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Motivation
With the advance of design technology, especially when we have 
entered the nano regime. Plenty of algorithms exist in literature 
discussing how to analyze and simulate those symbolic circuits. 

All those methods are practical only if the circuit has a moderate size. 
However, the circuits from physical extraction usually contain millions 
of nodes.

Numerous model order reduction (MOR) techniques have been 
successfully applied to the reduction of linear large scale circuits 
over the past decade.

However, despite their wide application, unsolved problems do 
exist when directly extending them to symbolic circuits. 

Symbolic model order reduction is proposed accordingly [Shi:tcad’06]



Prior Art

The idea of symbolic model order reduction (SMOR) was first 
introduced in [Shi:tcad’06], which contains three different 
methods

Symbolic isolation 
It first removes all the symbols from the circuits, and the nodes to 
which the symbols are connected are modeled as ports. 
The time and space complexity for the reduced model increases 
cubically with the number of ports, i.e., the number of symbols

Nominal projection
It uses the nominal values of the symbols to compute the projection 
matrix.
It is accurate only when the symbol values slightly deviate from the 
nominal value.

First order expansion
It uses the first order expansion of the matrix inversion and 
multiplication to find the projection matrix, which is first order matrix 
polynomial w.r.t. all the symbols. 
Again, no large change is allowed for the symbols in order for the 
method to be accurate.



Major Contribution of Our Work

This paper presents a scalable SMOR algorithm, namely 
S2MOR. 

We first separate the original multi-port multi-symbol system into 
a set of single-port systems by superposition theorem, and then 
integrate them together to form a lower-bordered block diagonal 
(LBBD) structured system.

Each block is reduced independently, with a stochastic 
programming to distribute the given overall model order between 
blocks for best accuracy. The entire system is efficiently solved 
by low-rank update. 

Compared with existing SMOR algorithms, given the same 
memory space, S2MOR improves accuracy by up to 78% at a 
similar reduction time. In addition, the factorization and 
simulation of the reduced model by S2MOR is up to 17X faster.
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Port Separation and Model Reduction

Symbolic MNA equation

Symbol-less  

MNA equation 

Symbol-less 

MNA equation set

symbol i Incidence vector for 
symbol i

the ith column of B matrix

superposition theorem



Port Separation and Model Reduction
We can further show that the symbol-less MNA equation set 

can be expressed in the following compact form

where 

Note that G and C are lower bordered block diagonal matrices 
(LBBD matrices)



Port Separation and Model Reduction

We can prove that if orthonormalized matrices Vi satisfies

then with the block-diagonal projection matrix 

the first q moments of the reduced system and the original 
systems are exactly matched. In addition, the reduced system 
still keeps the LBBD strucuture. 

q-th order Krylov 
subspace
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Simulation and Update of the Reduced Model

We can fully utilize the LBBD structure of the reduced model.
As an example, the Gr matrix can be expressed as 

where 



Simulation and Update of the Reduced Model

Then from matrix inversion lemma, the following algorithm to 
solve                          can be easily derived. 

First factorize                       which is block diagonal
Then factorize a small matrix

Then we solve 
Next, solve 
Finally solve 
And the solution of the original system can be obtained as 

The main advantage of the above algorithm is that instead 
solving the full system, we turn to solve a set of much smaller 
systems, and thus obtain significant speedup. 
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Min-max Programming based Projection Order Decision

From the structure of the block diagonal projection matrix we 
can see that each sub-projection matrix allows a different size.

accordingly for a given overall size, we need to decide the 
size of each sub-matrix to achieve the best accuracy. 

The problem can be cast as worst error for all 
possible symbol values

minimize the error constraint on the total size 
the sizes must be 

integer

permitted range of 
the symbol vales



Min-max Programming based Projection Order Decision

This non-convex mixed-integer min-max programming is 
difficult to solve, so we propose to iteratively solve two sub-
problems, each of which can be solved efficiently
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Sparsity of the reduced model

Reduction for a low-noise amplier (LNA) design with parasitics, 
which contains 4920 nodes, 8 ports 10 symbols. The circuit is 
reduced to order 76 by the S2NMOR method



Effectiveness of the Stochastic Programming Based Projection Order Decision

Accuracy comparison between uniform projection order and our stochastic 
programming based approach based on the 10k Monte Carlo simulation on 
the symbol values. Our method reduces the mean error by 30% and 3-
sigma error by 50%. 



Accuracy comparison

Accuracy comparison between symbol isolation (S.I.), nominal 
projection (N.P.), first order expansion (F.E) and the S2MOR 
with different variation amount (var) of symbol values. All the 
errors are in the unit of V*ns.



Runtime Comparison

Runtime comparison between symbol isolation (S.I.), nominal 
projection (N.P.), first order expansion (F.E.) and the S2MOR 
method. The reduced sizes are also reported (size). All units 
are in seconds. The factorization and simulation time for the 
S2MOR model from is up to 17X faster. 



Major Contribution of our work

This paper presents a scalable SMOR algorithm, namely 
S2MOR. 

We first separate the original multi-port multi-symbol system into 
a set of single-port systems by superposition theorem, and then 
integrate them together to form a lower-bordered block diagonal 
(LBBD) structured system.

Each block is reduced independently, with a stochastic 
programming to distribute the given overall model order between 
blocks for best accuracy. The entire system is efficiently solved 
by low-rank update. 

Compared with existing SMOR algorithms, given the same 
memory space, S2MOR improves accuracy by up to 78% at a 
similar reduction time. In addition, the factorization and 
simulation of the reduced model by S2MOR is up to 17X faster.



Thank you!
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