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ABSTRACT 

Modern device trends present greater challenges to design [1] 

because many of them integrate continuous and discrete sub-

systems and therefore their design involves specific global 

modeling and validation approaches. This paper proposes the 

operational semantics for rollback-based synchronization model 

that may be used in continuous/discrete systems simulation. The 

paper also addresses the formal representation of the behavior of 

the continuous/discrete simulation interfaces with respect to this 

mode. This representation enables the definition of generic and 

language independent co-simulation tools that can be used to 

provide global simulation models for continuous/discrete 

heterogeneous systems. The model was validated through 

simulation, using UPPAAL toolbox and its formal verification 

was realized by defining and checking the main properties.  

1. INTRODUCTION 
The past decade has observed the shrinking of the chips’ size 

concurrently with the expansion of the number and the 

heterogeneity of components integrated on the same chip. 

Currently, most of the Systems-on-Chip (SoC) consist of pre-

existing designed blocs. This enables cost-efficient solutions, an 

advantageous time-to-market and high productivity. However, one 

will notice the increase of the variability of design related 

parameters. Given their unmanageable complexity (which is the 

result of the diversity of concepts being manipulated), the global 

design specification and validation are extremely challenging. The 

heterogeneity of these systems makes the elaboration of an 

executable model for the overall simulation more difficult. 

This work focuses on heterogeneous continuous/discrete (C/D) 

systems and their simulation models. These models are very 

complex; they include the execution of different components, the 

components adaptation and the interconnects interpretation. Their 

design requires tools with different models of computation and 

paradigms as well as the definition of new models providing 

adaptations between components. These adaptations are provided 

by the simulation interfaces that are in charge with the 

synchronization.  

In a global C/D simulation model, the continuous and discrete 

models interact via events. The time stamps associated with these 

events are synchronization and communication points between the 

different simulators involved in a global simulation. The events 

exchanged between the simulators are:   

- discrete events that are timed events scheduled by the 

discrete simulator.  

- state events that are  unpredictable events generated by the 

continuous simulator. Their time stamp depends on the values of 

state variables (e.g. a zero-passing or a threshold crossing).  

The two main synchronization models that can be found in C/D 

simulation are: 

- the Full Synchronization Model (FSM). In FSM the 

synchronization is realized at each discrete step and state event 

occurrence. The advantage is that this model is general; it respects 

the generic canonical synchronization model where the 

continuous simulator runs before the discrete simulator [2]. One 

of this model’s disadvantages is the synchronization overhead 

caused by the number of unnecessary synchronisation steps.This 

model is detailed in [3]. 

- the Rollback-based Synchronization Model (RSM). In 

RSM the synchronization is realized only at the occurrence of 

unpredictable discrete events and/or state events. The discrete 

simulator has to backtrack if the continuous simulator generates a 

state event. This model reduces the number of synchronization 

steps and consequently the synchronization overhead. This 

property can be exploited if rollback featured discrete simulators 

are available. 

Most of the simulators that support rollback are continuous 

simulators and by consequence many popular co-simulation 

approaches use FSM because it avoids the rollback. However, 

RSM is useful for the co-simulation of systems that integrate more 

than one continuous simulator and one discrete simulator as well 

as for the co-simulation of systems where real parallelism is 

required (e.g. distributed simulation).        

This paper presents the operational semantics as well as the 

formal representation of the behavior of the C/D simulation 

interfaces, for a light rollback synchronization model. In a light 

rollback synchronization model, the discrete simulator will 

perform only a backup of the memory data segment, processor 

registers as well as input and output signal values for each output 

discrete event time stamps used as checkpoints. By representing 

the model formally, the system’s requirements are precisely 

characterized. This representation allows for the definition and the 

formal verification of the synchronization model. Moreover, it 

constitutes the foundation for the definition of generic simulation 

tools that can provide global simulation models for C/D systems. 

In order to model, validate and check our model we used 

UPPAAL [4].  

The article is structured as follows. Section 2 presents the main 

approaches for the C/D systems simulation. Section 3 introduces 

some of the basic concepts such as the discrete event formalism 

and timed automata.  Section 4 details the synchronization model 

with rollback and its operational semantics while Section 5 shows 

the behavior of the discrete interface and its formal representation. 

Section 6 gives the experimental results; more precisely the model 

simulation and validation as well as the properties verification are 

detailed. Finally, section 7 presents our conclusions. 



2. RELATED WORK  
Some of the previous works in this field propose the utilization of 

a single language for the specification of the C/D system. These 

languages may be obtained by extension of existing HDLs 

[5][6][7]. Using these methods leads to the abandonment of 

certified efficient tools for the continuous domain (ex. Simulink).  

There are tools in which the systems are designed by assembling 

together different components, each with its own design language 

[8][9]. However, the different sub-systems and components need 

to be developed in the same environment in order to be 

compatible thus they do not solve the problem of IP reuse in 

system design. Moreover, the formal verification of the simulation 

models is not considered.  

A different approach for systems validation is based on the formal 

representation of the C/D systems. In [10], the authors propose a 

formal classification framework that makes it possible to compare 

and express differences between models of computation. In [11] 

the author proposes the formalization of the heterogeneous 

systems by separating the communication and the computation 

aspects. However, the formal verification of the interfaces 

between domains was not taken into consideration.   

In [12] the author presents a formalism defined for the modeling 

and simulation of discrete event systems (Discrete EVent System 

Specifications - DEVS) where the time advances on a continuous 

time base. This approach can be used to build the models, using 

hierarchy and modularity. It allows the definition of the 

operational semantics for a system but not its formal verification.  

The rollback is also presented in several works. [13] proposes a 

rollback algorithm for optimistic distributed simulation systems. 

In [14] the authors detail an incremental checkpoint mechanism 

that allows the system’s rollback in order to recover the data. [15] 

presents a ”time warping” algorithm that allows the rollback to a 

point where data consistency is guaranteed.  However, the 

formalization and verification of the rollback mechanism in the 

context of the C/D simulation was never addressed.  

The contributions of this paper are:  

- The definition of the operational semantics for a C/D 

simulation models based on RSM 

- The formal representation of the behavior of C/D 

simulation interfaces with respect to this synchronization model.  

- The formal verification of the behavior of C/D interfaces in 

the context previously presented. 

3. BASIC CONCEPTS 
This section introduces some of the basic concepts that were used 

in this work. These concepts range from a discrete events 

formalism to timed automata. 

3.1 Discrete Event Systems Specification 

(DEVS) 

Discrete Event Systems Specifications (DEVS) is a formalism 

supporting a full range of dynamic system representation. The 

abstraction separates modeling from simulation and provides 

atomic models and the mechanisms for the definition of an 

operational semantics for the C/D synchronization model [12]. 

A DEVS is defined as a structure : 

DEVS = ‹X, S, Y, δint, δext, λ, ta› where  

X = {(pd, vd)|pd ∈ InPorts, vd ∈ X pd } set of input ports and 

their values in the discrete event domain, 

S = set of sequential states 

Y = {( pd, vd)|pd, ∈ OutPorts, vd ∈ Y pd } set of output ports and 

their values in the discrete event domain. 

δint : S→ S the internal transition function 

δext: QxX→ S the external transition function, where: 

       Q={(s,e)|s ∈ S, 0 ≤ e ≤ ta(s)} set of total state, 

       e is the time elapsed since the last transition  

λ:S→Y output function 

ta:S→R
+

0,∞ set of positive reals with 0 and ∞. 

In the work presented here the DEVS formalism is used for a 

schematic formalism of the interface between the continuous and 

the discrete domain interfaces.  

3.2 Timed Automata 

A timed automaton (TA)  is a formalism for modeling and 

verification of real time systems.  It can be seen as classical finite 

state automata with clock variables and logical formulas on the 

clocks (temporal constraints) [16].  

Timed automata have characteristics that make them desirable for 

our formal model. They are as follows: 

-  simplicity and flexibility for the systems’ modeling,  

- expressivity that is required in order to model time 

constrained concurrent systems.  

Moreover, one can find of a whole range of powerful tools based 

on timed automata, that are already implemented and that allow 

different verification techniques. 

Our formal model needs to support concurrency between C/D 

systems thus it was represented as a parallel composition of 

several timed automata with no constraints regarding the time 

spent in the locations. 

4. ROLLBACK-BASED C/D 

SYNCHRONIZATION MODEL  -  
The simulation of continuous model, described by differential and 

algebraic equations, requires solving these equations numerically. 

A widely used class of algorithms discretizes the continuous time 

line into an increasing set of discrete time instants, and computes 

numerical values of state variables at these ordered time instants. 

The simulation of discrete models is based on events ([15]). At 

each simulation cycle, the first event with the smallest time stamp 

is processed and the processes sensitive to this event are executed. 

This may generate other events causing execution of other 

processes. Once all events with discrete time stamp equal to the 

current time have been treated, the simulator advances the time to 

the nearest discrete scheduled event.  

4.1 Rollback-based synchronization model 

Figure 1 presents the light rollback synchronization model for the 

C/D simulation interfaces.  
For a rigorous synchronization, the discrete domain has to detect 

the events generated by the continuous domain and the continuous 

simulator must detect the scheduled events from the discrete 

domain. The simulators have to be controlled by the simulation 

interfaces in order to provide the functionalities described below.  

At a given time the discrete simulator is in the state (xdk,tdk) with 

xdk the location and tdk the k-th discrete time (that can be seen also 



as the k-th event in the queue of events in the discrete domain). At 

this point the discrete simulator had executed all the processes 

sensitive to the event, advances to the time of the next event tdk+1 

(arrow 1 in Figure 1) and a new state (xdk+1,tdk+1), sends the data 

and the time of the event tdk+1 to the continuous simulator  and 

switches the context to the continuous simulator (arrow 2 in 

Figure 1).  

 

 

Figure 1. The light rollback synchronization model with state 

event. 

The state of the continuous simulator is (xck,tck) and the advance in 

time of the simulator cannot be further then tdk+1, the time sent by 

the discrete simulator. 

The behavior of the continuous interface can be described by the 

following transition state (arrow 3 in Figure 1):  
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where the state (xck+1, tck+1) is the state of the continuous simulator 

when no state event was generated in the time interval [tck, ,tck+1]. 

The state (se,tse) represents the state of the continuous simulator 

when a state event se was generated and tse represents the time 

when the state event occurred. In both situations the continuous 

simulator will stop and send the data to the discrete simulator and 

then switch the context to (xdk+1,tdk+1),  (arrow 4 in Figure 1). The 

event taken into consideration is the event generated within the 

time interval [tk,tk+1]. 

The case described by (1) is the case without state event where 

after switching the context, the continuous simulator will solve 

the equations that characterize the continuous components for the 

time interval [tdk,tdk+1]. At the time tdk+1 the continuous solver will 

send the data to the discrete domain interface, switch the context 

to the discrete domain and the cycle restarts. 

Equation (2) describes the case where a state event occurred. The 

continuous simulator will send not only the data but also the time 

when the state event occurred tse (arrow 4 in Figure 1). The 

discrete simulator backtracks to the previous state (xdk,tdk) (arrow 

5 in Figure 1) and restores the saved data for the time stamp tdk. 

After the state restoration, the simulator starts over, taking into 

account the state event and advances to the time stamp tse (state 

event detected by the discrete simulator) where will execute all 

the processes sensitive to the event (arrow 6 in Figure 1). The 

cycle restarts, the discrete time advances to the next discrete event 

(arrow 7 in Figure 1). The time stamp of this event can change 

after a state event; it can take any value bigger than tse .  

Table 1. Operational semantics for continuous/discrete synchronization model with light rollback 
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4.2 Operational semantics for the rollback-

based synchronization model 

The operational semantics (OS) for C/D systems requires the 

rigorous representation of the relation between the simulators 

(communication/synchronization, data exchanged between the 

continuous and the discrete simulators) as well as their high level 

and dynamic representations. The OS for the light rollback 

synchronization model is given by the set of rules presented in 

Table 1, using DEVS (as it was presented in Section 3.1). 

DataToBus is the output function from the discrete domain 

interface, and DataFromBus is the output function from the 

continuous domain interface. The semantics of the global variable 

“flag” is related to the context switch between the continuous and 

discrete simulators. When “flag” is set to ‘1’, the discrete 

simulator is executed. When it is ‘0’, the continuous simulator is 

executed. The global variables “synch” and “back” are used to 

impose an order. When “back” is 1 the discrete simulator 

advances to the next time stamp while when it is 0, it backtracks 

to the previous time stamp while “synch” is 0 for the switch 

context between the discrete and the continuous simulator and 1 

for the advancement of the discrete simulator (it eliminates a 

potential decidability problem for the discrete simulator when 

receiving data from the continuous simulator).  

For further clarification, we detail here the first rule, 

corresponding to the arrow 1 in Figure 1. The premises of this 

rule are: the variables “synch”, “flag” and “back” have the value 

‘1’, and there is an internal transition function (δint) for the 

discrete model. The discrete model is initially in the total state (sd, 

ed), this means it is in the state sd from the time ed. In this state the 

discrete simulator performs the following actions: 

- send the data and the value of its next time stamp (this 

action is expressed by (DataFromBus, ta(sd))!. 
- switch the simulation context to the continuous model (this 

action is expressed by flag = 0).  

For the same rule, the continuous model is in state q and performs 

the following actions:  

- receive the data and the value of the time stamp from the 

discrete simulator (expressed by ((DataFromBus, ta(sd))?. 

- set the global variable synch to ‘0’ (action expressed by 

synch=0) in order to respect the premise of the rule corresponding 

to the arrow 4. 

The actions expressed by this rule will be executed by the discrete 

simulator when the context will be switched to it.  

5. DISCRETE DOMAIN SIMULATION 

INTERFACE 
The C/D simulation interfaces are formed of two distinct, domain 

specific interfaces, one for the continuous domain and one for the 

discrete domain. The continuous domain interface is the same for 

the case of the light rollback and the canonical synchronization 

model and was detailed in [17]. This chapter details the discrete 

domain interface.  

Figure 2 presents the flowchart of the behavior of the discrete 

domain interface when the light rollback synchronization mode is 

used. Based on this flowchart we formalized the discrete 

simulation interface.  

 

 
Figure 2. Flowchart for discrete domain simulation interface 

Figure 3 shows the formal model (using timed automata) for the 

discrete domain interface. 

 
Figure 3. The discrete domain interface model 

The model has only one initial location (a double circle in Figure 

3) Start. The discrete interface will change location from Start to 

NextTimeGot following the transition 

tNextTimeGoStart
sc?DataFromDi
 → . This is an external 

transition realized with zero time and it is triggered by the 

receiving of the data (that is also synchronization between the 

discrete simulator and the interface) from the discrete simulator 

(DataFromDisc?).   

Here the interface receives the data from discrete simulator and 

the time of the current event in the discrete domain.  The location 

changes then to WaitEvent. The discrete interface sends to the 

continuous interface the time of the current event (the 

synchronization DataFromBus!). The variable NextTime 

represents the time of the events in the discrete domain. This 

variable takes the value cycle. This value is then assigned to the 

variable tdn that represents the time stamp of the event. The 

theory normally assumes equidistant sampling intervals. This 

assumption is not usually achieved in practice. For an accurate 

simulation we assume that the cycle takes random values in an 

interval defined here as [0, period]. In WaitEvent location, the 

context is switched from the discrete to the continuous simulator. 

When the context is switched back to the discrete simulator, the 

location is changed to EventGot following the synchronization 

transition: EventGotWaitEvent
Event? → . During this 

transition the discrete interface receives from the continuous 



interface the synchronization Event?. In this location the 

occurrence of a state event in the continuous domain is 

considered. Two cases are possible: 

1)  When no state event was generated by the continuous domain, 

the location changes from EventGot to NoStEv. The transition 

NoStEvEventGot
0 StateEvent

 →
==

is annotated in this case 

only with the guard StateEvent==0. This state changes to 

TimeOfStEvDisc (that is an urgent location) following the 

transition  DiscTimeOfStEvNoStEv
DataToBus?

 →→→→ .  This is an 

external transition realized with zero time and it is triggered by 

the receiving of the data (that is also synchronization between the 

discrete and the continuous interfaces) from the continuous 

interface (DataToBus?). During this transition only the data is 

sent to the discrete simulator. The system will immediately change 

the state to WaitDataFromCont while updating the time in 

discrete with the time stamp of the current event 

(td=NextTime). 

2)  When a state event was generated by the continuous domain 

the location changes from EventGot to StEvDetect following the 

transition: StEvDetectEventGot
 StateEvent

 →→→→ . This transition is 

annotated with a guard (StateEvent). This state changes to 

StateRestoration following the transition: 

rationStateRestoStEvDetect
DataToBus?

 →→→→ . This is also an 

external transition realized with zero time. During this transition 

the data and the time of the state event tse are sent to the discrete 

simulator. The system will immediately change the state to 

WaitDataFromCont while updating the time in discrete with the 

time stamp of the state event (td=StEvTime).  

From WaitDataFromCont state the location changes to Start. The 

discrete interface sends to the discrete simulator the data and the 

time of the events (state event or discrete event) and is represented 

here by the synchronization DataToDisc!. 

6. Model Validation 
The formalization and verification of the simulation interfaces 

behavior stage can be divided into three steps: formalization (that 

can be the formal specification of the heterogeneous system and it 

was already presented in section 4.2), the validation by simulation 

and the formal verification. This section presents the last two 

steps, the simulation and the formal verification. 

6.1 Formal Model Simulation  

The UPPAAL tool allowed the validation of the system’s 

expected behavior regarding functionality: synchronization, 

conflicts, communication. The main advantage of UPPAAL is that 

the product automaton is computed on-the-fly during verification 

and reduces the computation time and the required memory space. 

We simulated all the possible dynamic executions of our model.  

Figure 4 shows a screenshot with the simulator. We observe in the 

left panel the variables.  It displays the values of the data and 

clock variables in the current location or transition selected in the 

trace of the simulation control panel (the symbolic traces).  

The right panel allows the visualization of the message sequence 

chart (also known as simulator). The vertical lines in the simulator 

window represent the transitions between the locations while the 

horizontal lines are the synchronization points. In this figure the 

communication between the interfaces as well as the 

communication between the simulators and the domain specific 

interfaces are represented by the same horizontal lines. 

 

Figure 4. Simulation screen capture 

As shown here, the simulation was stopped by the user after the 

state event was indicated to the discrete simulator and the time of 

the state event (StEvTime=2) was sent from the continuous to 

the discrete interface. The variable panel shows that the variable 

StateEvent=1, the time of the state event StEvTime=2 

while the discrete time is td=3 and the next discrete time is 

tdn = 2. The system must backtrack and this can be seen in 

the simulator panel where the discrete model changes the state to 

StateRestoration. The next step is the advancement of the discrete 

to the NextTime that is 2, the time of the state event and 

implicitly its detection. 

6.2 Formal Verification  

The two main techniques that can be used for the formal 

verification of the interfaces are [18]: 

- model checking where the system descriptions are given as 

automata, the specification formulas are given as temporal logic 

formulas and the checking consists in the verification if all models 

of a given system description satisfy a given specification 

formula. 

- theorem proving where the verification plan is manually 

designed and the correctness of the steps in the plan is verified 

using theorem provers.  

In this work we used UPPAAL that is based on model checking. 

The formal verification consists of checking properties of the 

system for a broad class of inputs . In our work we checked 

properties that fall into three classes [19]: 

- Safety properties - the system does not get into an undesirable 

configuration, (i.e. deadlock) 



- Liveness properties - some desired configuration will be visited 

eventually or infinitely (i.e. expected response to an input) . 

- Reachability properties – the system always has the chance of 

reaching a given situation (some particular situation can be 

reached) .  

The properties verified in order to validate the synchronization 

model are described below. 

   P0  Absence of deadlock (safety property) 

A state is a deadlock state if there are no outgoing action 

transitions either from the state itself or any of its delay successors 

[18].   
A[] not deadlock 

P1 State event detected by the discrete domain (liveness 

property) 

The indication of a state event by the continuous interface and its 

detection by the discrete interface are very important for C/D 

heterogeneous systems. We defined the property in order to check 

this behavior that is stated as follows:  

Definition: A state event detected in the continuous domain 

leads to a state event detected in the discrete.  
IContinu.StEvDetect --> IDiscrete.StEvDetect 

P2  No state event in discrete if no state event in continuous 

domain (safety property) 

In order to avoid false responses from the discrete simulators, we 

defined a safety property to verify if the system will “detect” a 

state event in the discrete when it was not generated (and 

indicated) by the continuous domain: 

Definition: Invariantly a state event detected in the discrete 

domain imply state event in the continuous.  
A[](IDiscrete.StEvDetect imply StateEvent) 

P3 Synchronization between the interfaces (reachability 

property) 

One of the most important properties characterizing the 

interaction between the continuous and the discrete domains is the 

communication and implicitly the synchronization. This property 

verifies that after a cycle executed by each model, both are at the 

same time stamp (and by consequence are synchronized) 

Definition: Invariantly both processes in the Start location (initial 

state) imply the time in the continuous tc is equal or smaller then 

the time in the discrete td. 
A[]( (IDiscrete.Start and IContinu.Start)  

imply ( IContinu.tc - IDiscrete.td <= 

period)) 

P4 Synchronization between the interfaces when a state event 

was detected (reachability property) 

This property verifies that there is synchronization between the 

interfaces even when a state event is detected.  

Definition: The discrete process in the StateRestoration location 

and the continuous process in the StEvDetect location leads 

to the time in the continuous tc is equal with the time in the 

discrete td. 
(IDiscrete.StateRestoration and 

IContinu.StEvDetect) --> (IContinu.tc- 

IDiscrete.td == 0) 

7. CONCLUSIONS 
This paper introduced the operational semantics for a C/D 

simulation model with a rollback synchronization model. We also 

give the distribution of the synchronization functionality to the 

simulation interfaces and formal representation and verification of 

the behavior of the C/D simulation interfaces. The formalization 

was realized with respect to the presented synchronization model 

using timed automata. The model was validated through 

simulation. In order to verify the formal representation, some 

properties were defined and checked using the model checker 

UPPAAL. 
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