Implementation of Optical Response of Thin Film Transistor with Verilog-A for Mobile LCD Applications

Keiichiro Ishihara, Yasuhiko Iguchi, Makoto Watanabe, Takeyuki Tsuruma, Takeshi Sawada, Yasuhito Maki

Electronic Devices Business Group
Sony Corporation, Japan
Outline

- Background
- Model
- Model Evaluation
- Application
- Conclusion
Background
Liquid Crystal Displays (LCDs) have become widely used in our daily life.
Expectations for LCDs

- **High Image Quality**
 - High contrast
 - Fast response
 - Low power consumption
 - Image uniformity, etc...

- **Compact in Design**
 - Narrow Frame
 - Thinner profile, etc...

- **Inexpensive in Price**

More accurate and fast simulation is in demand
Background

- Operation of general LCDs

Block diagram of typical LCD

Cross sectional view of LC cell

Equivalent circuit of a pixel
Background

- **Operation of general LCDs**

Block diagram of typical LCD

Cross sectional view of LC cell

VERY IMPORTANT!!
Issues for the display quality in LCDs (1)

Possible defects of display quality

Flicker
Vertical Cross-talk
Un-uniformity

Cause of the malfunctions

“Photo-Leakage Current”
Issues for the display quality in LCDs (2)

- TFTs are constantly under the influence of the light.
- They are required to maintain voltage for a long time.
- The effect of photo-leakage is significant.

Circuit analysis considering the effect of the light is strongly in demand.
Background

Device model for TFT

Rensselaer Polytechnic Institute (RPI) model

- Popular TFT device model
- Accurately expresses TFT device characteristics

Ways to include an optical response

- Modify a proven device model
 - models provided by EDA vendors are not opened for modification
- Develop an original device model
 - takes too much time!!

Use Verilog-A to model ONLY an optical response of TFT

Model
Proposed method

Connect photo-current module as an **EXTERNAL** instance of the RPI model

Transistor model and Photo-Current Module are connected in parallel.

Condition to be met

Photo-leakage current needs to be modeled as independent of characteristics calculated by the RPI model.
Model

- Two generation paths of photo-carriers
 1. Inside the depletion region.
 - Carriers separated by the field.
 - Drift component.
 - Not in the RPI model.
 - Empirically known to be dominant.
 2. Outside edge of the depletion region.
 - Originated from the diffusion.
 - Diffusion component.
 - Empirically known to be less dominant.
Two generation paths of photo-carriers

1. Inside the depletion region.
 - Carriers separated by the field.
 - Drift component.
 - Not in the RPI model.
 - Empirically known to be dominant.

2. Outside edge of the depletion region.
 - Originated from diffusion
 - Empirically known to be less dominant.

Photo-leakage current is assumed as an independent current of the RPI
Generation inside the depletion region

- Photo-generation rate \(G \) (s\(^{-1}\)cm\(^{-3}\))

\[
G(x) = \int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} \alpha(\lambda, x)\Phi(\lambda, x)e^{-\int_{0}^{x} \alpha(\lambda, x) d\lambda} d\lambda
\]

\[
G = \frac{P_{\text{in}} \alpha}{h \nu}
\]

- Photo-leakage current in the depletion region \(I_{\text{photo}} \) (A)

\[
I_{\text{photo}} = q t_{\text{Si}} w l_{\text{dep}} G
\]

\[
l_{\text{dep}} = \sqrt{\frac{2 \varepsilon_{\text{Si}} (N_a + N_d) (\phi_{\text{bi}} + V_{\text{ds}})}{q N_a N_d}}
\]

Convergence issues

SPICE is based on Ohm’s Law

When \(V_{ds} \) is 0 V, \(I_{ds} \) should be 0 A.

\[
I_{\text{photo}_{\text{mod}}} = I_{\text{photo}} \tanh^2(\alpha_{\text{mod}} V_{ds})
\]

Convergence is greatly improved by introducing tanh
// Verilog-A for Photo-leakage current module

module iphoto(d, s);
 inout d, s;
 electrical d, s;
 ...
 analog begin
 begin
 if (V(d, s) >= 0.0) begin
 mode = 1;
 vds = V(d, s);
 end
 else begin
 mode = -1;
 vds = -V(d, s);
 end
 if (acm == 0)
 weff = w * scale;
 else if (acm == 1)
 weff = (w * scale * wmlt + xw - 2 * wd * scale);
 ...
 ...V(d,s)

 ldep = sqrt(2.0 * EPSILON_SI * (eb + vds)
 / (Q_E * na * nd) * (na + nd));
 ...
 iphoto = Q_E * tsi * weff * ldep *
 (brightness * alpha) / (H * C / lambda);
 iphoto = iphoto * pow(tanh(alphamod
 * vds), 2);
 if (mode > 0)
 I(d, s) <+ iphoto;
 else
 I(d, s) <+ -iphoto;
 end
 endmodule
Model Evaluation
Good agreement with the experiment data
Simulation runtime

- 1001 pixels in series.
- Tran. analysis of 40 msec.

Built-in Model

Built-in Model w/ photo-current module

Simulation runtime comparison

Only 1.06 times more simulation runtime is consumed
Application
Application to the LCD design

Schematic diagram of LCD panel
A typical pixel circuit of LCD

Photo-leakage current model and liquid crystal model described in Verilog-A are used

Application to the LCD design

Schematic diagram of LCD panel

A typical pixel circuit of LCD

Photo-leakage current model and liquid crystal model described in Verilog-A are used

Following optimizations should be applied during LCD design processes

1. \(V_{\text{com}} \) optimization
2. \(C_{\text{sc}} \) optimization
Optimization 1: V_{com}

- Flicker level increases with light exposure.
- Optimal V_{com} shifts with light intensities.
- Failure to optimize V_{com} may lead to flicker image.

V_{com} should be ~ -0.35 V

Designers can estimate the optimal V_{com} for supposed light intensities.
Optimization 2: C_{sc}

- As C_{sc} is increased:
 - Flicker level is decreased
- BUT...
 - Less aperture ratio
 - Hard to accumulate the charge during switch-on time

Choose max C_{sc} that fulfills customer’s specification

Designers can estimate the optimal C_{sc} for supposed light intensities with given specification
Realized **accurate** and **fast** simulation considering optical illumination.

Enabled **detection of possible malfunctioning** in the LCD property during designing process.

Verilog-A is suitable for this **plug-in approach** modeling.
Thank you for your attention