
Mixed-Signal Test Development using Open Standard
Modeling and Description Languages

Ping Lu, Daniel Glaser, Guerkan Uygur,
Susanne Weichslgartner, Klaus Helmreich

Chair of Reliable Circuits and Systems
Friedrich-Alexander-University Erlangen-Nuremberg

Paul-Gordan-Str. 5, 91052 Erlangen, Germany
pinglu@lrs.eei.uni-erlangen.de

Armin Lechner
Konrad-Technologie GmbH

Fritz-Reichele-Ring. 5, 78315 Radolfzell
Dublin, Ohio 43017-6221

a.lechner@konrad-technologie.de ∗

ABSTRACT
A novel virtual platform is presented, providing CAD/CAT
support for efficient test development and attempting to
bridge the gap between design and test. The platform, which
models and simulates the entire test environment, provides
methodologies, model libraries and tool sets to enable de-
sign, debug and verification of all test relevant processes
including fault analysis, test algorithm, load board and test
program development concurrently with IC design and fabri-
cation phase and later smoothly apply the results to various
test systems. One major idea of our work is adopting the
open standards approach to guarantee interoperability. In
addition, modeling methodologies for virtual tester and vir-
tual silicon are proposed to further enhance interoperability
between virtual and real test. To give an insight on how such
environment seamlessly integrates into the test development
flow, an ADC test which is performed both on the virtual
platform and the real tester is described. The simulation
environment is built using SystemC/-AMS libraries.

1. INTRODUCTION
While SoC products and their intended test environments

are growing more complex, the time and cost for developing
Test Program Sets (TPSs: test programs, load board and
associated documents) has become one of the major issues
in design and manufacturing. Currently, the design and test
automation support for analog/mixed-signal devices is still
not as mature as for digital ones in the sense of engineering
and performance. To overcome the situation, Virtual Test
(VT [8][12][6]) techniques have been proposed and developed
in the past decade to allow test engineers to develop, debug
and verify TPSs in a simulation environment including mod-
els of Device Under Test and its target test system.

The VT techniques cover methodologies, model libraries
and tool chains to collaborate between EDA tool and test
system throughout the entire test development flow. An
integral implementation of such method requires complete
simulation models of DUT (Device Under Test), DIB (De-
vice Interface Board), tester and even part of software - both
test program and test system software (see Figure 1). Given
the above, all aspects of a test can be designed and veri-
fied via simulation with the virtual test platform and proper

∗The reported work is performed as part of the project OK-
TOPUS (FKZ 01M3182), funded by the German Federal
Ministry of Education and Research (BMBF) within the
program IKT2020

tools. Obviously the modeling effort to build such environ-
ment is just as overwhelming as its benefits.

Figure 1: Overview of VT for test development

The VT approach has been around for well over a decade
and many case studies could prove its value, however very
few implementations are able to maximize its potential. The
major reasons for this lack are missing tester-independence
and -integration. In [9], we have analyzed the historical
bottlenecks which prevented VT from use in day-to-day’s
practice and then proposed an applicable conceptual solu-
tion. This paper now presents in detail the implementation
and utilization of an integrated Virtual Test Platform, con-
sisting of methodologies, model libraries and seamless tool
chains.

One essential characteristic of the solution is adopting
the open standards approach to guarantee interoperability,
namely using established test specifications and standards
which are widely accepted by industry to define system in-
terfaces, services, protocols and data formats. Standardized
techniques enable data to be smoothly transfered from de-
sign to simulation and from simulation to real test. This has
become increasing feasible with recent achievements in test
technology.

In the conventional approach, the test engineer needs to
perform lots of tedious and iterative work creating a test
program that configures and controls instruments in order to
bring signals to the DUT pins and capture responses. This
strong coupling between test program and test resources is
the major cause for both TPS cost and lack of test platform
independence. The problem has been realized and explored
by several test-related organizations (SCC20 [3], DoD [10],
IVI [4]) over the last two decades. The resulting evolving ad-
vancements have led to plenty of significant IEEE proposals
and industrial standards. Currently, the most acknowledged
technologies are executable test specification and a compre-

hensive information framework [1] which defines descriptive
languages for test program and test resource allowing infor-
mation to be transfered from one life-cycle phase to another
between components within a test system and between test
system and outside world. Potentially, this also grants a
new opportunity for Virtual Test to achieve a platform in-
dependent and yet easy integrateable implementation.

Another contribution is an efficient modeling strategy for
Virtual Silicon and Virtual Tester. Due to the complex-
ity of tester and their strong impact on analog test, it is
essential to provide models of necessary accuracy with mod-
erate computation cost and labour. Moreover, in order to
smoothly transfer the test bench generated during simula-
tion phase to the hardware platform, the virtual platform
needs to provide the equivalent interfaces to test program
as its hardware counterpart. In this paper, a unified so-
lution based on SystemC/-AMS is adopted to describe the
test relevant resources including hardware, software and in-
terconnection supporting test and verification from system
to electrical level.

In section two, a detailed architecture of the proposed
Virtual Test Platform will be described. In section three,
an experimental application based on a commercial ADC
product is described first on Virtual Test Platform and af-
terwards in the real test environment. Test results will be
compared in the fourth section, followed by conclusion and
outlook in the last section.

2. IMPLEMENTATION OF VT PLATFORM

2.1 Architecture of Virtual Test Platform
A Virtual Test Platform shall always reflect the archi-

tecture of its host test system with acceptable tradeoff be-
tween fidelity and efficiency. In this case TPSs can be de-
veloped and debugged with their simulation models instead
of interacting with real test HW. Figure 2 depicts the VT
platform (right block) mimicking the entire tester environ-
ment (left block). The overall system features a layered
architecture composed of six major layers – Test executive,
Test application, Drive interface, Instruments, Device In-
terface Board and Device Under Test – and an information
exchange framework that enables cooperation between com-
ponents from different layers and cooperation between VT
and tester environment. The major building blocks of soft-
ware are:

The test application layer : Test application, usually writ-
ten in programming language, details the test requirements
on its intended target tester platform. Its essential tasks
are stimulus creation, response capturing, post-processing,
calibration, correctness determination, etc. Recent studies
have proven that test requirements can be expressed in a
descriptive way rather than programming approach. Later,
such descriptive information can be understood and fur-
ther executed by some intelligent service module through
the dynamic allocation of the native test resources during
run time. IEEE 1641 Signal & Test Definition (STD [7]) ac-
commodates this objective. We implement this standard to
formally describe and simulate test requirements and hence
pave the way to interface simulation and real test.

The test executive layer : This is execution management
software for running specific test steps/sequences. NI Test-
Stand is used in our OKTOPUS test system. It is a powerful
tool for organizing, controlling, executing test-flows and for

Figure 2: VT Platform Architecture Diagram

tracking DUT and reporting. Virtual test cases, when im-
plemented with proper interfacing techniques, can also be
managed within TestStand.

The driver interface layer : This is the layer between test
program and hardware providing APIs to operate with in-
struments. For VT approach, it is beneficial to include the
instrument driver into simulation model so that test pro-
gram can interoperate with the model in a very equivalent
manner to the real world.

ATML Information sharing framework : It is the key inter-
face between VT platform and real-world tester that permits
interoperation – shown in the center of Figure 2. ATML
(Automatic Test Mark-up Language, IEEE 1671 [1]) pro-
vides formal description and semantic meaning for test do-
main knowledge in order to share and propagate test related
information within and between tester environments. More-
over, IEEE-1641 STD is already covered in ATML as the
the means to describe the test requirements and the instru-
ments’ capabilities.

Tool sets: Several tools, either proprietary or non-pro-
prietary, are brought together on the common framework
to facilitate TPS development flow. In our implementation,
for example, an EDA-like schematic entry, named ”TPCon-
structor”, was developed as the Virtual Test Platform to
manage simulation models, construct tests, control simula-
tion and interoperate with tester’s software.

In summary, the VT platform achieves integration into
equally ATML compatible test system by constructing, sim-
ulating STD-based test graphically based on SystemC, and
then both the test setup and outcome are captured and
exported to corresponding ATML file. The execution of
the test will be managed by tester’s native software. Fur-
ther, through encompassing driver interface in the instru-
ment model, test program based on instrument APIs can
also be supported.

2.2 Modeling philosophy of test instruments
A test instrument is a physical device with accompanying

driver resp. firmware that is used to accomplish a purpose
(e.g. stimulus generation, measure, switching). The strate-
gies for modeling instruments are:

HW/SW Coupling Unlike previous VT attempts, our in-

strument model does not only cover hardware behavior but
also that of the driver (interfaces between HW and SW ap-
plication). As shown in figure 2, the HW part of the model,
which specifies its functional behavior, is the major entity
for simulation purpose, whereas the SW part describes its
associated driver behavior. This strategy provides a compre-
hensive way to characterize the behavior of an instrument
model through driver APIs in a manner very equivalent man-
ner to the real world. Furthermore, it helps to reduce the
workload of porting the test program from the simulation
environment to real execution. In fact, later we will show
that using SystemC as modeling language, the effort is quite
minimized.

Generic Behavioral Model In test systems, instruments
can be categorized into several classes according to their
roles (source, sink, condition, etc.) and functionalities. This
fact permits us to sketch a common generic behavioral model
for each class which can reflect instrument functionality pa-
rameterized as defined in the driver. Such generic models
are described on high abstraction behavioral level without
respect to different hardware implementations, yet can map
to a variety of different instruments. This strategy reduces
the modeling effort of instruments significantly with consid-
erable enhancement in simulation efficiency.

Parametric Electrical Model (PEM) For some tests, in-
struments need to be described in more detail including tim-
ing, waveform levels and waveform shapes with distortion.
This requires all aspects of distortions which are introduced
along the signal path before instrument ports need to be
considered.

Generally, instrument imperfections can be divided into
two groups: Static nonlinearity (SNL), superposition and
random/non-determinism usually can be described math-
ematically with explicit allocation to inputs and outputs.
The second group consists of electrical parts that are cou-
pling with external circuitry (e.g. impedance). This part
must be modeled under consideration of conservation laws
– using declarative equations rather than assignments. One
difficulty is that, in most cases the PEM depends on the
instruments configurations, roles and settings. Thus, we
need to find a way to determine the correct PEM for the
instrument under different configurations. Different instru-
ments with even the same capability will have different per-
formance (e.g. resolution, precision, etc).

Separate Descriptive Information Models In order to fa-
cilitate a generic instrument model to reflect a specific real
world instrument followed by a relevant PEM (under the
current setting), information of the particularity needs to
be stored in a separate file for run-time query. Currently,
the ATML Instrument Description file can fulfill the purpose
– using STD to describe HW ability.

Instrument Bus Module Optionally, this can be inserted to
the instrument model to describe bus occupation and access
latency for data transfer between test program and instru-
ments, thus providing simulation and debug capability for
resource plan and test sequence scheduling.

The overall instrument model (see Figure 3), is assem-
bled with all above described sub-models, either statically
or dynamically according to the test intent. The implemen-
tation of instrument generic behavioral model utilizes a hi-
erarchical architecture based on STD signal library. Some
example code in SystemC and simulation result are shown
in List 1 and Figure 4. One difficulty for model assem-

Figure 3: Overall Instrument Model

bly is to manage the data transfer and interaction among
the models in terms of the internal coupling mechanism of
the system during the automatic generation of test bench,
i.e. dynamic model assembly. The overall test bench mixes
models belonging to different domains (e.g. energy domain,
signal flow, discrete event, etc) and described in different ab-
straction levels. A SystemC-based smart-router is developed
to handle the problem and allocate appropriate channels to
connect pairs of models.

BSC_SIM(AM) :

public Modulator </*enum DY {NC, SYNC , GATE , SAG}*/ T>{

public:

Ratio modIndex;

Source <> *Carrier;

BSC_SIM_CTOR(AM) : /* default values for parameters */

modIndex (0.3){...};

void process () {

dynamic_proc (); /*gate and sync process */

if (ACTIVE == sig.state ()) {

out.write(modulating (&(in.read()), NOW -delay));

}

}

...

/* AM modulation routine e = (1 + modIndex m(t))*C(t). */

double modulating(const double *x, double t) {

if(! Carrier) return x[0];

return (1 + modIndex*x[0])* Carrier ->sample(t);

}

};

/**

* FunctionGenerate SubClass : FgenModulateAM

* Description: AM(t) = [M(t) + 1] * C(t) */

SC_MODULE(FgenModulateAM) :

public IIviFgenModulateFM /*SW Driver Interface */{

public:

// HW interface

sc_in <sc_logic > sync , gate;

sca_sdf_in <double > in;

sca_sdf_in <double > mod_in; /** external carrier in*/

sca_sdf_out <double > out;

/** Member Property */

bool Enabled;

/* Following attributes affect the behavior only when using Internal source */

double InternalDepth; /** units: % */

double InternalFrequency; /** units: Hertz */

IviFgenAMInternalWaveformEnum InternalWaveform;

IviFgenAMSourceEnum Source;

void * Carrier;

...

SC_CTOR(IviFgenModulateFM) : sc_module(nm),

am(new AM<SYNC_AND_GATE >("AM")), ...

{ netlist ();

configure (); ... }

void netlist (); // connect signal models

void configure (); // translate parameters

void map(Resource_t *rm); // map to hardware

private:

IviFgenBase <1> *m_channel;

boost::scoped_ptr <AM<SYNC_AND_GATE > > am;

boost::scoped_ptr <Sinusoid <SYNC_AND_GATE > > sine;

boost::scoped_ptr <Triangle <SYNC_AND_GATE > > triangle;

boost::scoped_ptr <SquareWave <SYNC_AND_GATE > > square;

...

}

Listing 1: Function Generator: AM Module

2.3 Signal Path
The signal path from test system port to DUT will in-

fluence the signal integrity. Fur instance, our environment
provides several parametric models of transmission line (e.g.

Figure 4: Simulation results of Function Generator:
AM with different carrier

T, U, W types) for high frequency application, allowing to
evaluate the signal deterioration along the path through sim-
ulation. The parameters for the model are calculated from
measurement.

2.4 Modeling philosophy of DUT
The DUT models, either from designer during a top-down

design flow or from sketch, have major influence on the test
results, hence should be chosen carefully. There is no such
model that can cover all the needs of VT especially when
simulation cost is concerned. Therefore, the use of hybrid
abstraction models, which only expose appropriate details, is
widely acknowledged as DUT modeling policy in VT prac-
tice. It allows rapid exploration of more alternative test
solutions through a massive virtual test. Furthermore, in
this work, a Y-chart based approach [14] is developed to in-
spire test engineers to select appropriate abstraction models
and assemble them together with proper interconnections
for a particular test intent while taking into account DUT’s
structure and abstraction.

2.5 Modeling Language
Considering the aforementioned modeling strategy: HW

SW coupling, hybrid abstraction modeling and open archi-
tecture, all these lead us to SystemC[5][11] and its exten-
sions which are actively driving standardization processes
(e.g. TLM) in the areas of SoC verification and test be-
fore 1st silicon. SystemC defines a modeling and simulation
framework that provides one single language to describe and
co-simulate systems from different disciplines with different
models of computation and on different levels of abstraction.

In this paper, SystemC-AMS[13] – an extension of Sys-
temC – is used to provide additional language constructs for
modeling analog mixed signal behavior. The currently avail-
able version of SystemC-AMS is optimized for signal pro-
cessing dominated applications and allows modeling of con-
servative linear (linear electrical networks) and non-conser-
vative signal flow behavior with linear dynamic and non-
linear static equations.

3. ADC CASE STUDY

3.1 Virtual Test Implementation
An existing mixed signal IC, AD1870, is used to per-

form VT in the above-mentioned environment. The whole
test development flow is covered: from the very beginning
of creating a hardware independent test description with a
schematic entry tool (TPConstructor) over VT generation
and execution unto finally propagating valuable results to
the target test system (OKTOPUS TPS implementation)
which will be shown later. The ADC1870 is a stereo, 16-
bit oversampling ADC based on Σ-∆ technology. As widely
known, simulation of such application is very CPU inten-

sive, hence it’s a challenging task to find efficient solutions.
In this work, over 20 block models are associated to describe
the ADC in different abstraction levels or views. Using the
Y-chart based approach, the hierarchical combination of the
models is evaluated before each test for yielding an appropri-
ate accuracy and efficiency. Two tests cases are conducted
and described in detail: Opens and Shorts Test (OAS) and
dynamic performance test.

3.1.1 Opens and Shorts Test
OAS test, which belongs to DC parametric semiconductor

validation, checks for faults in the protection diode circuitry
of semiconductor chips to ensure that there is no short be-
tween each DUT pin and Vdd, Vss or with each other.

Figure 5: OAS Test Setup (TPConstructor)

Test Setup: The test setup for OAS is created with TP-
Constructor in an EDA-like manner (see Figure. 5).

Here, the test is constructed in a signal-oriented way -
specifying signals being applied or measured at the target
DUT pins including complete information about signal type,
signal role, signal attributes, relevant timing (delay, synchro-
nization) and uncertainties. The descriptions are compliant
to IEEE 1641 STD, which has defined over 60 most funda-
mental signal and measurement functions (BSCs) that might
conceivable required on DUT pins, including sources, condi-
tioners, events, measurements, digital and connections.

Beneficial from this approach, the test intent is quite in-
stant at the schematic: -100µA current is drawn from one of
the DUT pins (LnRCK) while all other pins are grounded;
the voltage drop across LnRCK’s internal diode is measured
in the meantime. The source signal (Guard DC) is built in a
test signal library to provide reusability (see Figure 6). The
underlining behavior is very clear: a current supply with
over voltage protection.

Figure 6: Internal Diagram of Guard DC

Once the schematic is captured, an ATML-compatible test
description (see List 2) is generated accordingly. Later, the
platform independent signal requirement is parsed to deter-
mine the suitable instrument.

Instrument Assembling : In this work, instruments in the
OKTOPUS system are described in terms of the signal capa-

bilities that they support. List 3 illustrates the information
of NI PXI-4130 module which is employed in this test. Its
associated model consists of two parts: function behavior
(Guard DC) and pin error.

<td:Parameter ID="sch01_para1">

<!--Draw -100uA at AD1870 LnRCK with -2V protection -->

<td:Value >

<c:Datum xsi.type="td:StdSignalStimulus">

<std:Signal >

<mtsf:Guarded_DC name="tsf1" nominal=" -100uA" limit="-2V"/>

<std:TwoWire name="tsf1con1" in="tsf1" hi="LnRCK" lo="GND"/>

</std:Signal >

</c:Datum >

</td:Value >

</td:Parameter >

<td:TestResult >

<!-- Measure DC Voltage at DUT (1870) pin LnRCK -->

<td:ValueDescription

xsi:type="td:StdSignalMeasurement">

<std:Signal >

<std:TwoWire name="bsc3con2" hi="LnRCK" lo="GND"/>

<std:Measure name="bsc3" As="Constant" In="bsc3con2"

attribute="Amplitude" amplitude="range -2 to 0V"/>

</std:Signal >

</td:ValueDescription >

</td:TestResult

Listing 2: ATML Test Description (partial)

<InstrumentDescription name="NI PXI -4130">

<hw:Resource name="IVIDCPwrBase">

<hw:Description >The IviDCPwrBase capability group

supports the most basic DC power supply capabilities.

</hw:Description >

<hw:Interface >

<c:Port name="Ch1Hi"/>

<c:Port name="Ch1HiSense"/>

<c:Port name="Ch1Lo"/>

<c:Port name="Ch1LoSense"/>

</hw:Interface >

<hw:Capabilities >

<hc:Capability name="DCOut1">

<hc:Interface >

<c:Ports ><c:Port name="DCOut1"/></c:Ports >

</hc:Interface >

<OneOf>

<!--Voltage Output -->

<std:Constant type="Voltage"amplitude=

"range -6 to 6V resol 0.01mV errlmt 0.034%"/>

<!--Current Output -->

<std:Constant name="Current" amplitude=

"range -200 to 200uA resol 10nA errlmt 0.03%"/>

<!--Current Output with Over Voltage Protection -->

<mtsf:Guard_DC name="guard_dc" nominal=

"range -200uA to 200uA errlmt 0.03%+0.1 uA"

limit="range -6 to 6V errlmt 0.03%+1.5 mV"/>

...

</OneOf>

</hc:Capability >

</hw:Capabilities >

<el:ErrorModels >

<el:ErrorModels id="Ch1Hi.slewrate" name="slewrate" parameter="0.08V/us"/>

<el:ErrorModels id="Ch1Hi.output_impedence" name= "output_impedence"

parameter="C 10nF R 0Ohm" In="Volt1 Curr1"/>

<el:ErrorModels id="Ch1Hi.TL" name="TL_T" parameter="Z 50 Ohm Td 0.6ns "/>

...

</el:ErrorModels >

</hw:Resource >

</InstrumentDescription >

Listing 3: NI PXI-4130 Description File (partial)

Furthermore, PEM provides more accuracy. It gives guid-
ance for prediction and evaluation of instrument performance.
In this test, slew rate and output impedance (described in
linear network domain) are used.

The overall instrument model is automatically assembled
with these parts and appropriate interface – once adequate
information is available. In addition, an IVI-Class compliant
instruments library is built through the reuse of BSC signals
and PEMs to form functional behavior and additional IVI
wrappers. This allows the test program developed tradition-
ally being debugged on VT platform through direct call to
the instruments.

DUT Model : An AD1870 IBIS [2] model is used to effi-
ciently characterize the ground clamp I-V behavior of pro-
tection diodes, i.e. a lookup table with appropriate equiv-
alent circuit. The LUT modeling approach here provides a
rapid simulation solution with adequate accuracy. In addi-

tion, other DC parameter tests such as input voltage thresh-
old test (VIL, VIH), input leakage test (IIL, IIH), output
voltage level test (VOL, VOH) can employ the same model-
ing approach.

In the end, a SystemC-AMS test bench is generated au-
tomatically from the schematic setup (see List 4).

test_result_t test_run_1(test_parameters_t *params) {

...

tsf1 = RM.Require("Guard_DC", "tsf1");

tsf1 ->nominal = " -100uA";

tsf1 ->limit = "-2V";

bsc3 = RM.Require("Measure", "bsc3");

bsc3 ->As=RM.Require("Constant","as");

bsc3 ->attribute="Amplitude";

bsc3 ->amplitude="range -2 to 0V";

/** netlist */

conn = new SmartRoute("router",params ->traceoption);

conn(tsf1 ->out , adc1870_ibis_LnRCK_GND_clamp ->LnRCK , params ->trace["LnRCK"]);

conn(tsf1 ->in, adc1870_ibis_LnRCK_GND_clamp ->LnRCK ,..);

conn(bsc3 ->in, adc1870_ibis_LnRCK_GND_clamp ->LnRCK ,..);

...

}

Listing 4: Test Bench in SystemC/-AMS (partial)

3.1.2 Performance Test: Dynamic Specification
Dynamic specifications of ADCs are very important in

high-speed applications and are very sensitive to the instru-
ment performance. Most dynamic specifications can be re-
trieved by driving an ADC with a full-scale sinusoidal input
within interested signal band.

Test Setup: The test setup for ADC1870 dynamic perfor-
mance test is shown in Figure 7. The primitive components
on the schematic are peripheral circuit on the load board
to enhance ADC performance. As they’re not configurable
through tests therefore they are omitted when creating test
description file, however are payed with well respect in sim-
ulation. On the other hand, the signal models which imply
later implementation with right instruments are reflected in
both files.

Figure 7: ADC Dynamic Test Setup

DUT Models: Unlike conventional analog simulator,
SystemC-AMS provides an open framework allowing user to
differentiate analog block (e.g. conservative/non-conservative,
linear/nonlinear, etc) and select most appropriate model-
ing technique and simulation algorithms. Here we use syn-
chronous data flow (SDF) to character ADC dynamic pa-
rameters via time domain simulation. The choice is appro-
priate because most of analog components of Σ-∆ modula-
tor are clocked and hence the terminals between integrator
blocks and filters may be considered to be non-conservative
and the direction is mostly strait forward. Especially,
SystemC-AMS is optimized for multi-rate SDF application

Figure 8: FFT for 1 kHz signal

which are very well suited for this oversample modulator.
Computation time compared between SystemC-AMS SDF,
Matlab and VHDL-AMS with same amount of samples (resp.
2s, 3.7s, > 15min at 8k samples), proves its efficiency.

3.2 Hardware Implementation
To achieve the selected tests (OAS, dynamic performance

test) of the ADC, following NI PXI(e) Instruments have been
used in our OKTOPUS system:

8130 Real-Time Controller
6652 Synchronization and CLK
2535 Switch-Matrix
4130 Device Power Supply (SMU)
5421 Arbitrary Waveform Generator
7842 Protocol Capture (FPGA)
One thing worth noting is FPGA card that can be con-

figured for multi-function. In order to make it addressable
from specific signal requirement - in our case I2S protocol -
we must describe its intend usage in its information file.

For dynamic performance, the ADC serial output stream
into the PXI-7842 which implement I2S-to-parallel converter
and buffer. The samples are later transfered through the
PXI bus to the real time controller and then to the host.
On the host, performance is analyzed within Matlab. The
FFT could also be implemented into the FPGA card after
well verified in Virtual Test, in order to be more sufficient
for production test.

4. RESULTS
It’s clear that VT benefits both the designer and test en-

gineer by enhancing verification/test debug efficiency and
fault analysis through full access/control of the DUT model.
Another major advantage is that, with accurate instrument
models, VT allows verification of instrument performance
and prediction of test results including influence from target
HW. In order to show the feature, we performed dynamic
parameter test with a legacy instrument (Philips PM 5193)
as stimulus and without a bandpass filter. The same test
is run in our VTP, with the models exactly describing PM
5193’s performance including noise floor, nonlinearity and
jitter. Results (Figure 8) show that through VT the instru-
ment influence to the test results can be predicted efficiently.
This feature allows test engineer evaluates instruments for
high performance tests.

5. CONCLUSION AND OUTLOOK
Conclusion: VT is a powerful Concurrent Engineering

technique in TPS development flow. In this work, an Open
Standards Architectured-VTP was proposed in order to per-
mit VT techniques deeply integrated into the TPS develop-
ment flow. A pilot VTP is established, consisting of an ex-

tendable library of virtual tester, virtual silicon and EDA-
like front end. The objective is, through our platform in-
dependent OSA-VTP, to bring simulation and test envi-
ronment together in an interoperable manner, allowing the
test development process going along efficiently in VTP and
transfer the results to the real test system. Modeling strate-
gies for instruments and DUTs are discussed with respecting
to the trade-offs between modeling effort, simulation accu-
racy and efficiency. An ADC test is performed to evaluate
proposed VTP. Results achieved are promising.

Outlook : At present the test programs in VTP and target
test environment are still slightly different, though the syn-
tax for configuring tester resources is close enough; further
exploration is still required for better test program reusabil-
ity. While the modern test standard and architecture is still
evolving, some components are not final yet, it is beneficial
to keep a close watch on them and replace the non-standard
parts gradually. For even more accurate simulation results,
it is necessary to take also the switch matrix and the in-
terconnect into account. The model of signal paths in the
system will be further developed for high performance tests.
This was not the scope of this paper but will be presented
in future work.

6. REFERENCES
[1] ATML http://grouper.ieee.org/groups/scc20/tii/.

[2] IBIS home http://www.eigroup.org/ibis/.

[3] IEEE SCC20 http://grouper.ieee.org/groups/scc20/.

[4] IVI foundation http://www.ivifoundation.org/.

[5] Open SystemC initiative http://www.systemc.org/.

[6] K. Einwich, G. Krampl, R. Hoppenstock,
P. Koutsandreas, S. Sattler, and S. Munich. A
Multi-Level Modeling Approach rendering Virtual
Test Engineering (VTE) Economically Viable for
Highly Complex Telecom Circuits. In Proceedings user
forum DATE, pages 9–12, 1999.

[7] C. Gorringe, T. Lopes, and D. Pleasant. ATML
capabilities explained. Autotestcon, 2007 IEEE, pages
178–189, September 2007.

[8] K. Helmreich and G. Reinwardt. Virtual test of noise
and jitter parameters. Test Conference, 1996.
Proceedings., International, pages 461–470, 1996.

[9] P. Lu, D. Glaser, G. Uygur, and K. Helmreich. A
Novel Approach to Entirely Integrate Virtual Test
into Test Development Flow. Design, Automation and
Test in Europe, 2009, Proceedings of, April 2009.

[10] M. Malesich. Advances in DoD’s ATS Framework.
Aerospace and Electronic Systems Magazine, IEEE,
23(2):11–16, February 2008.

[11] G. Martin. SystemC and the future of design
languages: opportunities for users and research.
Integrated Circuits and Systems Design, 2003. SBCCI
2003. Proceedings., pages 61–62, 2003.

[12] M. Miegler and W. Wolz. Development of test
programs in a virtual test environment. VLSI Test
Symposium, 1996., Proceedings, pages 99–103, 1996.

[13] A. Vachoux, C. Grimm, and K. Einwich.
SystemC-AMS requirements, design objectives and
rationale. Design, Automation and Test in Europe
Conference and Exhibition, 2003, pages 388–393, 2003.

[14] R. Waxman. High-level System Modeling: Specification
and Design Methodologies. Springer, 1996.

	Introduction
	Implementation of VT Platform
	Architecture of Virtual Test Platform
	Modeling philosophy of test instruments
	Signal Path
	Modeling philosophy of DUT
	Modeling Language

	ADC Case Study
	Virtual Test Implementation
	Opens and Shorts Test
	Performance Test: Dynamic Specification

	Hardware Implementation

	Results
	Conclusion and Outlook
	References

