
Semantics for Rollback-Based Continuous/Discrete

Simulation
Luiza Gheorghe, Gabriela Nicolescu, Hanifa Boucheneb

Ecole Polytechnique de Montreal

luiza.gheorghe@polymtl.ca

ABSTRACT

Modern device trends present greater challenges to design [1]

because many of them integrate continuous and discrete sub-

systems and therefore their design involves specific global

modeling and validation approaches. This paper proposes the

operational semantics for rollback-based synchronization model

that may be used in continuous/discrete systems simulation. The

paper also addresses the formal representation of the behavior of

the continuous/discrete simulation interfaces with respect to this

mode. This representation enables the definition of generic and

language independent co-simulation tools that can be used to

provide global simulation models for continuous/discrete

heterogeneous systems. The model was validated through

simulation, using UPPAAL toolbox and its formal verification

was realized by defining and checking the main properties.

1. INTRODUCTION
The past decade has observed the shrinking of the chips’ size

concurrently with the expansion of the number and the

heterogeneity of components integrated on the same chip.

Currently, most of the Systems-on-Chip (SoC) consist of pre-

existing designed blocs. This enables cost-efficient solutions, an

advantageous time-to-market and high productivity. However, one

will notice the increase of the variability of design related

parameters. Given their unmanageable complexity (which is the

result of the diversity of concepts being manipulated), the global

design specification and validation are extremely challenging. The

heterogeneity of these systems makes the elaboration of an

executable model for the overall simulation more difficult.

This work focuses on heterogeneous continuous/discrete (C/D)

systems and their simulation models. These models are very

complex; they include the execution of different components, the

components adaptation and the interconnects interpretation. Their

design requires tools with different models of computation and

paradigms as well as the definition of new models providing

adaptations between components. These adaptations are provided

by the simulation interfaces that are in charge with the

synchronization.

In a global C/D simulation model, the continuous and discrete

models interact via events. The time stamps associated with these

events are synchronization and communication points between the

different simulators involved in a global simulation. The events

exchanged between the simulators are:

- discrete events that are timed events scheduled by the

discrete simulator.

- state events that are unpredictable events generated by the

continuous simulator. Their time stamp depends on the values of

state variables (e.g. a zero-passing or a threshold crossing).

The two main synchronization models that can be found in C/D

simulation are:

- the Full Synchronization Model (FSM). In FSM the

synchronization is realized at each discrete step and state event

occurrence. The advantage is that this model is general; it respects

the generic canonical synchronization model where the

continuous simulator runs before the discrete simulator [2]. One

of this model’s disadvantages is the synchronization overhead

caused by the number of unnecessary synchronisation steps.This

model is detailed in [3].

- the Rollback-based Synchronization Model (RSM). In

RSM the synchronization is realized only at the occurrence of

unpredictable discrete events and/or state events. The discrete

simulator has to backtrack if the continuous simulator generates a

state event. This model reduces the number of synchronization

steps and consequently the synchronization overhead. This

property can be exploited if rollback featured discrete simulators

are available.

Most of the simulators that support rollback are continuous

simulators and by consequence many popular co-simulation

approaches use FSM because it avoids the rollback. However,

RSM is useful for the co-simulation of systems that integrate more

than one continuous simulator and one discrete simulator as well

as for the co-simulation of systems where real parallelism is

required (e.g. distributed simulation).

This paper presents the operational semantics as well as the

formal representation of the behavior of the C/D simulation

interfaces, for a light rollback synchronization model. In a light

rollback synchronization model, the discrete simulator will

perform only a backup of the memory data segment, processor

registers as well as input and output signal values for each output

discrete event time stamps used as checkpoints. By representing

the model formally, the system’s requirements are precisely

characterized. This representation allows for the definition and the

formal verification of the synchronization model. Moreover, it

constitutes the foundation for the definition of generic simulation

tools that can provide global simulation models for C/D systems.

In order to model, validate and check our model we used

UPPAAL [4].

The article is structured as follows. Section 2 presents the main

approaches for the C/D systems simulation. Section 3 introduces

some of the basic concepts such as the discrete event formalism

and timed automata. Section 4 details the synchronization model

with rollback and its operational semantics while Section 5 shows

the behavior of the discrete interface and its formal representation.

Section 6 gives the experimental results; more precisely the model

simulation and validation as well as the properties verification are

detailed. Finally, section 7 presents our conclusions.

2. RELATED WORK
Some of the previous works in this field propose the utilization of

a single language for the specification of the C/D system. These

languages may be obtained by extension of existing HDLs

[5][6][7]. Using these methods leads to the abandonment of

certified efficient tools for the continuous domain (ex. Simulink).

There are tools in which the systems are designed by assembling

together different components, each with its own design language

[8][9]. However, the different sub-systems and components need

to be developed in the same environment in order to be

compatible thus they do not solve the problem of IP reuse in

system design. Moreover, the formal verification of the simulation

models is not considered.

A different approach for systems validation is based on the formal

representation of the C/D systems. In [10], the authors propose a

formal classification framework that makes it possible to compare

and express differences between models of computation. In [11]

the author proposes the formalization of the heterogeneous

systems by separating the communication and the computation

aspects. However, the formal verification of the interfaces

between domains was not taken into consideration.

In [12] the author presents a formalism defined for the modeling

and simulation of discrete event systems (Discrete EVent System

Specifications - DEVS) where the time advances on a continuous

time base. This approach can be used to build the models, using

hierarchy and modularity. It allows the definition of the

operational semantics for a system but not its formal verification.

The rollback is also presented in several works. [13] proposes a

rollback algorithm for optimistic distributed simulation systems.

In [14] the authors detail an incremental checkpoint mechanism

that allows the system’s rollback in order to recover the data. [15]

presents a ”time warping” algorithm that allows the rollback to a

point where data consistency is guaranteed. However, the

formalization and verification of the rollback mechanism in the

context of the C/D simulation was never addressed.

The contributions of this paper are:

- The definition of the operational semantics for a C/D

simulation models based on RSM

- The formal representation of the behavior of C/D

simulation interfaces with respect to this synchronization model.

- The formal verification of the behavior of C/D interfaces in

the context previously presented.

3. BASIC CONCEPTS
This section introduces some of the basic concepts that were used

in this work. These concepts range from a discrete events

formalism to timed automata.

3.1 Discrete Event Systems Specification

(DEVS)

Discrete Event Systems Specifications (DEVS) is a formalism

supporting a full range of dynamic system representation. The

abstraction separates modeling from simulation and provides

atomic models and the mechanisms for the definition of an

operational semantics for the C/D synchronization model [12].

A DEVS is defined as a structure :

DEVS = ‹X, S, Y, δint, δext, λ, ta› where

X = {(pd, vd)|pd ∈ InPorts, vd ∈ X pd } set of input ports and

their values in the discrete event domain,

S = set of sequential states

Y = {(pd, vd)|pd, ∈ OutPorts, vd ∈ Y pd } set of output ports and

their values in the discrete event domain.

δint : S→ S the internal transition function

δext: QxX→ S the external transition function, where:

 Q={(s,e)|s ∈ S, 0 ≤ e ≤ ta(s)} set of total state,

 e is the time elapsed since the last transition

λ:S→Y output function

ta:S→R
+

0,∞ set of positive reals with 0 and ∞.

In the work presented here the DEVS formalism is used for a

schematic formalism of the interface between the continuous and

the discrete domain interfaces.

3.2 Timed Automata

A timed automaton (TA) is a formalism for modeling and

verification of real time systems. It can be seen as classical finite

state automata with clock variables and logical formulas on the

clocks (temporal constraints) [16].

Timed automata have characteristics that make them desirable for

our formal model. They are as follows:

- simplicity and flexibility for the systems’ modeling,

- expressivity that is required in order to model time

constrained concurrent systems.

Moreover, one can find of a whole range of powerful tools based

on timed automata, that are already implemented and that allow

different verification techniques.

Our formal model needs to support concurrency between C/D

systems thus it was represented as a parallel composition of

several timed automata with no constraints regarding the time

spent in the locations.

4. ROLLBACK-BASED C/D

SYNCHRONIZATION MODEL -
The simulation of continuous model, described by differential and

algebraic equations, requires solving these equations numerically.

A widely used class of algorithms discretizes the continuous time

line into an increasing set of discrete time instants, and computes

numerical values of state variables at these ordered time instants.

The simulation of discrete models is based on events ([15]). At

each simulation cycle, the first event with the smallest time stamp

is processed and the processes sensitive to this event are executed.

This may generate other events causing execution of other

processes. Once all events with discrete time stamp equal to the

current time have been treated, the simulator advances the time to

the nearest discrete scheduled event.

4.1 Rollback-based synchronization model

Figure 1 presents the light rollback synchronization model for the

C/D simulation interfaces.
For a rigorous synchronization, the discrete domain has to detect

the events generated by the continuous domain and the continuous

simulator must detect the scheduled events from the discrete

domain. The simulators have to be controlled by the simulation

interfaces in order to provide the functionalities described below.

At a given time the discrete simulator is in the state (xdk,tdk) with

xdk the location and tdk the k-th discrete time (that can be seen also

as the k-th event in the queue of events in the discrete domain). At

this point the discrete simulator had executed all the processes

sensitive to the event, advances to the time of the next event tdk+1

(arrow 1 in Figure 1) and a new state (xdk+1,tdk+1), sends the data

and the time of the event tdk+1 to the continuous simulator and

switches the context to the continuous simulator (arrow 2 in

Figure 1).

Figure 1. The light rollback synchronization model with state

event.

The state of the continuous simulator is (xck,tck) and the advance in

time of the simulator cannot be further then tdk+1, the time sent by

the discrete simulator.

The behavior of the continuous interface can be described by the

following transition state (arrow 3 in Figure 1):

() ck+1 ck+1 ck+1 dk+1

ck ck

se ck+1 dk+1

(x ,t) if t =t
x ,t = .

(se,t) if t <t





(2)

(1)

where the state (xck+1, tck+1) is the state of the continuous simulator

when no state event was generated in the time interval [tck, ,tck+1].

The state (se,tse) represents the state of the continuous simulator

when a state event se was generated and tse represents the time

when the state event occurred. In both situations the continuous

simulator will stop and send the data to the discrete simulator and

then switch the context to (xdk+1,tdk+1), (arrow 4 in Figure 1). The

event taken into consideration is the event generated within the

time interval [tk,tk+1].

The case described by (1) is the case without state event where

after switching the context, the continuous simulator will solve

the equations that characterize the continuous components for the

time interval [tdk,tdk+1]. At the time tdk+1 the continuous solver will

send the data to the discrete domain interface, switch the context

to the discrete domain and the cycle restarts.

Equation (2) describes the case where a state event occurred. The

continuous simulator will send not only the data but also the time

when the state event occurred tse (arrow 4 in Figure 1). The

discrete simulator backtracks to the previous state (xdk,tdk) (arrow

5 in Figure 1) and restores the saved data for the time stamp tdk.

After the state restoration, the simulator starts over, taking into

account the state event and advances to the time stamp tse (state

event detected by the discrete simulator) where will execute all

the processes sensitive to the event (arrow 6 in Figure 1). The

cycle restarts, the discrete time advances to the next discrete event

(arrow 7 in Figure 1). The time stamp of this event can change

after a state event; it can take any value bigger than tse .

Table 1. Operational semantics for continuous/discrete synchronization model with light rollback

Rules Arrows in

Figure 1

int

1 int

() (, ())!; : 0

1 1

1 1 1 ()

(,) (,0) (, ())dk a dk

dk dk

s DataFromBus t s flag

dk dk dk dk a dk

synch flag back s s

s e s s t s
δ

δ+

=

+ +

= ∧ = ∧ = ∧ =

→ →
 arrow 1

(, ())?; : 0

1 0 ()

a dk

ext

DataFromBus t s synch

synch flag q q

q q

δ
=

= ∧ = ∧ =

→
 arrow 2

int

int

!; : 1

0 0 1 () ' ()

' 'DataToBus flag

synch flag back statevent t q q

q q q
δ

δ
=

= ∧ = ∧ = ∧ ¬ ∧ =

→ →

dashed arrows 3

and 4 - no state

event

1

1 1

; ()?; : 1

1) 1

0 1 1 ()

(, ()) (, 0)dk

dk ext dk

DataToBus s synch

dk a dk dk

synch flag back statevent s s

s t s s
λ

δ
+

+ +

=

+ +

= ∧ = ∧ = ∧ ¬ ∧ =

→
 dashed arrow 4 - the

receiving end

int

int

() !; !; : 1

0 0 1 ' ()

' 'seq DataToBus t flag

synch flag back statevent q q

q q q
δ

δ
=

= ∧ = ∧ = ∧ ∧ =

→ →

arrow 3 and 4 –

state event

1

1 1,

?; ?; (); : 1; : 0

1 1 1

0 1 1 ()

(,) (,0)se dk

dk ext dk

DataToBus t s synch back

dk dk dk

synch flag back statevent s s t

s e s
λ

δ

+

+ +

= =

+ + +

= ∧ = ∧ = ∧ ∧ =

→

arrow 4 the

receiving end

int 1

int 1

(); : 1

1 1

1 1 0 ()

(,) (,)dk

dk dk

s back

dk dk dk dk

synch flag back s s

s e s e
δ

δ
+

+

=

+ +

= ∧ = ∧ = ∧ =

→
 arrow 5

int

int

() (, ())!; : 0

1

1 1 1 ()

(,) (,0) (' , ())dk a dse

dse dk

s DataFromBus t s flag

dk se dse dk a dse

synch flag back s s

s t s s t s
δ

δ
=

+

= ∧ = ∧ = ∧ =

→ →
 arrow 6 and 7

4.2 Operational semantics for the rollback-

based synchronization model

The operational semantics (OS) for C/D systems requires the

rigorous representation of the relation between the simulators

(communication/synchronization, data exchanged between the

continuous and the discrete simulators) as well as their high level

and dynamic representations. The OS for the light rollback

synchronization model is given by the set of rules presented in

Table 1, using DEVS (as it was presented in Section 3.1).

DataToBus is the output function from the discrete domain

interface, and DataFromBus is the output function from the

continuous domain interface. The semantics of the global variable

“flag” is related to the context switch between the continuous and

discrete simulators. When “flag” is set to ‘1’, the discrete

simulator is executed. When it is ‘0’, the continuous simulator is

executed. The global variables “synch” and “back” are used to

impose an order. When “back” is 1 the discrete simulator

advances to the next time stamp while when it is 0, it backtracks

to the previous time stamp while “synch” is 0 for the switch

context between the discrete and the continuous simulator and 1

for the advancement of the discrete simulator (it eliminates a

potential decidability problem for the discrete simulator when

receiving data from the continuous simulator).

For further clarification, we detail here the first rule,

corresponding to the arrow 1 in Figure 1. The premises of this

rule are: the variables “synch”, “flag” and “back” have the value

‘1’, and there is an internal transition function (δint) for the

discrete model. The discrete model is initially in the total state (sd,

ed), this means it is in the state sd from the time ed. In this state the

discrete simulator performs the following actions:

- send the data and the value of its next time stamp (this

action is expressed by (DataFromBus, ta(sd))!.
- switch the simulation context to the continuous model (this

action is expressed by flag = 0).

For the same rule, the continuous model is in state q and performs

the following actions:

- receive the data and the value of the time stamp from the

discrete simulator (expressed by ((DataFromBus, ta(sd))?.

- set the global variable synch to ‘0’ (action expressed by

synch=0) in order to respect the premise of the rule corresponding

to the arrow 4.

The actions expressed by this rule will be executed by the discrete

simulator when the context will be switched to it.

5. DISCRETE DOMAIN SIMULATION

INTERFACE
The C/D simulation interfaces are formed of two distinct, domain

specific interfaces, one for the continuous domain and one for the

discrete domain. The continuous domain interface is the same for

the case of the light rollback and the canonical synchronization

model and was detailed in [17]. This chapter details the discrete

domain interface.

Figure 2 presents the flowchart of the behavior of the discrete

domain interface when the light rollback synchronization mode is

used. Based on this flowchart we formalized the discrete

simulation interface.

Figure 2. Flowchart for discrete domain simulation interface

Figure 3 shows the formal model (using timed automata) for the

discrete domain interface.

Figure 3. The discrete domain interface model

The model has only one initial location (a double circle in Figure

3) Start. The discrete interface will change location from Start to

NextTimeGot following the transition

tNextTimeGoStart
sc?DataFromDi
 → . This is an external

transition realized with zero time and it is triggered by the

receiving of the data (that is also synchronization between the

discrete simulator and the interface) from the discrete simulator

(DataFromDisc?).

Here the interface receives the data from discrete simulator and

the time of the current event in the discrete domain. The location

changes then to WaitEvent. The discrete interface sends to the

continuous interface the time of the current event (the

synchronization DataFromBus!). The variable NextTime

represents the time of the events in the discrete domain. This

variable takes the value cycle. This value is then assigned to the

variable tdn that represents the time stamp of the event. The

theory normally assumes equidistant sampling intervals. This

assumption is not usually achieved in practice. For an accurate

simulation we assume that the cycle takes random values in an

interval defined here as [0, period]. In WaitEvent location, the

context is switched from the discrete to the continuous simulator.

When the context is switched back to the discrete simulator, the

location is changed to EventGot following the synchronization

transition: EventGotWaitEvent
Event? → . During this

transition the discrete interface receives from the continuous

interface the synchronization Event?. In this location the

occurrence of a state event in the continuous domain is

considered. Two cases are possible:

1) When no state event was generated by the continuous domain,

the location changes from EventGot to NoStEv. The transition

NoStEvEventGot
0 StateEvent

 →
==

is annotated in this case

only with the guard StateEvent==0. This state changes to

TimeOfStEvDisc (that is an urgent location) following the

transition DiscTimeOfStEvNoStEv
DataToBus?

 →→→→ . This is an

external transition realized with zero time and it is triggered by

the receiving of the data (that is also synchronization between the

discrete and the continuous interfaces) from the continuous

interface (DataToBus?). During this transition only the data is

sent to the discrete simulator. The system will immediately change

the state to WaitDataFromCont while updating the time in

discrete with the time stamp of the current event

(td=NextTime).

2) When a state event was generated by the continuous domain

the location changes from EventGot to StEvDetect following the

transition: StEvDetectEventGot
 StateEvent

 →→→→ . This transition is

annotated with a guard (StateEvent). This state changes to

StateRestoration following the transition:

rationStateRestoStEvDetect
DataToBus?

 →→→→ . This is also an

external transition realized with zero time. During this transition

the data and the time of the state event tse are sent to the discrete

simulator. The system will immediately change the state to

WaitDataFromCont while updating the time in discrete with the

time stamp of the state event (td=StEvTime).

From WaitDataFromCont state the location changes to Start. The

discrete interface sends to the discrete simulator the data and the

time of the events (state event or discrete event) and is represented

here by the synchronization DataToDisc!.

6. Model Validation
The formalization and verification of the simulation interfaces

behavior stage can be divided into three steps: formalization (that

can be the formal specification of the heterogeneous system and it

was already presented in section 4.2), the validation by simulation

and the formal verification. This section presents the last two

steps, the simulation and the formal verification.

6.1 Formal Model Simulation

The UPPAAL tool allowed the validation of the system’s

expected behavior regarding functionality: synchronization,

conflicts, communication. The main advantage of UPPAAL is that

the product automaton is computed on-the-fly during verification

and reduces the computation time and the required memory space.

We simulated all the possible dynamic executions of our model.

Figure 4 shows a screenshot with the simulator. We observe in the

left panel the variables. It displays the values of the data and

clock variables in the current location or transition selected in the

trace of the simulation control panel (the symbolic traces).

The right panel allows the visualization of the message sequence

chart (also known as simulator). The vertical lines in the simulator

window represent the transitions between the locations while the

horizontal lines are the synchronization points. In this figure the

communication between the interfaces as well as the

communication between the simulators and the domain specific

interfaces are represented by the same horizontal lines.

Figure 4. Simulation screen capture

As shown here, the simulation was stopped by the user after the

state event was indicated to the discrete simulator and the time of

the state event (StEvTime=2) was sent from the continuous to

the discrete interface. The variable panel shows that the variable

StateEvent=1, the time of the state event StEvTime=2

while the discrete time is td=3 and the next discrete time is

tdn = 2. The system must backtrack and this can be seen in

the simulator panel where the discrete model changes the state to

StateRestoration. The next step is the advancement of the discrete

to the NextTime that is 2, the time of the state event and

implicitly its detection.

6.2 Formal Verification

The two main techniques that can be used for the formal

verification of the interfaces are [18]:

- model checking where the system descriptions are given as

automata, the specification formulas are given as temporal logic

formulas and the checking consists in the verification if all models

of a given system description satisfy a given specification

formula.

- theorem proving where the verification plan is manually

designed and the correctness of the steps in the plan is verified

using theorem provers.

In this work we used UPPAAL that is based on model checking.

The formal verification consists of checking properties of the

system for a broad class of inputs . In our work we checked

properties that fall into three classes [19]:

- Safety properties - the system does not get into an undesirable

configuration, (i.e. deadlock)

- Liveness properties - some desired configuration will be visited

eventually or infinitely (i.e. expected response to an input) .

- Reachability properties – the system always has the chance of

reaching a given situation (some particular situation can be

reached) .

The properties verified in order to validate the synchronization

model are described below.

 P0 Absence of deadlock (safety property)

A state is a deadlock state if there are no outgoing action

transitions either from the state itself or any of its delay successors

[18].
A[] not deadlock

P1 State event detected by the discrete domain (liveness

property)

The indication of a state event by the continuous interface and its

detection by the discrete interface are very important for C/D

heterogeneous systems. We defined the property in order to check

this behavior that is stated as follows:

Definition: A state event detected in the continuous domain

leads to a state event detected in the discrete.
IContinu.StEvDetect --> IDiscrete.StEvDetect

P2 No state event in discrete if no state event in continuous

domain (safety property)

In order to avoid false responses from the discrete simulators, we

defined a safety property to verify if the system will “detect” a

state event in the discrete when it was not generated (and

indicated) by the continuous domain:

Definition: Invariantly a state event detected in the discrete

domain imply state event in the continuous.
A[](IDiscrete.StEvDetect imply StateEvent)

P3 Synchronization between the interfaces (reachability

property)

One of the most important properties characterizing the

interaction between the continuous and the discrete domains is the

communication and implicitly the synchronization. This property

verifies that after a cycle executed by each model, both are at the

same time stamp (and by consequence are synchronized)

Definition: Invariantly both processes in the Start location (initial

state) imply the time in the continuous tc is equal or smaller then

the time in the discrete td.
A[]((IDiscrete.Start and IContinu.Start)

imply (IContinu.tc - IDiscrete.td <=

period))

P4 Synchronization between the interfaces when a state event

was detected (reachability property)

This property verifies that there is synchronization between the

interfaces even when a state event is detected.

Definition: The discrete process in the StateRestoration location

and the continuous process in the StEvDetect location leads

to the time in the continuous tc is equal with the time in the

discrete td.
(IDiscrete.StateRestoration and

IContinu.StEvDetect) --> (IContinu.tc-

IDiscrete.td == 0)

7. CONCLUSIONS
This paper introduced the operational semantics for a C/D

simulation model with a rollback synchronization model. We also

give the distribution of the synchronization functionality to the

simulation interfaces and formal representation and verification of

the behavior of the C/D simulation interfaces. The formalization

was realized with respect to the presented synchronization model

using timed automata. The model was validated through

simulation. In order to verify the formal representation, some

properties were defined and checked using the model checker

UPPAAL.

8. REFERENCES
[1] International Technology Roadmap for Semiconductor

Design. Available: http://public.itrs.net/.

[2] Ghasemi, H. R. 2005. An effective VHDL-AMS simulation

algorithm with event. Int. Conf. on VLSI Design.

[3] Gheorghe, L. et al. 2006. Formal definitions of simulation

interfaces in a continuous/discrete co-simulation tool.

RSP06.

[4] Behrmann, G., David, A. and Larsen, K. 2005. A Tutorial on

UPPAAL. Real-Time Systems Symposium, Miami.

[5] IEEE Standard VHDL Analog and Mixed-Signal Extensions

(1999), IEEE Std 1076.1-1999

[6] Patel, D. H. and Shukla, S. K. 2004. SystemC kernel –

Extensions for heterogeneous System modeling. Kluwer

Academic Publishers.

[7] Vachoux, A., Grimm, C. Einwich, K. 2003. Analog and

mixed signal modeling with SystemC-AMS.

[8] Ptolemy project. Available: http://ptolemy.eecs.berkeley.edu/

[9] Lee, E. A. and Zheng, H. 2005. Operational Semantics of

Hybrid Systems. Proc. of Hybrid Systems Computation and

Control (HSCC).

[10] Lee, E.A. and Sangiovanni-Vincentelli, A. L. 1996.

Comparing Models of Computation. IEEE Proc. of the Int.

Conf. on Computer-Aided Design (ICCAD).

[11] Jantsch, A. 2003. Modeling Embedded Systems and SoCs -

Concurrency and Time in Models of Computation. Systems

on Silicon. Morgan Kaufmann Publishers.

[12] Zeigler, B.P., Praehofer H. and Kim, T.G. 2000. Modeling

and Simulation - Integrating Discrete Event and continuous

complex dynamic systems. Academic Press, San Diego.

[13] Madisetti, V., Walrand, J. and Messerschmitt, D. 1988.

WOLF: A rollback algorithm for optimistic distributed

simulation systems. Proc of the 1988 Winter Simulation

Conference.

[14] Feng, T. H. and Lee, E. A. 2006. Incremental checkpointing

with application to distributed discrete event simulation.

Proc of the 2006 Winter Simulation Conference.

[15] Cassandras, C. G., Lafortune, S. 2007. Introduction to

discrete event systems. Springer.

[16] Alur, R. and Dill, D. 1990. Automata for modeling real-time

systems. Proc. 17-th Int. Colloquium on Automata,

Languages and Programming.

[17] Gheorghe, L. et al. 2007. A Formalization of Global

Simulation Models for Continuous/Discrete Systems. Proc of

the 2007 Summer Simulation Conference.

[18] Wang, F. 2004. Formal verification of times systems: a

survey and perspective. Proc. of the IEEE, vol. 92.

[19] Monin, J-F. 2003. Understanding Formal Methods. Springer.

