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Abstract—In this paper we present a circuit configuration that In this paper, we present the first case of an Index-3 DAE

generates an Index-3 DAE. Previous index analyses of analoggenerated by a practical circuit configuration. Index asialy
circuits have proved that the DAE set modellng the circuit is methods are directly dependent on the set of components
at most Index-2. We show that certain behavioral models for . . . .
transistors can generate an Index-3 DAE when a particular |nclu_ded|nthe analysis procedure.Whlle sf[ructural mf;’dee
structural condition is satisfied. Most BDF methods are unsable restricted to the results presented in the literature, \iere
for Index-3 DAEs, the DAE set has to be preconditioned via models need not adhere to the same constraints. We show
constraint differentiation or regulia.rization to rgdu.ce the Index that a common transistor modeling technique, charge based
of the DAE. We present an efficient regularization procedure current modeling, can generate an Index-3 DAE when certain
that can be applied to the Index-3 DAE generated by the . f . e L
transistor model. The occurrence condition and the regulaization Connect!on conflguraFlong are satisfied by the cwcuﬁ. 'I_'he
procedure can be checked for and performed at the netlist connection configuration is presented as a structural Gondi
level. We show with examples how the modification improves to enable its detection at the netlist level.
the simulation process in terms of accuracy of the solution rad To reliably simulate Index-3 DAEs with BDF methods, an
improved convergence properties. appropriate preconditioning procedure is necessary.élpes
cedures aim to reduce the index of the DAE by differentiating
part of the equation set or by regularization techniques [7]
An automatic extraction method such as Modified Nod&@onstraint differentiation involves choosing a subset huf t
Analysis(MNA) generates a set of Differential-Algebrai®AE set and computing its Jacobian. The new DAE set will
Equations(DAE) from the circuit netlist. The DAE set ishave a reduced index if the proper subset is chosen [5], [7],
evaluated with Backward Difference Formula(BDF) method§8]. Computation of the Jacobian is an expensive procedure i
which predict the evolution of the system variables with theircuit simulation, an alternate method without this prhae
passage of time. The performance of the BDF methodsvieuld be a favorable choice for index reduction. Regular-
dependent on thé:dex of the DAE. BDF methods are knownization methods improve the solvability of Index-3 DAEs
to be stable when presented with Index-1 DAEs [1]. Index{®y adding stabilization terms to reduce the index [7], [9].
DAEs that occur in analog circuit models are known to contaifthe modified DAE is under the constraint that the perturbed
beneficial structures for BDF methods [2]. Index-3 DAEsolution should be as close as possible to the originalisolut
however are known to cause instabilities to the variablp steet. A procedure for regularization of VHDL-AMS models is
size BDF methods [3]. If the index of the DAE set is availablpresented in [10]. Regularization methods are usuallyelihk
before the simulation process, a preconditioning proaeduo the particular structure of the DAE which it targets, and
based on the DAE structure can improve the efficiency of tlaee not applicable to a general class of Index-3 DAEs. In this
BDF method. context, we present an efficient regularization proceduréhe
Reissig [4] first showed that the equation set modelingdex-3 DAE that is generated by the above mentioned circuit
circuits containing only passive RLC components and transanfiguration. We show with examples how the regularization
formers and gyrators is at most an Index-2 DAE. Encingsocess improves the quality of the solution when compared
and Riaza removed the passivity condition from [4] to shotw the original Index-3 DAE.
that a more general class of analog circuits generates indexThe rest of the paper is organized as follows: in section Il
1 or Index-2 DAEs [5]. Schwarz and Tischendorf presemte present some background on the index of a DAE and its
a structural condition for the occurrence of Index-2 DAEsomputation. In section Ill we present a transistor model an
in circuit configurations [2]. Soto and Tischendorf analyzthe connection configuration that generates the Index-3.DAE
the Partial-DAE(PDAE) system arising as a consequence lofthe next section, we present a regularization method for
modeling the drift-diffusion equations in carrier trangpf®]. this Index-3 DAE. Finally, we present results comparing the
They show that the PDAE discretized on a mesh generatessamulation of the regularized DAE with the original Index-3
Index-1 or Index-2 DAE. version.

I. INTRODUCTION
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Il. DAE INDEX

o ) . [1l. I NDEX-3 DAE GENERATORS
The fully implicit nonlinear DAE can be written as .
Charge based current modeling is a common method of

F(t,y,y') =0 (1) Modeling transistor behavior. The channel currents and-par
sitics are characterized in terms of the charge presenten th
The index of (1) is defined as the number of times that all &rminals of the transistor [12], [13]. The equation thatiels
part of the DAE set have to be differentiated to represers it #1€ current can be written as

an Ordinary Differential Equation(ODE) [1]. Gear preseats aQ d —

analytic procedure to compute this index in [11]. From (1), a I = - E( ) (@)
subsety; = e; of ¢’ is solved for and the remaining equations dQ, 9Q; dVis

are grouped as a subsgtof F. The first differentiation ofy, I = a2 dvig dt ' Gy, Go, D, B (3)

allows to solve fory), whereys is a subset ofy\y;. The
remaining equationsf"\(g; U e1), are grouped ag. The V is the vector of system voltages in the DAE set. (2) can be
procedure continues untyj’ is completely solved for. The directly included in a behavioral model of a component; (3)
number of differentiations that were performed is the indexas to be modified to eliminate the partial derivative before
of the DAE F'. We use this procedure to find the index of th& becomes part of an element stamp for MNA. We use the
circuit shown above. MNA generates the following equationgiscretization methods discussed for SPICE or VHDL-AMS
[14]. The final form of (3) can be written as
—-I.+CV' =0 _
V- E(t) =0 Iy = {@} il @)
g(V)] dt
The first equation can be used to solve ot V' = I./C. e call these voltage controlled current sourcefasources.
The second equation is differentiated to givé— E'(t) = 0 From the above discussion two important properties can be
and the value fol/’ is substituted to givé./C' — E'(t) =0. deduced: (1) The characteristic equation of the controlled
Since I, cannot be solved for from this equation, a secongrrent source is a function of th&zrivative of the terminal

differentiation is necessary, finally givingf = CE" (t). voltages and (2) this special form occurs if a charge based
An Index-3 DAE discussed in [1] is as follows: modeling method is used with the charges being expressed
. in terms of terminal voltages. In the rest of this section, we
Ty = T2 show howthe occurrence of anL-Iy cutset in the circuit
xh =13 is capable of generating an Index-3 DAE.
0=x1 —gi(t) Consider the simplest case of the cutset in Fig. 3, where

the L and Iy, components are incident at nogleThe compo-
The analytical solution to this DAE is given by (t) = g(t), nents modeling the transistor are enclosed within the @plon
x2(t) = ¢'(t), z3(t) = ¢”(t). Fig. 2 compares the simulateddoundary. The dashed extensions to the branches represent
value of the Index-3 variable with its analytical value. @ade connections to other parts of the circuit. The area of irsteiee
IUS58 was used for performing the simulation with the GeatPe intersection of théy» source component with an inductor
BDF option. The simulated value deviates considerably frofa external to the transistor model. For this configuration,
the analytical value. If this variable is part of a larger atipn MNA generates the following equations:
set, then the error could propagate to other variables in the . _ .
system. In the next section, we present a component model and il =0 ()
a connection configuration that suffers from a similar peail Vi-V; = LI (6)

—Ir, + Iy 0 (7
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) ) _ ) set repeatedly until a suitable reduction in the DAE index
While applying Gear's procedure to determine the index of g peen achieved. Regularization methods perform the same
larger circuit cpntaining this configuration, (6) pecommtp task by adding terms to the DAE to improve stability and
of y; because it can be used to solve for There is no other ¢qnyergence properties. The solution space of the modified
occurrence ofV/; in the DAE F' and we see the following: equation set has to be as close as possible to the original
Vi ¢ 91 and we also hav& ¢ e,. From the former relation, pag set, and this condition determines the positioning #ed t
we can deduce: values of the terms that are added. In this section we present

Vi ¢ g1) = (V] ¢ g1,0,0}) (8) @an efficient regularization method that can reduce the Ir&lex
DAE generated by thé-1y cutset to one of lower index. The

From the above relations angh from (3.2c) in [11], V] two conditions for the regularizing term are discussed @ th
cannot be solved for frony; making necessary a secondest of this section.

differentiation of some of the equations i
A. Position of the regularizing term

The regularizing term is added to the original DAE set
The only occurrence dF; is in (6) and this form is preservedsuch that theL-I;» components do not form cutsets in the

91 = Yo U g2(y1, y2, v2,t) 9)

in g2. In g5, some equations, will be of the form circuit configuration. Fig. 4 shows one such configuration
VI V! that can eliminate the cutset. The advantage of adding a
% = gb;(y1, Y2, v1, V5, 1) (10) resistor is that it adds no additional variables to the MNA

o ] generated equations. Consider the following equations tha
From this single equation, bothi/ andV; cannot be solved p\1ya generates for nodesand ;:

for simultaneously, necessitating a third differentiatio solve

for V- from the definition of the DAE index, this implies L —L—ILh+ 1+ Vi- Vi _ 0
the DAE F is Index-3. R /
Some situations where botfy andV;’ are coupled in the form Vi=V; = LI
of (10) are enumerated beiow: ViV L+L, = 0 (11)
1) V; occurs only withV;” making it possible to solve for R
one of them, but not both The conditions enumerated in the previous section for the
2) The termV] disappears due to it numerical invers@bsence o¥; in g, are no longer true, and a similar analysis
occurring in (10) will show that the DAE is no longer Index-3.

3) The term containing’; becomes part of, and does

not appear iryz(and hence neither ip})

The generator node however is the nodin Fig. 3 and  We derive a value for the resistor that can be added such
a similar ana|ysis app"es to ah-Iy cutset generating an that the BDF method generates a solution vector whose value
Index-3 DAE. This condition can be checked for from th@grees well with that of the original DAE. Ideally an extrdyne
netlist during the elaboration stage of a circuit simulatar high value for the resistor will limit the current in its brem
the next section we discuss a procedure to eliminate thggtutut from practical observations, this high value causes a

B. Value of the regularizing term

and reduce the index of the resultant DAE. blowup of other values in the system matrix. We present a
bound for this resistor that is computed from the absolute

IV. REGULARIZATION OF DAES GENERATED BY L-Iy- tolerance(ATOL) of the currenk;,, which in turn is obtained
CUTSETS from the model file. The bound is such that it guarantees

Index reduction methods for DAEs are divided into twado keep the current through the resistor branch lesser than
broad categories: constraint differentiation and regzddéion. ATOL(I;). By the definition of ATOL, it is the accuracy to
Constraint differentiation involves differentiating thenstraint which the quantity has to be computed. Hence if the curfent



reduces by lesser than ATOL), the effect of the reduction . Feduced Time-Stepo n index3 Simutaon
can be ignored during the simulation cycle. This conditi®n i %%%
satisfied locally, i.e., at each node where the component is T
added. Therefore multiple occurrences lbfly, cutsets can
be treated by choosing the the corresponding values from the
node under consideration.

Consider node in Fig. 4. If the condition

Voltage(V)

Vi-V;
Iy > == (12) N
is satisfied, the resistor current is not significant. (11tams IR S ——
the characteristic equation of the inductor, generated byAM Y
US|ng thls ||’] (12) We get a neW relat'on_ 22 222 224 2.26 2.28 T"::(S) 232 2.34 2.36 2.38 24
I > LI/L (13) Fig. 5. Index-3 vs. Index-2 VHDL-AMS models
R
To produce a specific bound from (13), we introduce the Convergance with Stablizing Term inciudod
quantity ATOL(/) into the equation. We limit the ratio of ° oo ——
the resistor branch current with respectlipto ATOL(I1). / \
I 1 )
—_ > 14
L = ATOL(L,) ) / \
Using a backward euler approximation oy in (14) we get E /
the following relation: ] — 7@;
:; ‘%1\.
Rhyin Y > 1 (15) : -
L \ 0 Z 0w ) = ATOL(LL) /
h/MIN IS the mlnlmum Value Of the tlme Step and IS determlned 0,8037126 0.0037128 0.003713 0.0037132 0.0037134  0.0037136  0.0037138 0.003714
by the simulator. We propose the relation (17) which is Timee
dependent on the definition of ATOL. Using (17), we come Fig. 6. Convergence of Regularized Variable
up with a final bound for R:
R > L-ATOL(Iy) 16
= hyviN (16) Fig. 5 compares the Index-3 and regularized variables from

This numerical value ofR guarantees that its addition doed VHDL-AMS mod.el file. There IS a nqtlceable divergence
not affect the current in the other branches to an extent ti tt.he Inde>_<-3 variable from its an.aly'ucal value. The reg-
the simulator notices a change, while improving convergene ar!zed variable fOHO\N? the_ana!y'ucal vajue more clgsel
properties by reducing the index. All the quantities inwalv An |mp_ortant_effect notlc.ed in this model was the number
in this bound are available before the simulation proces%f, SOIU_“O” points chosen: the Index-3 model was 5|_mulatabl
hence a component of this value can be added prior to {}dly with very loose tolerance Ie_vels. Th|s led toan mcmhs_
simulation cycle. By the above arguments, this value of t ceptance of erroneous splutlon. points. This also explain
resistance is the lowest possible value such that the B fact that only 25 solution points were chosen for the
method produces the same result in its absence. The ad X'3 model,_compared to approximately ¥bints for the
advantage is that the additional occurrences of the varigpl regularlzed variable. )

acts as a stabilizing term to improve the convergence ptieger N Fig. 6 we compare the convergence properties of the

of the BDF method. In the next section, we present sonfggularized variable with its analytical value. The Index-
examples that reinforce this claim. variable could not be simulated in this case, even for exgéfgm

loose tolerance values. The regularized value was staffed o
V. EXPERIMENTAL RESULTS with inconsistent initial conditions, but still convergéd its
Cadence 1US58(with the Gear BDF option) and DASPRnalytical value. This agrees with the convergence resilts

were used for performing the simulations. Matlab restricBDF methods for Index-1 or Index-2 DAEs which in turn
itself to Index-1 DAEs and hence could not be used; Mathegerifies our claim that the DAE index is reduced by the
matica employs a kernel derived from DASPK and the resultggularization process.
are equivalent. The circuit configurations tested involeebar Fig. 7 compares the Index-3 and regularized variable wsth it
relations to modelly. Other standard components wer@nalytical value. The regularized value follows the ariedft
included in the netlist, arl-Iy cutset was included as partvalue very well, but the Index-3 variable accepts erroneous
of the test circuits to generate an Index-3 DAE. values due to the large tolerance values. Fig. 8 shows simila
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Fig. 9. Effect of Regularizing term on the reduced variable
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Reduced VHDL-AMS Simulated with Cadence 1US58 using the Gear BDF Method
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Fig. 8. Index2 vs. Analytical Value

results for another test case. The regularized variablews|
its analytical counterpart closely. The Index-3 model iis th 1241
case did not converge for even very high tolerance values.

away from that in (16). The value dfy;;y IS many times
smaller than the average time step of the simulation cycle,
which allows the bound to be loosened during that time step.
In this case, for values which exceeded the bound by up to
102, the simulated value is still close to its actual value. In
most cases the computed value does not cause a blowup of
the remaining system variables.

VI. CONCLUSION

We present a connection configuration that causes MNA
to generate an Index-3 DAE to model the circuit equations.
The occurrence is presented as a structural condition ertet
its presence at the netlist level. A suitable regularizatio
method is discussed to reduce the index of this DAE. The

bound for this regularizing term is computable prior to the
simulation process. Examples are shown where the addition

of the regularizing term determined by this bound improves
the simulation results in terms of accuracy and convergence
properties.
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