
Supporting Dimensional Analysis in SystemC-AMS

Torsten Maehne
torsten.maehne@epfl.ch

Alain Vachoux
alain.vachoux@epfl.ch

Laboratoire de Systèmes Microélectroniques (LSM)
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Phone: +41(21)69-36922, Fax: +41(21)69-36959, WWW: http://lsm.epfl.ch/

ABSTRACT
This paper will introduce new modeling capabilities for
SystemC-AMS to describe energy conserving multi-domain
systems in a formal and consistent way at a high level of ab-
straction. To this end, all variables and parameters of the
system model need to be annotated with their measurement
units in such a way that they become intrinsic part of the data
type. This enforces correct model assembly through strict in-
terfaces and coherent formulas describing the analog behav-
ior by means of dimensional analysis. A library of generic
block diagram components has been developed to demon-
strate how both requirements can be met using the Boost li-
braries together with SystemC-AMS. The demonstrated imple-
mentation techniques are the key to integrate new Models of
Computation (MoCs) into SystemC-AMS to facilitate further
the description of multi-domain systems.

1. INTRODUCTION
Today’s Systems-on-Chips (SoCs) become more and more het-
erogeneous to interact closer with their analog environment.
To achieve this, Analog and Mixed-Signal (AMS) blocks in-
cluding MEMS actuators and sensors, power electronics, and
RF interfaces are added to and functionally interwoven with
the digital hardware and software. Their design requires the
cooperation of different domain experts, who employ different
modeling formalisms and tools. To understand the functional
interaction of the different system parts involving potentially
different physical domains and thus to be able to refine the sys-
tem architecture and to derive consistent component specifica-
tions, a system model needs to be created early on in the design
process and continuously refined from functional to architec-
tural abstraction levels. Thus, an executable specification is
created, which later helps to verify the correct integration of
the individually designed components to a system.

A successful integration of heterogeneous parts requires a
strict specification of the interfaces between the system com-
ponents, which should be expressible in the system model.
This includes not only the data type (storage format) of
the value of a quantity exchanged through ports or used to
parametrize the component, but also the semantical informa-

tion on how the value is to be interpreted. The latter is ex-
pressed by the measurement unit, which itself expresses the ab-
stract dimension of measure and the actual system of units used
to measure the amount of the quantity. Their usage is common
practice in any natural science and engineering field for hand
calculations and written documentation. It permits to check
the coherency of the equations used to describe the system by
means of dimensional analysis. However, most common mod-
eling and programming languages permit only to specify the
data type of the value and not of the whole quantity during the
declaration of constants, variables, ports, and parameters. This
is less a problem in single domain systems designed primarily
by one engineering discipline, as the correct interpretation of
the data as a quantity can be supported by using a consistent
naming scheme based on established symbols or acronyms
and using always the same measurement unit for a dimension
and annotating its usage in the comments. These measures
lower the risk of implementing incoherent equations describ-
ing the system behavior, which lack, e.g., a conversion factor
or accidentally sum up quantities of different dimensions, and
interconnecting wrongly the system components.

However, in multi-domain systems the risk for misinterpret-
ing a quantity is rising due to partially conflicting standards
for quantity symbols (e.g., v for voltage and speed) in differ-
ent engineering disciplines and different common practices re-
garding the units (e.g., feet and meter for a distance) and scale
factors (e.g., µm) to measure them. This can lead to very hard
to spot problems, which may stay undiscovered as the simula-
tion results seem to be meaningful and in the expected order
of magnitude. This is especially true when integrating Intellec-
tual Properties (IPs) from different sources and reusing legacy
models with potentially diverting specifications. For example,
one of the root causes for the loss of NASA’s Mars Climate
Orbiter in 1999 during the orbit entering maneuver was a for-
gotten unit conversion between imperial and Système Interna-
tional d’unités (SI) units between different programs used for
the course corrections [13]. However, the parallel usage of
different systems of units in a single model might be neces-
sary. This can be illustrated by the VHDL-AMS model of
a micromechanical yaw rate sensor system presented in [12].

The reduced-order model of the sensor was extracted from an
FEM model of the micromechanical structure, which used for
numerical reasons the µMKSV system of units (displacements
in µm, forces in µN, etc.). The electrical part of the system
model responsible for the control of the mechanical structure’s
movements used the SI system of units, which required the in-
sertion of unit converters at the subsystem boundaries.

AMS-hardware description languages such as VHDL-AMS or
Verilog-AMS have limitations regarding the support of dimen-
sional analysis. VHDL-AMS only offers a way to annotate
quantities with their units for presentation purposes. The full
support of dimensional analysis was considered during lan-
guage design, but rejected as the required changes to the type
system would have rendered it incompatible with VHDL [7].
Other more recent efforts to support quantity types and dimen-
sional analysis include Modelica [2] and the programming
language F# [10]. Both approaches make units part of the
language syntax and implement dedicated support for dimen-
sional analysis in the compilers and other development tools.

The mentioned languages have their limitations in the mod-
eling of the software/hardware interaction, in the support of
dedicated MoCs for heterogeneous system modeling, and the
reuse of legacy code and models, which require the usage of
a very flexible and extensible simulation framework. This
is the strength of the C++-based simulation framework Sys-
temC [6]. It supports the description of digital hardware/soft-
ware systems from functional down to register transfer level
by using the Discrete Event (DE) Model of Computation
(MoC). The openness of this environment facilitates the in-
tegration of other libraries and legacy code and allows the
implementation of new modeling formalisms. For example,
the Open SystemC Initiative (OSCI) AMS Working Group
(AMSWG) is on the way to standardize AMS extensions to Sys-
temC [5, 14]. The added Timed Data Flow (TDF), Linear Sig-
nal Flow (LSF), and Electrical Linear Network (ELN) MoCs
allow the description of analog behaviors at different levels
of abstraction. This work uses a prototype implementation
called SystemC-AMS [16], which implements a precursor of
the TDF MoC called Synchronous Data Flow (SDF).

The work presented in this paper aims to improve the model-
ing capabilities of SystemC-AMS for energy conserving multi-
domain components to allow their description in a formal and
consistent way by means of dimensional analysis. Section 2
discusses how a multi-domain system can be modeled on suc-
cessively higher abstraction levels. It shows how the loss of
the semantic information due to the usage of more abstract and
generic modeling primitives can be compensated by conserv-
ing the link to the physical domain by annotating the model’s
signals and parameters with their measurement units. Sec-
tion 3 describes how quantity types and dimensional analy-
sis can be integrated into SystemC-AMS to achieve the stated

goal. As an application example, an electromechanical trans-
ducer driving a micromechanical resonator is modeled using
this library in Section 4.

2. MULTI-DOMAIN SYSTEM MODELING
In this section, we will show how to derive a SystemC-AMS
compatible model of a multi-domain system by successively
rising the abstraction level without loosing the link to the phys-
ical domain. We will use an electromechanical transducer
(electrostatic comb-drive actuator) linked to a micromechan-
ical resonator as an example (Figure 1). In a first step, the
system can be modeled using domain-specific primitives, in
our case (Figure 1a): voltage source, resistor for the electri-
cal domain and mass, spring, damper for the mechanical do-
main. The comb drive actuator is part of both domains and
acts electrically as a capacitor, which capacitance Ctrans(x) de-
pends on the current displacement x, and mechanically as a
force source Ftrans(q, x), which value depends on the electri-
cal charge q stored on the capacitor and the displacement x.
The resulting model accurately represents the physical struc-
ture of the system. However, this approach requires a simu-
lator to provide model implementations for each primitive of
each supported physical domain. This implies an overhead
as there exist analogies between the primitives of different do-
mains (e.g., resistor/damper, capacitor/spring, inductor/mass).
This has been exploited regularly to, e.g., simulate mechan-
ical resonators using an electrical simulator such as SPICE.
However, this approach sacrifices clarity, which easily leads
to modeling mistakes. SystemC-AMS currently only imple-
ments linear electrical primitives on this abstraction level.

The bond graph formalism [9] is taking advantage of these
analogies to unify the description of multi-domain systems
through a reduced set of generic primitives. The domain-
specific description (e.g., electrical circuit, mechanical multi-
body system, etc.) is mapped in a systematic way on a
graph (Figure 1b) describing the energy flow between primi-
tives modeling energy sources (S e, S f), resistive/capacitive/in-
ertial behavior (R, C, I), quantity transformations (TF, GY),
and energy distribution through junctions (0, 1). The energy
link between the ports of two primitives Pri and Prk is repre-
sented with an half-arrow shaped bond: Pri

e
f Prk. As-

sociated to each bond are an effort e and a flow f variable.
They are called power variables because their product is the
power P and are domain-specific, e.g., voltage v and current i
for the electrical domain and force F and velocity v for the
translational domain, respectively. Thus, the link to the physi-
cal domain is not anymore kept through the name of the primi-
tive, but through the quantity type (measurement unit) of each
variable and parameter. The power flow direction for positive
e and f is indicated by the half-arrow. The describing equa-
tions of the primitives and their interconnection rules through
common-effort (0) or common-flow (1) junctions guarantee
the conservation of energy and thus the description of a phys-

R1

m

d

k

x

Ctrans(x), Ftrans(q,x)

vdrive(t)

iR1

(a) Domain-specific model.

1 C

Ctrans(x)
Ftrans(q,x)

: 1

R : d

I : m

C : k

Se : vdrive(t)

R : R1

iR1
vR1

vdrive vtrans

iR1iR1

Ftrans

vm

Fd

Fm

vm

Fk

vm

vm

(b) Equivalent bond graph model.

k

vdrive(t)[V]

iR1 [A]

vR1 [V]

vtrans[V] Ftrans[N]

Fd [N]

Fm[N]

vm[m/s]Fk[N]

∫∫

+
− q

C(x) F(q,x)

q[C] x[m]

1
R1

+

d

∫

∫

1
m

xm[m]

pm[Ns]

i(t)[A]

−−
−

Electrostatic transducer

(c) Derived block diagram model.

Figure 1: Equivalent models of an electromechanical transducer
linked to a micromechanical resonator.

ical system. SystemC-AMS does not yet support the bond
graph formalism, but there is an effort in this direction [11].

The energy exchange through the bond between two primitives
causes the effort and flow variables to act in opposite direc-
tions. This can be used to determine the computational direc-
tion and is indicated by a perpendicular causal stroke at one
end of the bond. It states that at this side the effort variable e
is known (it acts as an input) and thus f := Φ−1

k (e). Conse-
quently, the flow f is known on the other side of the bond
thus that the effort: e := Φi(f). The equations describing the
component behavior impose a required, preferred (e.g., due to
numerical reasons), or free causality (effort-in or effort-out) on
the element ports. The resulting constraints need to be propa-
gated to all related ports, e.g., using the Sequential Causality
Assignment Procedure [9].

The causality assignment allows also for a natural integration
of bond graphs with block diagrams and their transformation
in the latter (Figure 1c). The block diagram formalism does
not guarantee itself the conservation of energy in the system.
It is emulated by the way the block diagram primitives are
interconnected. The block diagram primitives (scaler, integra-
tor, summer, etc.) are so generic that they don’t establish a
direct link to the modeled physical effect. That’s why it be-
comes paramount to annotate each signal and parameter with
its quantity type to reestablish the link and to be able to check

the system model on the structural and equation level for con-
sistency. Block diagram models of physical components are
in general hard to reuse as all physical quantities have already
been assigned their input/output roles till the interface of the
component. This limits seriously the interconnection options
with other physical components (e.g., only series connection
or only parallel connection). However, they are entirely causal,
which allows for a procedural and thus very efficient model ex-
ecution, e.g., with the SDF MoC of SystemC-AMS [16].

3. INTEGRATING DIMENSIONAL ANALY-
SIS INTO SYSTEMC-AMS

The integration of dimensional analysis into SystemC-AMS
requires two steps: first, to implement a quantity type with
unit annotation and dimensional analysis in C++ without pro-
hibitive runtime penalty; and second, to facilitate the consis-
tent usage of this quantity type in SystemC-AMS models of a
multi-domain system by offering a library that helps to reduce
code overhead due to the reimplementation of very similar be-
haviors for different quantity types.

For the first step, a mature implementation is available in form
of the peer-reviewed Boost.Units library [15], which has been
used in this work. Using the template metaprogramming tech-
nique [1], it implements dimensional analysis for arbitrary sys-
tems of units at compile-time as part of the static type check-
ing phase without requiring modifications to the compiler or
an additional tool. The library represents an arbitrary com-
posite unit with the help of the class unit<Dim, System>. Its
two template arguments encode in static type lists the dimen-
sion as a reduced ordered set of base dimensions raised to
a rational power and the associated system of units that de-
fines the set of base dimensions and their measure. For exam-
ple, the energy is represented through [M]1[L]2[T]−2 using the
base dimensions mass [M], length [L], and time [T], which
is in SI: kg m2 s−2 = N m = J. The compile-time deriva-
tion of new units due to arithmetical operations with units, i.e.,
the dimensional analysis, is done through traits classes. The
unit type U and value type V (by default double, but maybe,
e.g., std::complex<T>) form a unique type quantity<U, V>, which
overloads only the legal arithmetic and assignment operators.
Thus, the compiler issues a “missing overload” error for illegal
operations, e.g., the sum of two quantities with different units
or the assignment between incompatible quantities. Numeri-
cal constants are annotated in the source code by multiplying
them with their measurement unit, e.g.:
quantity<si::energy> E = 1.5 * si::newton * si::meter;
where si::newton and si::meter are static constants of type
unit<force_dimension, si::system> and unit<length_dimension,
si::system>, respectively. Their multiplication with a double
value yields the correct type quantity<si::energy, double> for
the assignment to the variable E. The example shows that
the complex infrastructure of types encoding all properties of
a quantity (dimension, system of unit, value type) is mostly

hidden from the user. However, compiler errors can get very
cryptic as they usually state the fully expanded type name.
Boost.Units also overloads all standard mathematical func-
tions defined in <cmath> for the new quantity type taking into
account any unit transformations by the functions. As the unit
is encoded into the quantity only as part of the type and not
as a member variable, modern C++ compiler can optimize
this information away after the type checking phase leaving
behind an object with the same memory layout as the value
type. Thus, no runtime penalty is caused by doing arithmetics
with quantities. Only the compile time is increased.

For the second step, we use the existing DE and SDF MoCs
of SystemC-AMS [16], as they allow to parametrize the data
types of the involved ports and signals. The SDF MoC is suit-
able to simulate block diagram models of multi-domain sys-
tems as derived in Section 2. It processes a synchronous data
flow of time-annotated samples with the help of SDF mod-
ules, which read at each simulation time step a predefined
number of samples from their input ports, process them, and
write the results as a series of samples to the output ports. The
SDF MoC statically schedules the execution order of the inter-
connected SDF modules. Converter ports interface/synchro-
nize with the surrounding DE modules.

To demonstrate the feasibility and power of the combination of
both approaches, a library of basic block diagram components
has been implemented called scax_block_diagram (Table 1). As
the function carried out by each block diagram component is
orthogonal to the actual type of the inputs and outputs, each
SDF module is implemented as a template class, which al-
lows to parametrize its port and parameter types upon instan-
tiation. Dependencies between these types due to the imple-
mented model equations are either automatically satisfied or
at least checked for consistency using traits classes or static
assertions, respectively. The new models are not constrained
to work exclusively with quantity<U, V> types, but can also be
parametrized for other types such as double. This ensures in-
teroperability with other user-created SDF modules. To ren-
der the library even more flexible, some modules, such as the
SDF source and the different function modules, take a func-
tion as argument upon instantiation. Thus, e.g., the waveform
to generate or the function to apply to the read input signals to
transform them to an output sample can be specified.

4. APPLICATION EXAMPLE
As an application example, the block diagram model of the
electromechanical transducer linked to a micromechanical res-
onator (Section 2, Figure 1c) has been implemented using the
developed block diagram library.

The transducer is encapsulated in an own sc_module
elmech_transducer (Listing 1), which can be parametrized
upon instantiation with the voltage and force transfer func-

Table 1: Block diagram modules provided by scax_block_diagram.

Name Description

scax_source<T,TimeType> SDF samples source module using a
waveform function:
f : TimeType→ T

scax_sink<T> SDF samples sink module

scax_scale<T1,T2> Scale module

scax_sum<T> Summing module with variable
input number

scax_mul<T1,T2> Multiplier module with two inputs

scax_func1<T1,T2> Time-independent function module
with one input: f : T1→ T2

scax_func2<T1,T2,T3> Time-independent function module
with two inputs: f : T1 × T2→ T3

scax_func3<T1,T2,T3,T4> Time-independent function module
with three inputs:
f : T1 × T2 × T3→ T4

scax_func1t<T1,T2,TimeType> Time-dependent function module
with one input:
f : T1 × TimeType→ T2

scax_func2t<T1,T2,T3,TimeType> Time-dependent function module
with two inputs:
f : T1 × T2 × TimeType→ T3

scax_integ_trapez<T> Trapezoidal integrator module

scax_dot_secant<T> Differentiator module using
asymmetric evaluation of Newton’s
difference quotient

tions (v_func corresponding to q
C(x) and F_func corresponding

to F(q, x) in Figure 1c, respectively) by passing them along
with the initial conditions as constructor arguments. Com-
pared to the purely computational data type double, the usage
of quantity types strengthens the signature of the argument list
so that the compiler can detect, if parameters are accidentally
passed in the wrong order, e.g., for the initial charge q_0 and
displacement x_0 of the transducer. As the transducer model is
entirely structural, it contains only block diagram component
instances and specifies their interconnection by binding their
ports to signals in the constructor. Typedefs are used to facili-
tate the usage of the different quantity types (in our case, e.g.,
voltage_t, force_t). The specification of the quantity type for
the ports v_out and v_in make them recognizable as a voltage
output and speed input, respectively, despite the overlapping
symbols and without the need of comments. The compiler
detects any binding of incompatible quantity signals to ports.
This would not be the case, if only the computational data
type double would have been used for the signals and ports.

Listing 1: Electromechanical transducer module.
using namespace std; using namespace std::tr1;
using namespace boost::units; namspace si = boost::units::si;
using namespace scax_bd;

// Block diagram model of an electromechanical transducer
class elmech_transducer : public sc_core::sc_module {
public:

// Typedefs for common quantity types
typedef quantity<si::electric_potential> voltage_t;
typedef quantity<si::force> force_t;
// ...
// Electrical and mechanical ports
sca_sdf_in<current_t> i_in;
sca_sdf_out<voltage_t> v_out;
sca_sdf_in<velocity_t> v_in;
sca_sdf_out<force_t> F_out;

// Construct structural transducer model and set the force
// and voltage functions as well as the initial conditions
elmech_transducer(

const sc_core::sc_module_name& name,
function<voltage_t (charge_t, displacement_t)> v_func,
function<force_t (charge_t, displacement_t)> F_func,
charge_t q_0 = 0.0 * si::coulomb,
displacement_t x_0 = 0.0 * si::meter)
: i_in("i_in"), v_out("v_out"), v_in("v_in"), F_out("F_out"),
i_integ(new scax_integ_trapez<current_t>("i_integ", q_0)),
v_integ(new scax_integ_trapez<velocity_t>("v_integ", x_0)),
v_func2(new scax_func2<charge_t, displacement_t,

voltage_t>("v_func2", v_func)),
F_func2(new scax_func2<charge_t, displacement_t,

force_t>("F_func2", F_func))
{

// Specify connectivity
i_integ−>in(i_in); i_integ−>out(q_sig);

v_integ−>in(v_in); v_integ−>out(x_sig);

v_func2−>in1(q_sig); v_func2−>in2(x_sig);
v_func2−>out(v_out);

F_func2−>in1(q_sig); F_func2−>in2(x_sig);
F_func2−>out(F_out);

}

private:
// Internal signals
sca_sdf_signal<charge_t> q_sig;
sca_sdf_signal<displacement_t> x_sig;

// Internal SDF modules from block diagram library
auto_ptr<scax_integ_trapez<current_t> > i_integ;
auto_ptr<scax_integ_trapez<velocity_t> > v_integ;
auto_ptr<scax_func2<charge_t, displacement_t, voltage_t> > v_func2;
auto_ptr<scax_func2<charge_t, displacement_t, force_t> > F_func2;

};

Listing 2 shows code extracts from the test bench for the trans-
ducer and resonator. Being also a structural model, it follows
the same approach as the elmech_transducer model. What is
new is the definition of quantity constants, which are used
as instance parameters (e.g., R_1, k). The usage of quantity
types prevents any accidental assignment of a quantity con-
stant of the right dimension but wrong system of unit without
proper conversion, e.g., the usage of pound instead of kilo-
gram for the mass m. The transfer functions (v_trans_func,
F_trans_func) of the transducer module instance are realized
as function objects (functors), which interface (types of ar-
guments and return value) is defined with the help of the
Boost.Function library [4]. The functions themselves are de-
fined in-place with the placeholders _1 and _2 representing the
two arguments. This compact notation is made possible by

the Boost.Lambda library [8]. The interface code between it
and Boost.Units was developed as part of the presented project.
Due to the usage of quantity types in the function interface,
a contract is formed, which fulfillment by the user-supplied
implementation can be checked by the compiler. Mixing up
the order of the quantity arguments or forgetting a term in the
implemented functions is detected in most cases due to the
dimensional analysis, as it will usually either lead to a con-
flict on the level of mathematical operations or result type due
to incompatible units. The waveform of the driving voltage
source v_drive_src is specified slightly differently by passing a
functor instance of type scax_pulse<T> parametrized with the
return type voltage_type and the parameters of the pulse wave-
form. scax_pulse<T> is part of a generic waveform generator
library also developed for the project.

Listing 2: Test bench for the transducer and resonator.
#include "systemc−ams.h"
// ...
int sc_main(int argc, char* argv[]) {

// ...
// Derivation of new units
typedef divide_typeof_helper<si::force, si::length>::type stiffness;
typedef divide_typeof_helper<si::force, si::velocity>::type

viscous_damping;

// Electrical component constants
const quantity<si::resistance> R_1 = 50.0e3 * si::ohm;
const quantity<si::capacitance> C_trans_0 = 500.0e−12 * si::farad;
const quantity<si::length> overlap = 20.0e−6 * si::meter;
// Mechanical component constants
const quantity<si::mass> m = 10.0e−9 * si::kilogram;
const quantity<stiffness> k = 100.0 * si::newton / si::meter;
const quantity<viscous_damping>

d = 50.0e−6 * si::newton * si::second / si::meter;

// Transducer capacitance formula v_trans(q, x)
function<voltage_type (charge_type, displacement_type)>

v_trans_func = _1 / (C_trans_0 * (1.0 − (_2 / overlap)));
// Transducer force formula F_trans(q, x)
function<force_type (charge_type, displacement_type)>

F_trans_func = (_1 * _1 * overlap)
/ (2.0 * C_trans_0 * (overlap−_2) * (overlap−_2));

// Initial conditions and stimuli
// ...
// Signals
sca_sdf_signal<voltage_type> v_drive("v_drive");
// ...
sca_sdf_signal<momentum_type> p_m("p_m");
sca_sdf_signal<displacement_type> x_m("x_m");

// Electrical driving circuit
scax_source<voltage_type>

v_drive_src("v_drive_src", scax_pulse<voltage_type>(
V_drive_0, V_drive_1, t_drive_delay, t_drive_rise,
t_drive_fall, t_drive_pulse, t_drive_period));

v_drive_src.out(v_drive);
// ...
// Electromechanical transducer
elmech_transducer transducer("transducer", v_trans_func, F_trans_func,

q_trans_0, x_m_0);
transducer.i_in(i_R_1); transducer.v_out(v_trans);
transducer.v_in(v_m); transducer.F_out(F_trans);
// Mechanical resonator

// ...
// Tracing and simulation
// ...
v_drive_src.out.set_T(t_step);
sc_start(t_sim);
return 0;

}

Figure 2 shows the simulation results with SystemC-AMS.
The pulsed input voltage vdrive excites the sinusoidal oscilla-
tion of the mechanical resonator. Frequencies other than its
natural resonance frequency are filtered out due to its high
quality factor. The common mode of the driving voltage
shows up in the resulting electrostatic force and displacement
of the resonator. A variant of the model using double instead
of quantity<U, V> yields, as expected, numerically the same
results, however its code required much more comments to
compensate for the semantical loss of quantity types and units.
Reference models for the example developed in VHDL-AMS
showed the same dynamic behavior as the SystemC-AMS
models. This demonstrates the successful simulation of all ma-
jor effects of this small system. Table 2 compares the compile
and simulation times for the quantity<U, V> and double model
variants. It can be seen that the usage of Boost.Units signifi-
cantly increases the compile time, but hardly affects the simu-
lation time. This is the price to pay for the achieved stronger
checking of the model interfaces and equations.

 -2

 0

 2

 4

 6

v
 /

 V

vdrive

 -4

 -2

 0

 2

 4

v
 /

 V

vR1

vtrans

 -40

 0

 40

 80

 120

 160

F
 /

 µ
N

Ftrans

-800

-400

 0

 400

 800

F
 /

 µ
N

Fd

Fk

Fm

 -8

 -4

 0

 4

 8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x
 /

 µ
m

t / ms

xm

Figure 2: Simulation results of the block diagram in Figure 1c.

Table 2: Comparison of the compilation and simulation times
for the electromechanical tranducer example implemented in
SystemC-AMS once with Boost.Units quantity types and once
with double. The simulated time was 2.4 ms with a fixed time
step of 10 ns. The measurements were done on an Intel Pentium 4
3 GHz, 1 MB Cache, 2 GB RAM, Linux 2.6.26 (i386).

Language/Simulator Feature tcompile tsimulate

SystemC-AMS 0.15 RC5 quantity<U, V> 19.07 s 11.76 s
(+ SystemC 2.2.0) double 9.69 s 11.38 s

5. CONCLUSIONS AND OUTLOOK
This paper showed how relevant dimensional analysis is to en-
sure consistent model equations and proper assembly of mod-
els for multi-domain systems. It described how it can be imple-
mented into C++ without modifying the language itself or im-
posing a runtime penalty. Its integration with SystemC-AMS
was demonstrated by developing a flexible library of block di-
agram components for the SDF MoC enabling analog model-
ing at a high abstraction level without loosing the link to the
physical domain. The need for such kind of library has been
expressed in the requirements specification [3] of the OSCI
AMS draft 1 standard [14]. In a next step, the implementa-
tion techniques tested during the development of this library
will be applied to the bond graph MoC under development for
SystemC-AMS [11]. Physical domains will be implemented
using traits classes to specify the proper quantity types, which
represent effort, flow, power, and energy in the electrical, me-
chanical, and other domains. The model equations of the bond
graph primitives will automatically ensure that only consistent
domains can be defined.

6. ACKNOWLEDGMENTS
This work has been funded by the Hasler-Stiftung under
project№ 2161.

7. REFERENCES
[1] D. Abrahams and A. Gurtovoy, C++ Template

Metaprogramming. Addison-Wesley Professional, 2004.
[2] D. Broman, P. Aronsson, and P. Fritzson, “Design

considerations for dimensional inference and unit consistency
checking in Modelica,” in Proc. 6th Int. Modelica Conf., 2008.

[3] K. Einwich, et al., “Requirements specification for SystemC
analog mixed signal (AMS) extensions,” OSCI, 2008.

[4] D. Gregor, Boost.Function, 2001-2004.
[5] C. Grimm, et al., “An introduction to modeling embedded

analog/mixed-signal systems using SystemC AMS extensions,”
OSCI AMSWG, 2008.

[6] IEEE Standard 1666-2005, SystemC Language Reference
Manual, IEEE, Mar. 2006.

[7] IEEE 1076.1 Language Design Committee, “Meeting minutes
of September 19–22, 1995,” Brighton, UK.

[8] J. Järvi, Boost.Lambda, 1999-2004.
[9] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, System

Dynamics: Modeling and Simulation of Mechatronic Systems,
4th ed. Wiley, Jan. 2006.

[10] A. J. Kennedy, “Types for units-of-measure: Theory and
practice,” in Proc. CEFP 2009.

[11] T. Maehne, A. Vachoux, and Y. Leblebici, “Development of a
bond graph based model of computation for SystemC-AMS,” in
Proc. PRIME 2008.

[12] T. Mähne, et al., “Creating virtual prototypes of complex
MEMS transducers using reduced-order modelling methods and
VHDL-AMS,” in Applications of Specification and Design
Languages for SoCs. Springer, 2006.

[13] J. Oberg, “Why the Mars probe went off course,”
IEEE Spectrum Magazine, vol. 36, no. 12, Dec. 1999.

[14] Draft Standard SystemC AMS Extensions Language Reference
Manual, OSCI, 2008.

[15] M. C. Schabel and S. Watanabe, Boost.Units 1.0.0, 2003-2008.
[16] A. Vachoux, C. Grimm, and K. Einwich, “Extending SystemC

to support mixed discrete-continuous system modeling and
simulation,” in Proc. ISCAS 2005.

