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Abstract—In this paper we present a circuit configuration that
generates an Index-3 DAE. Previous index analyses of analog
circuits have proved that the DAE set modeling the circuit is
at most Index-2. We show that certain behavioral models for
transistors can generate an Index-3 DAE when a particular
structural condition is satisfied. Most BDF methods are unstable
for Index-3 DAEs, the DAE set has to be preconditioned via
constraint differentiation or regularization to reduce th e Index
of the DAE. We present an efficient regularization procedure
that can be applied to the Index-3 DAE generated by the
transistor model. The occurrence condition and the regularization
procedure can be checked for and performed at the netlist
level. We show with examples how the modification improves
the simulation process in terms of accuracy of the solution and
improved convergence properties.

I. I NTRODUCTION

An automatic extraction method such as Modified Nodal
Analysis(MNA) generates a set of Differential-Algebraic
Equations(DAE) from the circuit netlist. The DAE set is
evaluated with Backward Difference Formula(BDF) methods,
which predict the evolution of the system variables with the
passage of time. The performance of the BDF methods is
dependent on theindex of the DAE. BDF methods are known
to be stable when presented with Index-1 DAEs [1]. Index-2
DAEs that occur in analog circuit models are known to contain
beneficial structures for BDF methods [2]. Index-3 DAEs
however are known to cause instabilities to the variable step
size BDF methods [3]. If the index of the DAE set is available
before the simulation process, a preconditioning procedure
based on the DAE structure can improve the efficiency of the
BDF method.

Reissig [4] first showed that the equation set modeling
circuits containing only passive RLC components and trans-
formers and gyrators is at most an Index-2 DAE. Encinas
and Riaza removed the passivity condition from [4] to show
that a more general class of analog circuits generates Index-
1 or Index-2 DAEs [5]. Schwarz and Tischendorf present
a structural condition for the occurrence of Index-2 DAEs
in circuit configurations [2]. Soto and Tischendorf analyze
the Partial-DAE(PDAE) system arising as a consequence of
modeling the drift-diffusion equations in carrier transport [6].
They show that the PDAE discretized on a mesh generates an
Index-1 or Index-2 DAE.

In this paper, we present the first case of an Index-3 DAE
generated by a practical circuit configuration. Index analysis
methods are directly dependent on the set of components
included in the analysis procedure. While structural models are
restricted to the results presented in the literature, behavioral
models need not adhere to the same constraints. We show
that a common transistor modeling technique, charge based
current modeling, can generate an Index-3 DAE when certain
connection configurations are satisfied by the circuit. The
connection configuration is presented as a structural condition
to enable its detection at the netlist level.

To reliably simulate Index-3 DAEs with BDF methods, an
appropriate preconditioning procedure is necessary. These pro-
cedures aim to reduce the index of the DAE by differentiating
part of the equation set or by regularization techniques [7].
Constraint differentiation involves choosing a subset of the
DAE set and computing its Jacobian. The new DAE set will
have a reduced index if the proper subset is chosen [5], [7],
[8]. Computation of the Jacobian is an expensive procedure in
circuit simulation, an alternate method without this procedure
would be a favorable choice for index reduction. Regular-
ization methods improve the solvability of Index-3 DAEs
by adding stabilization terms to reduce the index [7], [9].
The modified DAE is under the constraint that the perturbed
solution should be as close as possible to the original solution
set. A procedure for regularization of VHDL-AMS models is
presented in [10]. Regularization methods are usually linked
to the particular structure of the DAE which it targets, and
are not applicable to a general class of Index-3 DAEs. In this
context, we present an efficient regularization procedure for the
Index-3 DAE that is generated by the above mentioned circuit
configuration. We show with examples how the regularization
process improves the quality of the solution when compared
to the original Index-3 DAE.

The rest of the paper is organized as follows: in section II
we present some background on the index of a DAE and its
computation. In section III we present a transistor model and
the connection configuration that generates the Index-3 DAE.
In the next section, we present a regularization method for
this Index-3 DAE. Finally, we present results comparing the
simulation of the regularized DAE with the original Index-3
version.



V

E(t) C

Ie

Fig. 1. Index-2 DAE Circuit

II. DAE I NDEX

The fully implicit nonlinear DAE can be written as

F (t, y, y′) = 0 (1)

The index of (1) is defined as the number of times that all or
part of the DAE set have to be differentiated to represent it as
an Ordinary Differential Equation(ODE) [1]. Gear presentsan
analytic procedure to compute this index in [11]. From (1), a
subsety′

1 = e1 of y′ is solved for and the remaining equations
are grouped as a subsetg1 of F . The first differentiation ofg1

allows to solve fory′

2, where y2 is a subset ofy\y1. The
remaining equations,F\(g′1 ∪ e1), are grouped asg2. The
procedure continues untily′ is completely solved for. The
number of differentiations that were performed is the index
of the DAEF . We use this procedure to find the index of the
circuit shown above. MNA generates the following equations:

−Ie + CV ′ = 0

V − E(t) = 0

The first equation can be used to solve forV ′: V ′ = Ie/C.
The second equation is differentiated to giveV ′ − E′(t) = 0
and the value forV ′ is substituted to giveIe/C −E′(t) = 0.
Since I ′e cannot be solved for from this equation, a second
differentiation is necessary, finally givingI ′e = CE′′(t).

An Index-3 DAE discussed in [1] is as follows:

x′

1 = x2

x′

2 = x3

0 = x1 − g1(t)

The analytical solution to this DAE is given byx1(t) = g(t),
x2(t) = g′(t), x3(t) = g′′(t). Fig. 2 compares the simulated
value of the Index-3 variable with its analytical value. Cadence
IUS58 was used for performing the simulation with the Gear2
BDF option. The simulated value deviates considerably from
the analytical value. If this variable is part of a larger equation
set, then the error could propagate to other variables in the
system. In the next section, we present a component model and
a connection configuration that suffers from a similar problem.
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Fig. 2. Simulated vs. Analytical Index-3 Variable

III. I NDEX-3 DAE GENERATORS

Charge based current modeling is a common method of
modeling transistor behavior. The channel currents and para-
sitics are characterized in terms of the charge present in the
terminals of the transistor [12], [13]. The equation that models
the current can be written as

I =
dQ

dt
=

d

dt
(V ) (2)

Ij =
dQj

dt
=
∑

i

∂Qj

∂ViS

dViS

dt
, i = Gf , Gb, D, B (3)

V is the vector of system voltages in the DAE set. (2) can be
directly included in a behavioral model of a component; (3)
has to be modified to eliminate the partial derivative before
it becomes part of an element stamp for MNA. We use the
discretization methods discussed for SPICE or VHDL-AMS
[14]. The final form of (3) can be written as

IV ′ =

[

f(V )

g(V )

]

dV

dt
(4)

We call these voltage controlled current sources asIV ′ sources.
From the above discussion two important properties can be
deduced: (1) The characteristic equation of the controlled
current source is a function of thederivative of the terminal
voltages and (2) this special form occurs if a charge based
modeling method is used with the charges being expressed
in terms of terminal voltages. In the rest of this section, we
show howthe occurrence of anL-IV ′ cutset in the circuit
is capable of generating an Index-3 DAE.

Consider the simplest case of the cutset in Fig. 3, where
theL andIV ′ components are incident at nodej. The compo-
nents modeling the transistor are enclosed within the oblong
boundary. The dashed extensions to the branches represent
connections to other parts of the circuit. The area of interest is
the intersection of theIV ′ source component with an inductor
L, external to the transistor model. For this configuration,
MNA generates the following equations:

−i1 − i2 − i3 + IL = 0 (5)

Vi − Vj = LI ′L (6)

−IL + IV ′ = 0 (7)
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Fig. 3. Index-3 DAE Generator

While applying Gear’s procedure to determine the index of a
larger circuit containing this configuration, (6) becomes part
of y′

1 because it can be used to solve forI ′L. There is no other
occurrence ofVj in the DAE F and we see the following:
Vj /∈ g1 and we also haveV ′

j /∈ e1. From the former relation,
we can deduce:

(Vj /∈ g1) =⇒ (V ′

j /∈ g1,v1
v′1) (8)

From the above relations andg1 from (3.2c) in [11], V ′

j

cannot be solved for fromg′1 making necessary a second
differentiation of some of the equations inF .

g′1 = y′

2 ∪ g2(y1, y2, v2, t) (9)

The only occurrence ofVj is in (6) and this form is preserved
in g2. In g′2, some equationg′2i will be of the form

V ′

i − V ′

j

L
= g′2i(y1, y2, v1, v

′

2, t) (10)

From this single equation, bothV ′

j and V ′

i cannot be solved
for simultaneously, necessitating a third differentiation to solve
for V ′

j - from the definition of the DAE index, this implies
the DAE F is Index-3.
Some situations where bothV ′

j andV ′

i are coupled in the form
of (10) are enumerated below:

1) V ′

j occurs only withV ′

i making it possible to solve for
one of them, but not both

2) The term V ′

j disappears due to it numerical inverse
occurring in (10)

3) The term containingV ′

j becomes part ofy2 and does
not appear ing2(and hence neither ing′2)

The generator node however is the nodej in Fig. 3 and
a similar analysis applies to anL-IV ′ cutset generating an
Index-3 DAE. This condition can be checked for from the
netlist during the elaboration stage of a circuit simulator. In
the next section we discuss a procedure to eliminate this cutset
and reduce the index of the resultant DAE.

IV. REGULARIZATION OF DAES GENERATED BYL-IV ′

CUTSETS

Index reduction methods for DAEs are divided into two
broad categories: constraint differentiation and regularization.
Constraint differentiation involves differentiating theconstraint
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Fig. 4. RegularizedL-IV ′ cutset

set repeatedly until a suitable reduction in the DAE index
has been achieved. Regularization methods perform the same
task by adding terms to the DAE to improve stability and
convergence properties. The solution space of the modified
equation set has to be as close as possible to the original
DAE set, and this condition determines the positioning and the
values of the terms that are added. In this section we present
an efficient regularization method that can reduce the Index-3
DAE generated by theL-IV ′ cutset to one of lower index. The
two conditions for the regularizing term are discussed in the
rest of this section.

A. Position of the regularizing term

The regularizing term is added to the original DAE set
such that theL-IV ′ components do not form cutsets in the
circuit configuration. Fig. 4 shows one such configuration
that can eliminate the cutset. The advantage of adding a
resistor is that it adds no additional variables to the MNA
generated equations. Consider the following equations that
MNA generates for nodesi andj:

−I1 − I3 − I2 + IL +
Vi − Vj

R
= 0

Vi − Vj = LI ′L

−
Vi − Vj

R
− IL + I ′V = 0 (11)

The conditions enumerated in the previous section for the
absence ofVj in g1 are no longer true, and a similar analysis
will show that the DAE is no longer Index-3.

B. Value of the regularizing term

We derive a value for the resistor that can be added such
that the BDF method generates a solution vector whose value
agrees well with that of the original DAE. Ideally an extremely
high value for the resistor will limit the current in its branch,
but from practical observations, this high value causes a
blowup of other values in the system matrix. We present a
bound for this resistor that is computed from the absolute
tolerance(ATOL) of the currentIL, which in turn is obtained
from the model file. The bound is such that it guarantees
to keep the current through the resistor branch lesser than
ATOL(IL). By the definition of ATOL, it is the accuracy to
which the quantity has to be computed. Hence if the currentIL



reduces by lesser than ATOL(IL), the effect of the reduction
can be ignored during the simulation cycle. This condition is
satisfied locally, i.e., at each node where the component is
added. Therefore multiple occurrences ofL-IV ′ cutsets can
be treated by choosing the the corresponding values from the
node under consideration.

Consider nodei in Fig. 4. If the condition

IL ≫
Vi − Vj

R
(12)

is satisfied, the resistor current is not significant. (11) contains
the characteristic equation of the inductor, generated by MNA.
Using this in (12) we get a new relation:

IL ≫
LI ′L
R

(13)

To produce a specific bound from (13), we introduce the
quantity ATOL(IL) into the equation. We limit the ratio of
the resistor branch current with respect toIL to ATOL(IL).

IL

LI′

L

R

≥
1

ATOL(IL)
(14)

Using a backward euler approximation forI ′L in (14) we get
the following relation:

RhMIN

L

(

I
(m+1)
L

I
(m+1)
L − I

(m)
L

)

≥
1

ATOL(IL)
(15)

hMIN is the minimum value of the time step and is determined
by the simulator. We propose the relation (17) which is
dependent on the definition of ATOL. Using (17), we come
up with a final bound for R:

R ≥
L ·ATOL(IL)

hMIN

(16)

This numerical value ofR guarantees that its addition does
not affect the current in the other branches to an extent that
the simulator notices a change, while improving convergence
properties by reducing the index. All the quantities involved
in this bound are available before the simulation process,
hence a component of this value can be added prior to the
simulation cycle. By the above arguments, this value of the
resistance is the lowest possible value such that the BDF
method produces the same result in its absence. The added
advantage is that the additional occurrences of the variable Vj

acts as a stabilizing term to improve the convergence properties
of the BDF method. In the next section, we present some
examples that reinforce this claim.

V. EXPERIMENTAL RESULTS

Cadence IUS58(with the Gear BDF option) and DASPK
were used for performing the simulations. Matlab restricts
itself to Index-1 DAEs and hence could not be used; Mathe-
matica employs a kernel derived from DASPK and the results
are equivalent. The circuit configurations tested involvedlinear
relations to modelIV ′ . Other standard components were
included in the netlist, anL-IV ′ cutset was included as part
of the test circuits to generate an Index-3 DAE.
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Fig. 5. Index-3 vs. Index-2 VHDL-AMS models
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Fig. 5 compares the Index-3 and regularized variables from
a VHDL-AMS model file. There is a noticeable divergence
of the Index-3 variable from its analytical value. The reg-
ularized variable follows the analytical value more closely.
An important effect noticed in this model was the number
of solution points chosen: the Index-3 model was simulatable
only with very loose tolerance levels. This led to an increased
acceptance of erroneous solution points. This also explains
the fact that only 25 solution points were chosen for the
Index-3 model, compared to approximately 104 points for the
regularized variable.

In Fig. 6 we compare the convergence properties of the
regularized variable with its analytical value. The Index-3
variable could not be simulated in this case, even for extremely
loose tolerance values. The regularized value was started off
with inconsistent initial conditions, but still convergedto its
analytical value. This agrees with the convergence resultsof
BDF methods for Index-1 or Index-2 DAEs which in turn
verifies our claim that the DAE index is reduced by the
regularization process.

Fig. 7 compares the Index-3 and regularized variable with its
analytical value. The regularized value follows the analytical
value very well, but the Index-3 variable accepts erroneous
values due to the large tolerance values. Fig. 8 shows similar
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results for another test case. The regularized variable follows
its analytical counterpart closely. The Index-3 model in this
case did not converge for even very high tolerance values.

Finally, Fig. 9 compares the effect of moving the bound

away from that in (16). The value ofhMIN is many times
smaller than the average time step of the simulation cycle,
which allows the bound to be loosened during that time step.
In this case, for values which exceeded the bound by up to
102, the simulated value is still close to its actual value. In
most cases the computed value does not cause a blowup of
the remaining system variables.

VI. CONCLUSION

We present a connection configuration that causes MNA
to generate an Index-3 DAE to model the circuit equations.
The occurrence is presented as a structural condition to detect
its presence at the netlist level. A suitable regularization
method is discussed to reduce the index of this DAE. The
bound for this regularizing term is computable prior to the
simulation process. Examples are shown where the addition
of the regularizing term determined by this bound improves
the simulation results in terms of accuracy and convergence
properties.
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