bend significantly while the lumped mass has a small deflection.
- Resonant frequency

$$\omega_i = \alpha_i^2 \frac{W}{L} \sqrt{\frac{E}{12\rho}}$$
 $\alpha_1 = 1.875, \alpha_2 = 4.694$

School of Electronics and Computer Science

Simulation results of the distributed model

• The finger dimensions in this design are:

 $L = 140 \mu m, W = 2 \mu m, T = 1 \mu m$

 Higher order resonant modes are exhibited in the accurate distributed model

School of Electronics and Computer Science

Simulation results ---- movement of the sense fingers

Deflection of the sense fingers in the conventional model

School of Electronics and Computer Science

University of Southampton, UK

Simulation results ---- movement of the sense fingers

- The finger dimensions in this design are:
 L = 140μm, W =2μm,
 T = 1μm
- Displacement of the lumped-mass (Blue) and average position of the sense finger (Red)

School of Electronics and Computer Science

University of Southampton, UK

Simulation results - Distributed model

School of Electronics and Computer Science

Movement of the sense fingers

- Displacement of the lumped-mass (Blue) and average position of the sense finger (Red)
- Sense fingers bend significantly at their resonant frequency

School of Electronics and Computer Science

Simulation results of the distributed model

Sense finger resonance can affect the performance of the Sigma-Delta control loop

Here Sigma-Delta control ۲ breaks down - proposed model reflects this behavior correctly

3. Ou Force (Newton 0. 0u -3. Ou -6.005. Om 5.8m 4.6m 5.4m 6.2m Time (s)

School of Electronics and Computer Science

School of Electronics and Computer Science

Electronic Systems Design Group

Simulation results of conventional model

- Output bitstream of the conventional model.
- The Sigma-Delta control loop still appears to work but in reality it fails

CPU time comparison

Model	CPU time (SystemVision)
Conventional Model	9s 766ms
Distributed Model	21s 812ms

 SystemVision v.4 from Mentor Graphics was used to carry out simulation experiments

School of Electronics and Computer Science

Conclusion

- An accurate distributed MEMS accelerometer model with sense finger dynamics has been developed and implemented in VHDL-AMS.
- The proposed model correctly reflects the way in which finger dynamics affect the performance of the control loop.