
An Efficient Method to Simulate
Threshold-Crossing Events

G. Peter Fang
Texas Instruments, Inc.

g-fang1@ti.com

ABSTRACT

In this work, a new and efficient method is developed to
simulate threshold-crossing events (for example, the cross
event in Verilog-A/MS). The method converges directly to
the solution at the crossing without the need of computing
additional timepoints. The violated cross condition is
solved together with the circuit equations as one system of
nonlinear equations and the timestep is treated as an
independent variable. This method has very little overhead
and can be easily integrated into an existing simulation
flow. Simulation results show good convergence rate - less
than two extra Newton iterations needed to accurately
locate the crossing. This method could speedup transient
simulation significantly when there are a large number of
threshold-crossing events.

1. INTRODUCTION
The cross event has been widely used in behavior-level
modeling and simulation. It changes the dynamics of the
model when certain analog expression crosses through
zero. The cross function in Verilog-A generates a
monitored analog event to detect threshold crossing. It
controls the timestep to accurately resolve the crossing.
The cross function is also used in the A2D event in
Verilog-AMS for threshold crossing [1].

()tv1

() 011 =−= thcross vvvf

() 01 =− thcross vtv

11

22
33

Extra timepoints are generated
in order to accurately locate the
crossing. Entire circuit has to be
solved at each of the timepoints.

Extra timepoints are generated
in order to accurately locate the
crossing. Entire circuit has to be
solved at each of the timepoints.

Figure 1. The existing method needs to compute additional
timepoints to accurate resolve the crossing

The best known method for locating the crossing points
works as follows: The simulator checks all cross conditions
at each timepoint. If a violation is detected, the simulator
rejects the timepoint, enters a search mode and tries to hit
the timepoint when the crossing is occurring. As illustrated
in Figure 1, the simulator iteratively predicts (via
interpolation) and solves the crossing point until the errors
are within tolerances. It normally takes 2-4 timepoints
(sometimes much more) before an accurate crossing can be
found. The entire circuit or system has to be evaluated and
solved at those timepoints. A large number of cross events
could slow down a transient simulation significantly [2].

In this work, we developed a more rigorous method to
solve the crossing problem. Instead of computing solutions
at a number of timepoints and checking the cross condition
at each timepoint, we solve the cross condition together
with the circuit equations and treat the timestep as an
independent variable. The method directly converges to the
solution at the crossing, thus is more efficient than the
existing methods.

2. COUPLED NEWTON METHOD
Most circuit simulators use modified nodal analysis (based
on Kirchhoff’s laws) to formulate a system of N differential
algebraic equations (DAEs) [3],

()() ()() ()() () 0=++= tutvitvq
dt
dtvfckt , (1)

where NRu ∈ is the vector of input sources, NRv ∈ is the
vector of solution variables, and NRqi ∈, are the vectors
of resistive currents and node charges/branch fluxes. The
time derivative term can be discretized using a time
integration scheme. Without loss of generality, we only
consider backward Euler scheme for simplicity. The
resulting system of nonlinear equations is

() () () () 01 =++
−

= −
mm

m

mm
mckt uvi

h
vqvqvf , (2)

where m is the time index. And the cross condition is an
explicit equation of solution variables, i.e., node voltages
and branch currents, given by,

() 0=mcross vf . (3)

In order to locate the crossing and compute the solution at
the crossing simultaneously, we treat the timestep mh as an
independent variable or an unknown, and solve the cross
condition together with circuit equations as one system of
nonlinear equations,

()
()⎩

⎨
⎧

=
=
0
0,

mcross

mmckt

vf
hvf

 (4)

or

() 0, =mmcoupled hvF (5)

where 1+∈ N
coupled RF , i.e., we now solve N+1 nonlinear

equations for N+1 unknowns.

Applying Newton method to the above equation, we
obtain,

()
() ⎟⎟⎠

⎞
⎜⎜
⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Δ
Δ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

∂
∂

+

+

k
mcross

k
m

k
mckt

k
m

k
m

m

cross

m

ckt

m

ckt

vf
hvf

h
v

v
f

h
f

v
f

,

0
1

1

 (6)

where NN

m

ckt R
v
f ×∈
∂
∂ , 1×∈

∂
∂ N

m

ckt R
h
f , and N

m

cross R
v

f ×∈
∂
∂ 1 . And

m

ckt
ckt

v
fJ
∂
∂

= is the original circuit Jacobian matrix.

Multiplying both sides of the above equation with

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −

10
0

1
cktJ ,

we obtain

()
() ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Δ
Δ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

−

+

+

−
×

k
mcross

k
m

k
mcktckt

k
m

k
m

m

cross

m

ckt
cktNN

vf
hvfJ

h
v

v
f

h
fJI

,

0

1

1

1

1

. (7)

Performing Gauss elimination, the equation becomes,

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
Δ

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

−

∂
∂

−

−

+

+

−

−
×

cktckt
m

cross
cross

cktckt

k
m

k
m

m

ckt
ckt

m

cross

m

ckt
cktNN

fJ
v

ff

fJ

h
v

h
fJ

v
f

h
f

JI
1

1

1

1

1

1

0

(8)
We can perform backward substitution to obtain solution,

()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ −

∂
∂

+
=Δ

−

−

+

m

ckt
ckt

m

cross

cktckt
m

cross
cross

k
m

h
f

J
v

f

fJ
v

f
f

h
1

1

1 , (9)

and

() 1111 +
−−

+ Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+−=Δ k
m

m

ckt
cktcktckt

k
m h

h
f

JfJv . (10)

Note that the first term ()cktckt fJ −
−1

 is the solution of the
circuit equations when the timestep is not treated as an
unknown. And the second term is the correction to the
solution due to the change of the timestep. Most modern
circuit simulators perform in-place LU factorization. So the

term
m

ckt
ckt

h
f

J
∂
∂−1 can be easily obtained by standard forward

and backward substitutions of the circuit Jacobian matrix.
The overhead for solving the cross condition are those
substitutions, whose computational cost is really negligible
compared with the cost of a full LU factorization. We
would like to point out that this method works with any
linear solvers in a given circuit simulator, although the
computational cost may vary.

cktJLU factorize the Jacobian matrix cktJLU factorize the Jacobian matrix

m

ckt
ckt

h
fJ
∂
∂−1

 Forward/backward substitutions to get

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⋅
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛⋅

∂
∂ −−

m

ckt
ckt

m

cross
cktckt

m

cross

h
fJ

v
ffJ

v
f 11

 ,Compute dot-products ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⋅
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛⋅

∂
∂ −−

m

ckt
ckt

m

cross
cktckt

m

cross

h
fJ

v
ffJ

v
f 11

 ,Compute dot-products

11, ++ ΔΔ k
m

k
m hvBackward substitution to obtain 11, ++ ΔΔ k

m
k
m hvBackward substitution to obtain

Forward/backward substitutions to get cktckt fJ
1−

Figure 2. Procedure to solve the coupled linear system

As shown in Figure 2, only a few additional steps (one
forward substitution and one backward substitution, and
two dot products) are needed to solve the coupled
nonlinear system. This method can be easily integrated into
an existing simulation flow with a small amount of effort.

3. IMPLEMENTATION DETAILS

3.1 Crossing Detection
The common crossing detection technique checks signs of
a cross condition before and after a timestep. A sign change
indicates that a crossing has occurred and a search
algorithm is activated to precisely locate the crossing. This
method assumes cross conditions vary linearly between
two timepoints. Yet for most cases those cross conditions
are polynomials. If a crossing occurs within a timestep and
the values at the beginning and the end of the step have the

same sign, as illustrated in Figure 3, the simulator will step
over the crossing without detecting it.

Figure 3. A missed crossing

Our implementation utilizes an interpolated second-order
polynomial to find local maximum/minimum of the cross
condition within a timestep, as shown in Figure 4. A
crossing then can be detected by checking signs of
maximum/minimum and the signal value at the beginning
of the timestep. This method is one order of magnitude
more accurate than previous method.

Figure 4. Detecting the crossing using local maximum

3.2 Modified Newton Flow

Evaluate Devices

Check Cross Conditions

Form the Linear System

Solve the Linear System

Update Solution

Solve the Cross Condition

Check Convergence

Converged?
Return True
Converged

#iter<limit?
Return False

Failed

N Y

NY

Figure 5. Modified Newton flow

The new method handles cross events inside the new loop
and is transparent to the transient flow. A simplified
Newton flow for the new method is shown in Figure 5.

Note that two new blocks are inserted into the Newton loop
to check and solve cross conditions.

As illustrated in Figure 6, the simulator evaluates and
checks all cross conditions at the beginning of a Newton
iteration. If a violation is detected, the simulator enters the
search mode, projects a new timestep to hit the crossing (or
the earliest crossing in the case of multiple violations) via
interpolation. In search mode, the simulator also re-
extrapolates using the new timestep, updates time-varying
sources and time coefficients.

New cross
violations?

Enable a new search mode

N

Evaluate all cross conditions

Compute the new step for the earliest crossing

Extrapolate using the new step

Update time-varying sources
Compute new time coefficients

Search mode?Y N

Y

Figure 6. Flow for checking cross conditions

In search mode, a coupled linear system is solved at each
Newton iteration. The flow is shown in Figure 7. The
simulator first computes derivatives of circuit equation
with respect to the timestep. The cross condition part is
then solved using equations (9) and (10). The timestep is
updated before exit.

Search mode?

Solve the cross equation of the coupled system

Update timestep

Y N

Compute ∂f/∂h

Figure 7. Flow for solving the cross condition

3.3 @cross in Verilog-A
The cross function in Verilog-A/MS [1] requires a
timepoint to be placed just after the crossing, within

tolerances, as shown in Figure 8. The coupled Newton
method needs to be slightly modified to meet this
requirement.

exprTol

timeTol

exprTol

timeTol
Figure 8. Relationship between time tolerance and expression

tolerance in Verilog-A/MS

4. SIMULATION RESULTS
A basic version of the new method was implemented in our
in-house circuit simulator, TISpice, and tested on a seven-
stage ring oscillator shown in Figure 9.

1V 3V1V 3V

Figure 9. Seven-stage ring oscillator

We tested three cross conditions: 21 =V , 31 VV = , and

mW
k
V 4
1

2
1 =
Ω

. The tolerances are expr_tol=1e-6 and

time_tol = 1e-14. The second-order Gear method is used
for time integration. The zero-crossing for the condition

31 VVfcross −= is shown in Figure 10.

mW
k
V 4
1

2
1 =
Ω

31 VV =

mW
k
V 4
1

2
1 =
Ω

31 VV =

Figure 10. The zero-crossing for the condition

31 VVfcross −=

The new method exhibits very good convergence rate for
all three cross conditions – less than two extra Newton
iterations are need to locate the crossing, while the best
existing method normally requires 2-4 extra timepoints

with 2-4 Newton iterations per timepoint. The average
numbers of Newton iterations needed for each cross
condition are summarized in Table 1.

Table 1. Average numbers of Newton iterations

1.33.4

1.43.5

1.13.2

average # of
extra Newton
iterations at
the crossing

average # of
Newton
iterations at
the crossing

cross
condition

1.33.4

1.43.5

1.13.2

average # of
extra Newton
iterations at
the crossing

average # of
Newton
iterations at
the crossing

cross
condition

31 VV =

21 =V

mW
k
V 4
1

2
1 =
Ω

5. CONCLUSION AND FUTURE WORKS
We developed a new, coupled Newton based method to
simulate cross events. This method converges directly to
the solution at the crossing and is theoretically superior to
all the known methods. Initial results show very good
convergence rate - less than two extra Newton iterations
needed to accurately locate the crossing. The integration to
an existing simulation flow is straightforward.

While we limit our discussion to threshold-crossing events
in this paper, the new method can be used to solve general
nonlinear DAE problems (nonlinear circuits or systems)
with constraints that are explicit functions of solution
variables, for example, accurate local maximum/minimum
detection of a specified analog signal.

REFERENCES
[1] Verilog-AMS Language Reference Manual, version

2.2, November 2004.

[2] Ron Vogelsong, “Are your AMS behavioral modeling
challenges surmountable?”, cdnusers.org, January
2005.

[3] William J. McCalla, Fundamentals of computer-aided
circuit simulation, Kluwer, 1987.

APPENDIX: TIME DERAVITIVES

Backward Euler: () ()()12
1

−−
−

=
∂
∂

mm
mm

ckt vqvq
hh

f

Second-order Gear:

() ()()
()

() ()()22
1

12
11

−
−

− −
+

−−
−

=
∂
∂

mm
mm

mm
mm

ckt vqvq
hh

vqvq
hh

f

Trapezoidal:

 () ()()12
2

−−
−

=
∂
∂

mm
mm

ckt vqvq
hh

f

