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ABSTRACT 

In this work, a new and efficient method is developed to 
simulate threshold-crossing events (for example, the cross 
event in Verilog-A/MS). The method converges directly to 
the solution at the crossing without the need of computing 
additional timepoints. The violated cross condition is 
solved together with the circuit equations as one system of 
nonlinear equations and the timestep is treated as an 
independent variable. This method has very little overhead 
and can be easily integrated into an existing simulation 
flow. Simulation results show good convergence rate - less 
than two extra Newton iterations needed to accurately 
locate the crossing. This method could speedup transient 
simulation significantly when there are a large number of 
threshold-crossing events.  

1. INTRODUCTION 
The cross event has been widely used in behavior-level 
modeling and simulation. It changes the dynamics of the 
model when certain analog expression crosses through 
zero.  The cross function in Verilog-A generates a 
monitored analog event to detect threshold crossing.  It 
controls the timestep to accurately resolve the crossing. 
The cross function is also used in the A2D event in 
Verilog-AMS for threshold crossing [1]. 
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Figure 1. The existing method needs to compute additional 
timepoints to accurate resolve the crossing 

The best known method for locating the crossing points 
works as follows: The simulator checks all cross conditions 
at each timepoint. If a violation is detected, the simulator 
rejects the timepoint, enters a search mode and tries to hit 
the timepoint when the crossing is occurring. As illustrated 
in Figure 1, the simulator iteratively predicts (via 
interpolation) and solves the crossing point until the errors 
are within tolerances. It normally takes 2-4 timepoints 
(sometimes much more) before an accurate crossing can be 
found. The entire circuit or system has to be evaluated and 
solved at those timepoints. A large number of cross events 
could slow down a transient simulation significantly [2]. 

In this work, we developed a more rigorous method to 
solve the crossing problem. Instead of computing solutions 
at a number of timepoints and checking the cross condition 
at each timepoint, we solve the cross condition together 
with the circuit equations and treat the timestep as an 
independent variable. The method directly converges to the 
solution at the crossing, thus is more efficient than the 
existing methods. 

2. COUPLED NEWTON METHOD 
Most circuit simulators use modified nodal analysis (based 
on Kirchhoff’s laws) to formulate a system of N differential 
algebraic equations (DAEs) [3], 

( )( ) ( )( ) ( )( ) ( ) 0=++= tutvitvq
dt
dtvfckt ,      (1) 

where NRu ∈ is the vector of input sources, NRv ∈ is the 
vector of solution variables, and NRqi ∈,  are the vectors 
of resistive currents and node charges/branch fluxes. The 
time derivative term can be discretized using a time 
integration scheme. Without loss of generality, we only 
consider backward Euler scheme for simplicity. The 
resulting system of nonlinear equations is 
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where m is the time index. And the cross condition is an 
explicit equation of solution variables, i.e., node voltages 
and branch currents, given by, 

( ) 0=mcross vf .                                 (3) 



In order to locate the crossing and compute the solution at 
the crossing simultaneously, we treat the timestep mh as an 
independent variable or an unknown, and solve the cross 
condition together with circuit equations as one system of 
nonlinear equations, 
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or 

( ) 0, =mmcoupled hvF                                (5) 

where 1+∈ N
coupled RF , i.e., we now solve N+1 nonlinear 

equations for N+1 unknowns. 

Applying Newton method to the above equation, we 
obtain, 
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Multiplying both sides of the above equation with 
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Performing Gauss elimination, the equation becomes, 
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(8) 
We can perform backward substitution to obtain solution, 
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Note that the first term ( )cktckt fJ −
−1

 is the solution of the 
circuit equations when the timestep is not treated as an 
unknown. And the second term is the correction to the 
solution due to the change of the timestep. Most modern 
circuit simulators perform in-place LU factorization. So the 
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m

ckt
ckt

h
f

J
∂
∂−1  can be easily obtained by standard forward 

and backward substitutions of the circuit Jacobian matrix. 
The overhead for solving the cross condition are those 
substitutions, whose computational cost is really negligible 
compared with the cost of a full LU factorization. We 
would like to point out that this method works with any 
linear solvers in a given circuit simulator, although the 
computational cost may vary. 
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Figure 2. Procedure to solve the coupled linear system 

As shown in Figure 2, only a few additional steps (one 
forward substitution and one backward substitution, and 
two dot products) are needed to solve the coupled 
nonlinear system. This method can be easily integrated into 
an existing simulation flow with a small amount of effort. 

3. IMPLEMENTATION DETAILS 

3.1 Crossing Detection  
The common crossing detection technique checks signs of 
a cross condition before and after a timestep. A sign change 
indicates that a crossing has occurred and a search 
algorithm is activated to precisely locate the crossing. This 
method assumes cross conditions vary linearly between 
two timepoints. Yet for most cases those cross conditions 
are polynomials. If a crossing occurs within a timestep and 
the values at the beginning and the end of the step have the 



same sign, as illustrated in Figure 3, the simulator will step 
over the crossing without detecting it. 

 
Figure 3. A missed crossing 

Our implementation utilizes an interpolated second-order 
polynomial to find local maximum/minimum of the cross 
condition within a timestep, as shown in Figure 4. A 
crossing then can be detected by checking signs of 
maximum/minimum and the signal value at the beginning 
of the timestep. This method is one order of magnitude 
more accurate than previous method. 

 
Figure 4. Detecting the crossing using local maximum 

3.2 Modified Newton Flow  
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Figure 5. Modified Newton flow 

The new method handles cross events inside the new loop 
and is transparent to the transient flow. A simplified 
Newton flow for the new method is shown in Figure 5. 

Note that two new blocks are inserted into the Newton loop 
to check and solve cross conditions.  

As illustrated in Figure 6, the simulator evaluates and 
checks all cross conditions at the beginning of a Newton 
iteration. If a violation is detected, the simulator enters the 
search mode, projects a new timestep to hit the crossing (or 
the earliest crossing in the case of multiple violations) via 
interpolation. In search mode, the simulator also re-
extrapolates using the new timestep, updates time-varying 
sources and time coefficients. 

New cross 
violations?

Enable a new search mode

N

Evaluate all cross conditions

Compute the new step for the earliest crossing

Extrapolate using the new step

Update time-varying sources
Compute new time coefficients

Search mode?Y N
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Figure 6. Flow for checking cross conditions 

In search mode, a coupled linear system is solved at each 
Newton iteration. The flow is shown in Figure 7. The 
simulator first computes derivatives of circuit equation 
with respect to the timestep. The cross condition part is 
then solved using equations (9) and (10).  The timestep is 
updated before exit. 

Search mode?

Solve the cross equation of the coupled system

Update timestep

Y N

Compute ∂f/∂h

 
Figure 7. Flow for solving the cross condition 

 

3.3 @cross in Verilog-A  
The cross function in Verilog-A/MS [1] requires a 
timepoint to be placed just after the crossing, within 



tolerances, as shown in Figure 8. The coupled Newton 
method needs to be slightly modified to meet this 
requirement. 

exprTol

timeTol

exprTol

timeTol  
Figure 8. Relationship between time tolerance and expression 

tolerance in Verilog-A/MS 

4. SIMULATION RESULTS 
A basic version of the new method was implemented in our 
in-house circuit simulator, TISpice, and tested on a seven-
stage ring oscillator shown in Figure 9.  
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Figure 9. Seven-stage ring oscillator 

We tested three cross conditions: 21 =V , 31 VV = , and 
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. The tolerances are expr_tol=1e-6 and 

time_tol = 1e-14. The second-order Gear method is used 
for time integration. The zero-crossing for the condition 

31 VVfcross −=  is shown in Figure 10. 
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Figure 10. The zero-crossing for the condition

31 VVfcross −=   

The new method exhibits very good convergence rate for 
all three cross conditions – less than two extra Newton 
iterations are need to locate the crossing, while the best 
existing method normally requires 2-4 extra timepoints 

with 2-4 Newton iterations per timepoint. The average 
numbers of Newton iterations needed for each cross 
condition are summarized in Table 1. 

Table 1. Average numbers of Newton iterations 
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5. CONCLUSION AND FUTURE WORKS 
We developed a new, coupled Newton based method to 
simulate cross events. This method converges directly to 
the solution at the crossing and is theoretically superior to 
all the known methods. Initial results show very good 
convergence rate - less than two extra Newton iterations 
needed to accurately locate the crossing. The integration to 
an existing simulation flow is straightforward.  

While we limit our discussion to threshold-crossing events 
in this paper, the new method can be used to solve general 
nonlinear DAE problems (nonlinear circuits or systems) 
with constraints that are explicit functions of solution 
variables, for example, accurate local maximum/minimum 
detection of a specified analog signal. 
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APPENDIX: TIME DERAVITIVES 
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Second-order Gear: 
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