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ABSTRACT
SoC designs consisting of analog, digital, mixed signal, RF
and software blocks are commonplace. SystemC AMS of-
fers the potential for a unified modeling approach for such
systems through executable specification. SystemC AMS
uses different Models of Computation to gain simulation per-
formance, most notably by abstracting timing information
which demands the simulator solvers to be fast, fair and
simple.

In this paper we present a method to fortify SystemC AMS
extensions with commercial analog solvers while maintaining
adequate simulation speed for an overall system simulation.
These solvers are more exact to describe specific circuit be-
havior in nonlinear conditions and wide time ranges. An
example system is also presented that implements the pro-
posed scheme.

1. INTRODUCTION
In an increased complexity of heterogeneous embedded sys-
tems, system level design through system level languages is a
requisite. Whereas system level languages e.g. SystemVer-
ilog offer elevated visibility into the system, they cannot
sufficiently point particular behavior (critical analog/RF be-
havior and nonidealities) that has to be understood for de-
sign drivers and product requirements. Therefore system
level simulation should be augmented with corner views of
design areas that are not always discernible.

High abstraction and system level AMS modeling was a nat-
ural sequel after Open SystemC Initiative thoroughly ad-
dressed the digital domain of design and still presses on. The
analog and mixed signal extensions to SystemC [3] tritely
known as SystemC AMS have been formally released as a
first-cut draft proposal. The current SystemC AMS pro-
totypes offers three Models of Computation (MoC): Elec-
trical linear networks and linear signal flow (transfer func-
tion, pole-zero or state space representation of input/output
behavior). Both modeling paradigms embed in SystemC

sc_method() class. The third is synchronous Timed Data
Flow (TDF) MoC with indigenous processing() method
which is a solver for computing the continuous time behav-
ior of the model as defined by the user. Both linear MoCs
solve linear implicit differential equations [13] at appropriate
time. Simple nonlinear static behavior can be approximated
with TDF by selecting a rational sampling rate.

While these extensions are effective for high level model-
ing, SystemC AMS has laid out the ground work for reach-
ing out to user defined extensions [4] and even commercial
solvers through its synchronization layer [5]. This again is
no surprise as the architects of SystemC AMS intended it
to be an agile and open source simulator that at times may
have to integrate dedicated solvers (Figure 1) for advanced
simulation capabilities. The good news is most top of the
line EDA tools offer C interface that can act as a bridge
for cosimulation with SystemC AMS. This work shows how
HDL, HDL-AMS variants and SPICE models can be cou-
pled in overall timed data flow simulation under SystemC
AMS executable specification using the C level procedural
interfaces (VPI and VHPI).

The remainder of this document is organized as follows: We
begin with SystemC AMS capabilities in section 2. In the
next two sections we compare the merits of system level
languages, HDLs, AMS extensions and solvers. We then
outline our methodology in section 5 for mixed AMS mod-
eling with SystemC AMS as top level simulator. Section 6
demonstrates an example using mixed AMS languages and
abstraction connected to SystemC AMS by the C interface.
Section 7 summarizes and concludes our work.

2. SYSTEMC AMS AS AN EXECUTABLE
SPECIFICATION

An original promise of SystemC AMS is executable specifica-
tion. However, as soon as high level architecture is specified,
the task to immediately move toward refinement and imple-
mentation follows. The easiest way to begin exploring design
space and further extract requirements (e.g. for software
co-design, analog/digital behavioral partitioning) is to add
features in specification or replace abstract/ideal views with
more realistic representations. In the experimentation pro-
cess the digital blocks can be easily cosimulated with RTL
or behavioral HDL models. Mixed signal models however
stage a greater challenge because of nonuniform sampling
[7], nonlinear behavior, mixed domain synchronization and
lack of access in EDA tools to connect from outside to the



underlying electrical objects of the model being simulated.

2.1 Synchronization with Timed Data Flow
The TDF is the most sophisticated MoC in SystemC AMS as
is it untimed but supports multirate data flow tokens which
are equally and discretely time spaced while the solver is
executed at each firing of TDF cluster. The firing vector is
related to the scheduling of data flow nodes at elaboration.
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Figure 1: Extendability in SystemC AMS through
layered approach [11]

The TDF formalism is a better speed vantage over accu-
racy for fast simulations of signal processing reigned appli-
cations, the main target of SystemC AMS. Further, user
defined AMS data types can be defined using the template
classes for TDF ports for easing module connectivity. The
linear networks are built from electrical primitives inher-
ited from sca_module class. Once linear blocks are modeled
they need to connect to a TDF domain for signal controlled
sources using either SystemC AMS sca_tdf_signal or Sys-
temC sc_signal<double> nets. This connection is neces-
sary as TDF MoC is responsible for overall tokenization of
data in the flow and synchronization of the clusters.

2.2 Abstract Modeling with SystemC AMS
A simple example describing abstract modeling with Sys-
temC AMS is illustrated below:

Figure 2: A low pass filter

SCA_TDF_MODULE(prefi_ac)
{

sca_tdf_in<double> in;
sca_tdf_out<double> out;
sca_sctdf_in<bool> xgain;
// parameters
double prefi_fc; //cut-off freq
double prefi_g0; //gain !xgain
double prefi_g1; //gain xgain
// filter model
sca_ltf_nd ltf_1; //filter inst
sca_vector<double> A, B; //coeffs
sca_vector<double> S; //states

void init() {
//filter coeffs
B(0) = 1.0; A(0) = 1.0;
A(1) = 1.0/(2.0*M_PI*prefi_fc);}

void processing() {
double tmp=ltf_1(B,A,S,in.read());
if (xgain.read())

out.write(tmp * prefi_g1);
else out.write(tmp * prefi_g0);}

SCA_CTOR(prefi_ac) { // defaults
prefi_fc = 1.0e6; prefi_g0 = 2.74; prefi_g1 = 2.74 * 2.2;}

};

3. MODELING WITH MIXED ABSTRAC-
TION AND MIXED LANGUAGES

SystemC AMS extensions for analog modeling are sufficient
for high level functional models that are abstract e.g. an
ideal ADC which represents more of a software view than an
AMS one. However more accurate models typically require
HDL representation close to implementation. This repre-
sentation could be at three levels. A higher level of dis-
crete time real valued models of algorithmic nature that can
adequately describe mixed behavior digitally with VHDL
and Verilog e.g. cycle accurate real valued ADC describing
implementation methods with i.e. pipelining, SAR, Sigma-
Delta or direct conversion (ADS7818) using comparators.
This level of modeling can delineate ADC resolution, dy-
namic range, throughput, CMRR and quantization accu-
racy. A second and lower level is of pure AMS behavioral
models that characterize physical properties e.g. nonlin-
earities, timing (acquisition, conversion, response, settling,
aperture delay) and numerical errors (gain, SNR, dither,
aperture, temperature offset drift). Understanding these
behaviors is vital for hardware-software co-designers who
need accommodation for tolerances in their designs. How-
ever these properties can be extracted with VHDL-AMS
or Verilog-A/MS which support structures of analog com-
ponents and continuous time simulation. These simulators
have solvers for conservation laws and differential algebraic
equations. The third level is circuit level models described
by SPICE that also demand specialty solvers. This is the
most accurate and hence slowest level and may not give a
respectable advantage at system level over pure AMS mod-
els.

Depending the depth of model complexity needed and re-
flecting its behavior to the top level system specification, the
architects may employ any level of HDL/HDL-AMS model
granularity for cosimulation with SystemC AMS.

4. ACCURACY, SPEED IN SYSTEMC AMS
AND HDL-AMS

SystemC AMS simulation kernel advances in fixed discrete
step widths and the solver solves the homogeneous system
of equations for the new state estimated in the lapse of time
step. Since the systems described are linear approximate,
the integration over the step width is reasonably accurate
for abstract level and fast simulation. The integration al-
gorithms [8] are likely to be lower order implicit methods
to achieve numerical stability (i.e. avoiding extremely small
time steps required in stiff explicit methods) but compu-
tationally inexpensive. The algorithms cannot be acausal



either for using future state estimations e.g. fourth order
Runge-Kutta method [10] that is iterative, accurate but not
suitable for reactive systems such as real time or embedded
e.g. HIL simulation [2].

The alternative is offered by commercial mixed signal tools
for nonlinear system solutions with variable step size inte-
gration algorithms to accommodate for a range of time con-
stants. These algorithms are more precise and computation-
ally slower in small time range. The stepping is continuously
adjusted during simulation depending on dynamic activity
zone [10] e.g. large steps during infrequent state changes and
small steps to capture rapid state changes. The activity is
related to the block requirement (long for transient analysis,
small for high frequency poles) [1]. Further the simulation
accuracy is covered using various modes e.g. tight conserva-
tive, default moderate, relaxed liberal in Cadence Virtuoso
Multi-Mode simulator. Similar accuracy based circuit parti-
tioning is implemented in Mentor Graphics’ Eldo which also
supports large stability range ignoring small variations.

Since SystemC AMS solver is fixed step solver, nonlinearities
and nonidealities are difficult to capture. It therefore makes
sense to cosimulate such behavior in commercial AMS or
SPICE simulator and then relate the results in the top level
SystemC AMS TDF view which controls overall simulation
synchronization and execution of the commercial simulator.

5. METHODOLOGY CONCEPT
Figure 3 depicts a layered concept of SystemC-AMS and
HDL-AMS cosimulation with Cadence tools. The C/C++
based development includes wrappers, OS calls (fork-exec)
under C/UNIX and TCP/IP socket programming while C
level access of HDL objects is possible using the simula-
tor’s procedural interface. Further, the open architecture of
SystemC-AMS facilitates signal/data type conversions be-
tween the two simulated models.
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Figure 3: SystemC AMS and mixed HDL-AMS
cosimulation interfaces

We have already seen discrete event VHDL [14] and Ver-
ilog [16] models can be integrated into simulations using
VHPI and VPI respectively. Same methodology can be ex-
tended for VHDL-AMS and Verilog-AMS with a caveat.
VHPI and VPI were not intended for mixed signal simu-
lation and thus do not adequately address AMS constructs
e.g. writing/reading VHDL-AMS terminal or Verilog-AMS
electrical node is not supported. The objects registered
with discrete event kernel that can take on real values sam-
pled at discrete times and strictly belonging to digital kernel

stream (HDL) can be accessed while objects that vary val-
ues continuously with time cannot be directly accessed as
per the procedural interface specifications e.g. Verilog-AMS
wreal although a real valued discrete time wire type cannot
be accessed as it is not a Verilog type. Therefore the designer
needs to declare the objects (ports or signals) that would be
interfaced with SystemC AMS models during cosimulation
as HDL types supported by the procedural interface. This
is not a limitation in principle as low level signals may not
directly connect to system level blocks. The designer how-
ever would be interested in their effect on analog behavior
and on signal flow to the other blocks.

A cosimulation interface can be invoked in SystemC AMS
model within TDF MoC (client). This interface would com-
municate data between SystemC AMS specified model and
the external simulator. The synchronization and firing of
the model and consequently of the wrapper i.e. execution
of cosimulator is automatically taken care by virtue of the
TDF semantics and its connection to the synchronization
layer. Another interface as a C wrapper is hosted at the
Cadence machine (server). This interface handles C/UNIX
system calls for spawning various processes that execute the
simulator tool chain using fork-exec. It is here where vari-
ous digital or analog solvers will be called as shown in Figure
4.
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Figure 4: Execution of analog and digital solvers in
cosimulation

6. APPLICATION EXAMPLE STUDY
A high level SystemC-AMS description of RF front-end de-
rived from [3] is shown Figure 5. This model is a basic
transceiver that consists of a mixer, a low pass filter and a
binary amplitude shift keying (BASK) demodulator. The
model is a patched with HDL based ADC and then with
DAC models. Although SystemC AMS itself can be used
to define a behavioral ADC, but we need to go beyond
the abstraction level offered by SystemC AMS. Therefore to
demonstrate the cosimulation scheme using various solvers
we start with a simple real valued HDL model and then suc-
cessively replace with finer models based on HDL-AMS and
even SPICE subcircuits.

A cosimulation interface instantiated in a SystemC AMS
model block could be:



 

Figure 5: BASK transceiver in mixed SystemC AMS and HDL-AMS descriptions

SCA_TDF_MODULE(ad_converter)
{
sca_tdf::sca_in<double> in_tdf;
sca_tdf::sca_out<sc_int<12> out_de;
..
char *out_token_stream;
void processing() {
token_collection = format_and_queue(in_tdf.read());
out_token_stream = cadence_cosim(token_collection);
..
out_de.write<static_cast<sc_int<12> > format(out_token_stream);}
}

While execution of AMS/SPICE models at server is:

child_pid_ncelab = vfork();
execv("ncelab", "-amsfastspice" "-propspath" "prop.cfg"
"bench_a2d_12bit" "-snapshot" "worklib.bench_a2d_12bit");
child_pid_ncsim = vfork();
execv("ncsim" "-input" "@tcl_script" "-status" "-analogcontrol"
"acf.scs" "worklib.bench_a2d_12bit:behav" "+loadvhpi"
"VHDL2C_DLL" "inst=:bench_a2d_12bit" "+start=0" "+stop=62");

The shared dynamic library VHDL2C_DLL is the procedural
interface application. It applies simulation input generated
at SystemC AMS to the VHDL models and also reads VHDL
outputs as C data. In addition the library initializes VHDL
simulation, registers callback routines, traverses design hi-
erarchy, monitors ports/signals, removes or adds callbacks
and synchronizes itself to the VHDL simulation. The library
can apply stimulus vectors at the specified times from a file.

6.1 Modeling Levels
Starting from top-down the following model granularities are
used in reverse abstraction.

6.1.1 Behavioral HDL Model
The model allows staying in the digital flow because data is
real valued sampled at discrete time enforced by the update-
evaluate schedule of digital simulator. The solver, a discrete
event kernel, based on the event sequence in the schedule
solves boolean equations which embed in well defined sig-
nal flow [6], therefore there is no analog convergence issue.
The refinement flow is still top-down approach. This is the
fastest level of cosimulation. However, the model is digital
functional oriented one and close to ideal approximation, no
critical behavior is captured. Pure RTL blocks or HDL rep-
resented analog models requiring clock can be cosimulated
at this level. The model can be nicely used for connectiv-
ity check or BigD/smallA verification which is traced back
to the cosimulation with SystemC AMS executable speci-
fication. A real valued behavioral VHDL of 12-bit ADC

(ADS7818) is cosimulated under TDF. VHDL outputs are
read using VHPI.

6.1.2 HDL-AMS Model
VHDL model is replaced with VHDL-AMS and Verilog-
AMS models. The solution is furnished by the analog kernel
(FastSPICE or Spectre) while VHDL-AMS real valued dis-
crete time outputs are read using VHPI and Verilog-AMS
real valued discrete time outputs are read using VPI. The
HDL-AMS models are based on ODEs in time and frequency
domains which are more accurate than pure HDLs and are
an entry point for meet in the middle approach. Verilog-
AMS is better suited for mixed signal simulations due to
being weak type language. The simulator automatically re-
solves implicit disciplines by inserting interface elements be-
tween signal domains of analog and digital models [9]. These
elements can be explicitly insert by the user to aid in resolu-
tion. However for VHDL-AMS the conversion models must
be written [15].

6.1.3 Mixed HDL-AMS Models
Next a mixed HDL block comprising of 12-bit ADC and
DAC pair is simulated. Using two C wrappers SystemC
AMS is interfaced with Verilog-AMS ADC (VPI) and with
VHDL-AMS DAC (VHPI). For a unified mixed HDL simu-
lation Cadence irun tool is used.

6.1.4 SPICE in the Middle
To better study accuracies and nonlinearities a SPICE sub-
circuit or Verilog-A submodel can be inserted in the over-
all cosimulated model. Parts of RF front-ends that serve
as boundaries between digital baseband and high frequency
channel can be modeled with active devices. The migration
toward implementation can become more visible at such ab-
straction level since vendor specific transistor level SPICE
definitions and parasitic device models can be used. Such
a model can be a pure SPICE netlist or a mix of SPICE
and HDL-AMS model. However, the model must be instan-
tiated at a low hierarchy in a HDL/HDL-AMS block for
SystemC AMS interfacing using C interface (VPI/VHPI)
and for digital stimulus. For example, the HDL could be
a testbench. The model is the better approximation to the
real world. This is the slowest and most accurate level and a
turning point for upcoming bottom-up analog design to be
handcrafted due to absence of analog synthesis. It should be
noted that SPICE modeling is not a replacement of full-scale
RF simulations that require precise transistor level models
and use fine stepping for understanding heterodyne receiver
sensitivities and interference coupling. SPICE models only



represent reduced order of nonlinear macromodels [12] to
give orders of magnitude in simulation speed. Such reduc-
tion has to be handmade if there exists no methodology or
tool for a direct extraction.

In SPICE in the Middle arrangement a Verilog-AMS block
instantiates a SPICE block that, in turn, can instantiate a
Verilog-AMS block. Hence a Verilog wrapper is typically re-
quired when a VHDL testbench instantiates a SPICE netlist.
A port mapping file binds Verilog and SPICE ports. The
analog simulation is controlled by analog controlfile passed
to the HDL-AMS (NCSIM) or irun utility for integrated
one-step simulation.

6.2 Analog Solvers
The computational capabilities are stepped-up by solving
the equations derived from HDL-AMS and SPICE descrip-
tions using the following Cadence solvers. Note that the
overall effect of the solved/cosimulated model is projected
over the SystemC AMS abstract description.

6.2.1 Spectre
The Spectre solver is an enhanced SPICE simulator using
similar solution methods as in traditional SPICE (Newton-
Raphson, implicit integration and sparse direct matrix) but
improved, faster and accurate versions. SpectreRF allows
simulations of nonlinearities in analog and RF mixers, S/H,
oscillators designs. The high carrier frequency models e.g.
RF modulators and demodulators in which transient analy-
sis is a simulation bottleneck for solving at fine step size, en-
velope analysis is a better mode. In this mode digital blocks
are dealt with digital solver and analog blocks are simulated
using available envelopes e.g. oscillator, FM, Newton. The
two simulations are always synchronized at the next analog
simulation point.

6.2.2 FastSPICE
The FastSPICE gives near SPICE accuracy for simulating
large scale circuits. The FastSPICE (UltraSim) solver sim-
ulates mix baseband, IF and RF frequency systems. The
time step resolution is determined by the highest frequen-
cies present which essentially makes too many time steps
and unnecessary overhead for low frequency signals. Fast-
SPICE uses transient analysis with envelop designation for
high frequency circuit areas. Predesigned blocks can be
cosimulated with FastSPICE to import critical behavior in
SystemC AMS.

7. CONCLUSION AND FUTURE WORK
A gentle methodology was presented that substantially em-
powers SystemC AMS abstract description by incorporating
simulation results computed by strong commercial solvers.
The typical problem of synchronization associated with sim-
ulator coupling is engrossed by the TDF MoC of SystemC-
AMS master simulator which is responsible for firing dataflow
nodes and thus automatically invokes the cosimulation task.
The access to cosimulated data is delivered through the
procedural interface which are available in all popular sim-
ulators. The dedicated simulator/solver enables modeling
of implementation details and nonlinearities that normally
cannot be gained by a system level simulator e.g. SystemC
and/or SystemC AMS.

Future work would carry on implementation details, simu-
lation results and discussions.
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