	Preliminaries	Transparency and Fidelity definition 0000000 0000000		Conclusion	Appendix			
Determining the Fidelity of Hardware-In-the-Loop Simulation Coupling Systems								
С	hristian Koehler	¹ Albrecht Mayer ¹	Andreas I	Herkersdorf	2			
Infineon Technologies AG ¹								
Technical University of Munich ²								

September 23, 2008

Never stop thinking

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Determining the Fidelity of Hardware-In-the-Loop Simulation Coupling Systems

Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix

- 1 Introduction
- 2 Preliminaries

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix

- 1 Introduction
- 2 Preliminaries
- 3 Transparency and Fidelity definition
 - Basics
 - MIMO-Extension

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix

- 1 Introduction
- 2 Preliminaries
- 3 Transparency and Fidelity definition
 - Basics
 - MIMO-Extension

4 Example

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix

- 1 Introduction
- 2 Preliminaries
- 3 Transparency and Fidelity definition
 - Basics
 - MIMO-Extension

4 Example

5 Conclusion

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix

- 1 Introduction
- 2 Preliminaries
- 3 Transparency and Fidelity definition
 - Basics
 - MIMO-Extension
- 4 Example
- 5 Conclusion

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix

- 1 Introduction
- 2 Preliminaries
- 3 Transparency and Fidelity definition
 - Basics
 - MIMO-Extension
- 4 Example
- 5 Conclusion
- 6 Appendix

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Introduction	Preliminaries	Transparency and Fidelity definition 0000000 0000000	Conclusion	Appendix

Hardware-in-the-Loop-Simulation - I

Hardware-in-the-Loop-Simulation - a widely used concept, especially within the automotive industry.

Figure: Hardware-in-the-Loop System Examples

Hardware-in-the-Loop-(HIL)-Simulation: one part of a real system fineon or the system environment is replaced by a numerical model and interfaced to the remaining hardware via sensors-and actuators: = Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Introduction	Preliminaries	Transparency and Fidelity definition 0000000 0000000	Conclusion	Appendix

Hardware-in-the-Loop-Simulation - I

Hardware-in-the-Loop-Simulation - a widely used concept, especially within the automotive industry.

Figure: Hardware-in-the-Loop System Examples

Hardware-in-the-Loop-(HIL)-Simulation: one part of a real system incon or the system environment is replaced by a numerical model and interfaced to the remaining hardware via sensors and actuators.

Introduction	Preliminaries	Transparency and Fidelity definition 0000000 0000000	Conclusion	Appendix
Hardwa	re in the	Loop Simulation II		

HIL simulation is used for:

- System simulation
- (Rapid) prototyping
- Component test
- System optimization

. . . .

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Introduction	Preliminaries	Transparency and Fidelity definition 0000000 0000000	Conclusion	Appendix

Hardware-in-the-Loop-Simulation - III

Where is the problem?

- HIL Simulation systems are often designed straight-forward
- no deeper analysis of different system setups

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Introduction	Preliminaries	Transparency and Fidelity definition 0000000 0000000	Conclusion	Appendix

Hardware-in-the-Loop-Simulation - III

Where is the problem?

- HIL Simulation systems are often designed straight-forward
- no deeper analysis of different system setups
- Formal analysis approaches are seldom

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Introduction	Preliminaries	Transparency and Fidelity definition 0000000 0000000	Conclusion	Appendix

Hardware-in-the-Loop-Simulation - III

Where is the problem?

- HIL Simulation systems are often designed straight-forward
- no deeper analysis of different system setups
- Formal analysis approaches are seldom

Cinfineon

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Conclusion	Appendix

- 1 Introduction
- 2 Preliminaries
- 3 Transparency and Fidelity definition
 - Basics
 - MIMO-Extension
- 4 Example
- 5 Conclusion
- 6 Appendix

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition	Example	Conclusion	Appendix
	0000000			

Hardware-in-the-Loop-Simulation System - I

Real System Setup:

HIL-Simulation System Setup:

-O Output -C Input

Figure: HIL System

$$\begin{array}{l} X_{in} = X_{out} \\ Y_{in} = Y_{out} \end{array} \tag{1}$$

Transformation functions $G_1(t)$ and $G_2(t)$:

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Determining the Fidelity of Hardware-In-the-Loop Simulation Coupling Systems

Preliminaries	Transparency and Fidelity definition	Example	Conclusion	Appendix
	0000000 0000000			

Hardware-in-the-Loop-Simulation System - I

Real System Setup:

HIL-Simulation System Setup:

Figure: HIL System

$$\begin{array}{l} X_{in} = X_{out} \\ Y_{in} = Y_{out} \end{array} \tag{1}$$

• •

Transformation functions $G_1(t)$ and $G_2(t)$:

• •

 $\begin{aligned} X_{in}(t) &= G_1(t) * X_{out}(t) \\ Y_{in}(t) &= G_2(t) * Y_{out}(t) \\ \end{aligned}$

Ideal coupling system will not change the transmitted signation of transmitted signated signation of transmitted signation of transmitted signatio

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Determining the Fidelity of Hardware-In-the-Loop Simulation Coupling Systems

Preliminaries	Transparency and Fidelity definition	Example	Conclusion	Appendix
	0000000 0000000			

Hardware-in-the-Loop-Simulation System - I

Real System Setup:

HIL-Simulation System Setup:

Figure: HIL System

$$\begin{array}{l} X_{in} = X_{out} \\ Y_{in} = Y_{out} \end{array} \tag{1}$$

v

Transformation functions $G_1(t)$ and $G_2(t)$:

v

$$\begin{aligned} X_{in}(t) &= G_1(t) * X_{out}(t) \\ Y_{in}(t) &= G_2(t) * Y_{out}(t) \\ \end{aligned} \tag{2}$$

- Ideal coupling system will not change the transmitted signal
- Term 'transparency' will be used [1]

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Conclusion	Appendix

Hardware-in-the-Loop-Simulation System - II

A nearly transparent (ideal) coupling system:

$$\begin{bmatrix} G_1(t) & 0\\ 0 & G_2(t) \end{bmatrix} \approx \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$
(3)

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Determining the Fidelity of Hardware-In-the-Loop Simulation Coupling Systems

	Preliminaries	Transparency and Fidelity definition 0000000 0000000	Conclusion	Appendix
Questic	on			

How we can measure the transparency of the coupling system?

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Determining the Fidelity of Hardware-In-the-Loop Simulation Coupling Systems

Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix

- 1 Introduction
- 2 Preliminaries

3 Transparency and Fidelity definition

- Basics
- MIMO-Extension

4 Example

5 Conclusion

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition ●000000 0000000	Conclusion	Appendix
Basics				
System	Model			

Figure: HIL Coupling System

Model of the system as basis for transparency measuring

Not necessary to model the complete system (unlike other approaches [1], [2])

infineon

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition ●000000 0000000	Conclusion	Appendix
Basics				
System	Model			

Figure: HIL Coupling System

- Model of the system as basis for transparency measuring
- Not necessary to model the complete system (unlike other approaches [1], [2])
- Just model the coupling system!

Determining the Fidelity of Hardware-In-the-Loop Simulation Coupling Systems

Never stop thinking

	Preliminaries	Transparency and Fidelity definition ●000000 0000000	Conclusion	Appendix
Basics				
System	Model			

Figure: HIL Coupling System

- Model of the system as basis for transparency measuring
- Not necessary to model the complete system (unlike other approaches [1], [2])

Infineon Technologies and TUM

Just model the coupling system!

	Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix
Basics				

HIL Coupling System Model - I

The coupling is assumed to be representable as a lineare time invariant system (LTI system).

Definition

A LTI system can be described by the convolution of the input signal with the impulse response y(t) = g(t) * x(t).

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition ○●○○○○○○ ○○○○○○○	Conclusion	Appendix
Basics				

HIL Coupling System Model - I

The coupling is assumed to be representable as a lineare time invariant system (LTI system).

Definition

A LTI system can be described by the convolution of the input signal with the impulse response y(t) = g(t) * x(t).

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition 00●0000 0000000	Conclusion	Appendix
Basics				

HIL Coupling System Model - II

Definition

The transfer function (frequency domain) is defined as

$$y(s) = h(s)x(s)$$
 and so $h(s) = \frac{y(s)}{x(s)}$ (4)

$$h(s) = \frac{b_0 + b_1 s^1 + \dots + b_m s^m}{a_0 + a_1 s^1 + \dots + a_m s^m}$$
(5)

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix
Basics				
Signal t	ransforma	ation		

Transfer function describes the coupling system

Difference between the polynomials y(s) and x(s) represent the transparency of the signal transformation!

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix
Basics				
Signal +	rancform	tion		

- Transfer function describes the coupling system
- Difference between the polynomials y(s) and x(s) represent the transparency of the signal transformation!
- Idea: calculate the distance of the polynomials!

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

JIEI

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix
Basics				
Signal	transform	ation		

- Transfer function describes the coupling system
- Difference between the polynomials y(s) and x(s) represent the transparency of the signal transformation!
- Idea: calculate the distance of the polynomials!

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

	Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix
Basics				
Dolynor	mial diffor	onco		

The difference between two polynomials y(s) and x(s) can be defined as the distance of the polynomials within the m + 1-dimensional space $\prod_{i=1}^{m}$ over polynomials of the grad m.

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition 00000€0 0000000	Conclusion	Appendix
Basics				

Polynomial difference - II

Definition

A weighted distance $d_w(x(s), y(s))$ with $x(s) = a_0 + \cdots + a_m s^m$ and $y(s) = b_0 + \cdots + b_m s^m$ is defined as

$$d_{w}(x(s), y(s)) = \left| \begin{pmatrix} a_{0} \\ \vdots \\ a_{m} \end{pmatrix} - \begin{pmatrix} b_{0} \\ \vdots \\ b_{m} \end{pmatrix} \right|_{w}$$
(6)

with the weighted norm

$$|\ldots|_{w} = \sqrt{w_{0}(a_{0} - b_{0})^{2} + \cdots + w_{m}(a_{m} - b_{m})^{2}}$$

wever stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition 000000● 0000000	Conclusion	Appendix
Basics				
Polynor	nial differ	ence - III		

- The polynomial difference is a measurement function for the transparency of single input/single output (SISO) systems.
- Now we need an extension for multiple input/multiple output (MIMO) systems!

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition 000000● 0000000	Conclusion	Appendix
Basics				
Dolynor	mial diffor	onco III		

- The polynomial difference is a measurement function for the transparency of single input/single output (SISO) systems.
- Now we need an extension for multiple input/multiple output (MIMO) systems!

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

	Preliminaries	Transparency and Fidelity definition ○○○○○○ ●○○○○○○	Conclusion	Appendix
MIMO-Extension				

MIMO systems - I

Figure: MIMO system

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition ○○○○○○ ○●○○○○○	Conclusion	Appendix
MIMO-Extension				

MIMO systems - II

Definition

MIMO systems can be described by a matrix of SISO transfer functions

$$H(s) = \begin{bmatrix} h_{1,1}(s) & \cdots & h_{n,1}(s) \\ \vdots & \ddots & \vdots \\ h_{1,n}(s) & \cdots & h_{n,n}(s) \end{bmatrix}$$
(8)
with $Y(s) = \begin{pmatrix} y_0(s) \\ \vdots \\ y_n(s) \end{pmatrix}$ and $X(s) = \begin{pmatrix} x_0(s) \\ \vdots \\ x_n(s) \end{pmatrix}$ (9)
 $Y(s) = H(s)X(s)$ (10) con

er stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition ○○○○○○○ ○○●○○○○	Conclusion	Appendix
MIMO-Extension				

MIMO systems - III

Definition

The ideal transfer function matrix has a main diagonal containing ones. The other matrix elements are zero.

$$\begin{pmatrix} y_{1}(s) \\ \vdots \\ y_{n}(s) \end{pmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix} \begin{pmatrix} x_{1}(s) \\ \vdots \\ x_{n}(s) \end{pmatrix}$$
(11)

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix
MIMO-Extension				

Transparency measure

Definition

A norm $||h(s)||_p$ over a polynomial quotient $h(s) = \frac{y(s)}{x(s)}$ can be defined over the distance of x(s) and y(s) in $\prod_{i=1}^{m}$.

$$\left\|\frac{y(s)}{x(s)}\right\|_{p} = d_{w}(x(s), y(s))$$
(12)

Definition

y(s) and a zero polynomial can be defined as norm $\left\|\frac{y(s)}{x(s)}\right\|_{D}^{0}$ over the distance of v(s) and 0 in $\prod_{i=1}^{m}$. $\left\|\frac{y(s)}{x(s)}\right\|_{s}^{0} = d_{w}(0, y(s)) \quad (13)$

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Determining the Fidelity of Hardware-In-the-Loop Simulation Coupling Systems

	Preliminaries	Transparency and Fidelity definition ○○○○○○○ ○○○●○○○	Conclusion	Appendix
MIMO-Extension				

Transparency measure

Definition

A norm $||h(s)||_p$ over a polynomial quotient $h(s) = \frac{y(s)}{x(s)}$ can be defined over the distance of x(s) and y(s) in $\prod_{i=1}^{m}$.

$$\left\|\frac{y(s)}{x(s)}\right\|_{p} = d_{w}(x(s), y(s))$$
(12)

Definition

Additional. the difference between the upper polynomial y(s) and a zero polynomial can be defined as norm $\left\|\frac{y(s)}{x(s)}\right\|_{p}^{0}$ over the distance of y(s) and 0 in $\prod_{m=1}^{m}$. $\left\|\frac{y(s)}{x(s)}\right\|_{x}^{0} = d_{w}(0, y(s)) \quad (13)$

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix
MIMO-Extension				

Matrix of Transparency - I

Definition

A matrix of transparency can be defined as follows. The main diagonal contains the elements $\|h_{i,i}(s)\|_p$ with $1 \le i \le n$, while the other positions are filled with elements $\|h_{i,j}(s)\|_p^0$ with $1 \le i \le n, 1 \le j \le n, i \ne j$.

$$\begin{bmatrix} \|h_{1,1}(s)\|_{p} & \|h_{j,i}(s)\|_{p}^{0} \\ & \ddots & \\ \|h_{i,j}(s)\|_{p}^{0} & \|h_{n,n}(s)\|_{p} \end{bmatrix}$$
(14)

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition ○○○○○○○ ○○○○○●○	Conclusion	Appendix
MIMO-Extension				

Matrix of Transparency - II

Definition

With a matrix norm we can now define a transparency function $\mathfrak{t}\mathfrak{r}$ for a MIMO system transfer matrix.

$$\mathfrak{tr}(H(s)) = \left\| \begin{bmatrix} \|h_{1,1}(s)\|_{p} & \|h_{j,i}(s)\|_{p}^{0} \\ & \ddots & \\ \|h_{i,j}(s)\|_{p}^{0} & \|h_{n,n}(s)\|_{p} \end{bmatrix} \right\|$$
(15)

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition ○○○○○○ ○○○○○○●	Conclusion	Appendix
MIMO-Extension				

Fidelity definition

Definition

The fidelity function $\mathfrak{f}\mathfrak{d}$ of a coupling system can be now defined by the transparency of the transfer function.

$$\mathfrak{fd}(H(s)) = rac{1}{1 + \mathfrak{tr}(H(s))}$$
 (16)

Remark: The value of the fidelity ranges between zero and one.

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition	Example	Conclusion	Appendix

- 1 Introduction
- 2 Preliminaries
- 3 Transparency and Fidelity definition
 - Basics
 - MIMO-Extension

4 Example

5 Conclusion

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Example	Conclusion	Appendix

Heat-Sensor-in-the-Loop

- Heat-sensor-HIL simulation (continuous system)
- Heating element + fan are the coupling system

Figure: Heat-Sensor-in-the-Loop

Definition

Heating element transfer function:

$$H_h(s) = K * \frac{1}{1+Ts}$$
 (17)

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Determining the Fidelity of Hardware-In-the-Loop Simulation Coupling Systems

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Example	Conclusion	Appendix

Heat-Sensor-in-the-Loop

- Heat-sensor-HIL simulation (continuous system)
- Heating element + fan are the coupling system

Figure: Heat-Sensor-in-the-Loop

Definition

Heating element transfer function:

$$H_h(s) = K * \frac{1}{1+Ts} \quad (17)$$

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Determining the Fidelity of Hardware-In-the-Loop Simulation Coupling Systems

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Example	Conclusion	Appendix

Transfer function

- Proportional coefficient K and the time constant T depending on environmental variables
- e.g. specific heat capacity, density and velocity of the transfer medium

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Example	Conclusion	Appendix

Transfer function

- Proportional coefficient K and the time constant T depending on environmental variables
- e.g. specific heat capacity, density and velocity of the transfer medium

$$K = \frac{1}{c_m \gamma_m A v}$$
$$T = \frac{C_h}{c_m \gamma_m A v}$$

- cm heat capacity of air
- c_h heat capacity of steal heating element
- γ_m density of air
 - v velocity of air
 - A cross section surface of the pipe
 - I distance of heating element and sensor

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Example	Conclusion	Appendix

 $H_h(s) = C * K * \frac{e^{-Ds}}{1 + Tc}$

Transfer function

- Proportional coefficient K and the time constant T depending on environmental variables
- e.g. specific heat capacity, density and velocity of the transfer medium

$$K = \frac{1}{c_m \gamma_m A v}$$
$$T = \frac{C_h}{c_m \gamma_m A v}$$

Ch

- cm heat capacity of air
- c_h heat capacity of steal heating element
- γ_m density of air
 - v velocity of air
 - A cross section surface of the pipe
 - I distance of heating element and sensor

Determining the Fidelity of Hardware-In-the-Loop Simulation Coupling Systems

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Example	Conclusion	Appendix

Transfer function

- Proportional coefficient K and the time constant T depending on environmental variables
- e.g. specific heat capacity, density and velocity of the transfer medium

$$K = \frac{1}{c_m \gamma_m A v}$$
$$T = \frac{c_h}{c_m \gamma_m A v}$$

- cm heat capacity of air
- c_h heat capacity of steal heating element
- γ_m density of air
 - v velocity of air
 - A cross section surface of the pipe
 - I distance of heating element and sensor

$$H_h(s) = C * K * \frac{e^{-Ds}}{1 + Ts}$$

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Determining the Fidelity of Hardware-In-the-Loop Simulation Coupling Systems

F

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Example	Conclusion	Appendix

Results - I

System fidelity:

- air velocity v = 1m/s: $\mathfrak{fd}(H_h(s)) = 0.847$
- air velocity v = 10m/s: $\mathfrak{fd}(H_h(s)) = 0.982$

Figure: Heating system - different air velocities

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition 0000000 0000000	Example	Conclusion	Appendix
Results	- 11				

Obviously an increasing the air velocity leads to better results.

But what about the influence of different heating element materials?

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

	Preliminaries	Transparency and Fidelity definition 0000000 0000000	Example	Conclusion	Appendix
Results	- 11				

- Obviously an increasing the air velocity leads to better results.
- But what about the influence of different heating element materials?

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Example	Conclusion	Appendix

Results - III

System fidelity:

- steal heating element: $\mathfrak{fd}(H_h(s)) = 0.847$
- copper heating element: $\mathfrak{fd}(H_h(s)) = 0.848$
- aluminum heating element: $\mathfrak{fd}(H_h(s)) = 0.843$

Figure: Heating system - different materials

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Determining the Fidelity of Hardware-In-the-Loop Simulation Coupling Systems

Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix

- 1 Introduction
- 2 Preliminaries
- 3 Transparency and Fidelity definition
 - Basics
 - MIMO-Extension
- 4 Example
- 5 Conclusion

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Conclusion	Appendix

Presented a formal approach to calculate the fidelity of HIL simulation coupling system

 Calculation is based on the transfer function of the coupling system

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Conclusion	Appendix

- Presented a formal approach to calculate the fidelity of HIL simulation coupling system
- Calculation is based on the transfer function of the coupling system
- SISO and MIMO systems are covered

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Conclusion	Appendix

- Presented a formal approach to calculate the fidelity of HIL simulation coupling system
- Calculation is based on the transfer function of the coupling system
- SISO and MIMO systems are covered
- Approach can be used to find optimized HIL simulation coupling systems

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Conclusion	Appendix

- Presented a formal approach to calculate the fidelity of HIL simulation coupling system
- Calculation is based on the transfer function of the coupling system
- SISO and MIMO systems are covered
- Approach can be used to find optimized HIL simulation coupling systems

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition 0000000 0000000	Conclusion	Appendix

Any questions?

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM

Preliminaries	Transparency and Fidelity definition	Conclusion	Appendix

Bibliography

M. Bacic.

On hardware-in-the-loop simulation.

In Proc. 2005 44th European Control Conference Decision and Control CDC-ECC, pages 3194–3198, 2005.

M. Bacic.

Two-port network modelling for hardware-in-the-loop simulators.

In *Proc. American Control Conference ACC '07*, pages 3029–3034, 2007.

Never stop thinking

Christian Koehler, Albrecht Mayer, Andreas Herkersdorf

Infineon Technologies and TUM