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ABSTRACT
Continuously shrinking design sizes and the integration of
digital and analog blocks in a single IC are clearly identi-
fiable trends in today’s microelectronics industry. As both
trends increase design complexity and concurrently make the
outcome of manufacturing processes less predictable, man-
ufacturing yield is potentially endangered. As a counter-
measure, new methodologies for the simulation of mixed-
signal-circuits are required. In this paper, we describe a
new simulation kernel for the previously presented PRAISE
methodology. It accelerates the transient simulation of ana-
log mixed-signal systems by generating and employing ab-
stract circuit models during runtime. We apply the method-
ology to wire models and discuss results and runtime behav-
ior of different implementations. Furthermore, we present
an automated XML-based approach at interfacing PRAISE
with arbitrary simulation environments using SystemC.

1. INTRODUCTION
Continuously shrinking design sizes of microelectronic de-
vices indisputably pose a major challenge for today’s design-
ers and their software tools. With the 28 nm node imminent,
microelectronic systems keep increasing in complexity while
the manufacturing process itself concurrently becomes more
and more challenging. These ancillary conditions potentially
endanger manufacturing yield and therefore drive a growing
demand for a better simulation and verification performance
prior to the tape-out of the first silicon wafer.

The design of chameleonic devices, integrating a greater va-
riety of functionalities on a single IC (such as digital com-
ponents, RF-circuits and power electronics), can be easily
identified as a further demanding industry trend. The de-
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sign of such mixed-signal-circuits or even Systems-On-Chips
(SoCs) requires a design environment capable of simulating
complex systems comprising both analog and digital com-
ponents. Unfortunately, the explicitness of currently used
HDLs such as Verilog or VHDL dramatically reduces simula-
tion performance, especially in the context of global system
verification of analog/mixed-signal circuits.

Rising the abstraction level in design capture and simulation
by employing system description languages such as SystemC
and SystemC-AMS [11] is among the most promising ap-
proaches to overcome the limitations of today’s traditional
HDLs [2]. Past studies have shown that an abstraction level
beyond RTL is the enabler of fast global system verifica-
tion. As the borders between analog and digital design blur,
undoubtedly, design capture and simulation of mixed-signal-
systems require a multitude of methodologies, each tailored
to address a specific aspect of the system.

The creation of high-performance, yet accurate circuit or
component models remains a challenging task for digital
components and can pose insurmountable problems for cer-
tain analog blocks. There is evidence, that certain parts
(especially analog components) will always have to be de-
scribed in detail [3]. Such highly detailed component de-
scriptions significantly slow down global system simulation.
Since the conception of abstract models can be very time-
consuming, it is desirable to automatically generate abstract
models with reduced but adequate accuracy for these ”bot-
tleneck” components. In the past, several approaches to this
end have been presented [6, 7, 8, 10].

We propose to generate extensively precomputed models of
analog components to accelerate the co-simulation of dig-
ital parts and the critical analog blocks. Our approach,
denominated as Piecewise Rapid Analog Simulation Envi-
ronment (PRAISE) has been previously introduced in an
automotive context [5, 12]. In this paper, we present an ad-
dition to our previously presented simulation methodology
and discuss the performance of different implementations.
We apply the PRAISE approach to exemplary wire mod-
els to prove it’s feasibility in an area of application that
differs from the previously considered automotive domain.
Furthermore, our new XML-based interface to the SystemC
language is presented.



The remainder of the paper is organized as follows: Sec-
tion 2 illustrates our approach for the automated genera-
tion of circuit models from given netlists and the appendant
simulation methodology. Furthermore, our current imple-
mentations are presented and compared against each other.
Section 3 details wire models as one possible domain of ap-
plication of the PRAISE approach and exemplary circuits
are presented. Section 4 describes the SystemC-based in-
terfacing of our software with arbitrary simulation environ-
ments utilizing the SystemC system description language.
In Section 5, transient simulation results of the previously
presented circuits are outlined and simulation runtime is dis-
cussed. Section 6 concludes the paper.

2. PRAISE SIMULATION APPROACH
The PRAISE Simulation Approach is based on piecewise
constant (PWC) excitations of a given circuit. This assump-
tion facilitates a behavioral modeling using simple output
functions such as

y(t) =
n

X

i=1

aie
λit (1)

for each variable to be observed. The coefficients ai depend
on both the initial state of the circuit and on the piece-
wise constant inputs. Inputs have to be specified as node
voltages or branch currents due to the automatic addition
of corresponding ideal sources for further model generation
steps. Outputs also have to be provided as node voltages or
branch currents in order to calculate the appropriate expo-
nential output functions.

Currently, two different implementations exist. Firstly, there
is a prototype Isymb for evaluating the concepts of the ap-
proach. Computer algebra systems provide symbolic com-
putations for finding the output functions. Secondly, there
is an object oriented, high performance C++ implementa-
tion Inum, in which optimized libraries provide fast matrix
operations. It furthermore features a SystemC interface for
a straightforward integration into existing simulation envi-
ronments.

Fig. 1 illustrates the general flow of the PRAISE approach.
A netlist of the analog circuit is parsed and the obtained
circuit equations are transformed to a state space represen-
tation. This representation is then transformed to circuit
models during model compilation. These models are used
by the actual circuit simulation. The details of the flow are
described below.

Figure 1: The PRAISE Simulation Flow

2.1 Parsing
In order to retrieve the system equations the Modified Nodal
Approach (MNA) [4] is applied to the netlist of the circuit:

(sC0 + G0) x0 = B0u (2)

2.2 Precomputation
Our implementations Isymb and Inum pursue different stra-
tegies for transforming the circuit equations into the state
space representation.

2.2.1 Transfer Functions
Isymb calculates the transfer functions of the circuit:

Hi,j(s) =
Yi(s)

Uj(s)
=

amsm + · · · + a1s + a0

bnsn + · · · + b1s + b0
(3)

In general a MIMO (multiple input multiple output) circuit
results in the transfer matrix

H(s) =

2
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H1,1(s) · · · H1,m(s)
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. . .
...

Hn,1(s) · · · Hn,m(s)

3

7

5

(4)

The transfer matrix is then transformed to a canonical con-
trollable form using a symbolic mathematical toolbox:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(5)

2.2.2 Direct Transformation
The implementation Inum directly transforms the circuit
equations into a state space representation using an algo-
rithm similar to [9]. The voltages and branch currents to be
observed are specified by the output matrix D0 in

y
0
(t) = D0x0(t) (6)

The algorithm identifies the state variables of the system
and transforms the equation system using row and column
operations:
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The variable vector x0 is now separated into x1 consisting of
the state variables and x2 holding excessive variables. The
vector x2 mostly represents dependencies between resistive
elements which can be expressed as a function of x1. The re-
duced equation system is then transformed to the state space
representation of the form (5). The voltages and currents to
be observed during simulation are selected by appropriate
matrices C and D. Calculating the coefficients ai is the es-
sential task of the PRAISE approach. Therefore, we create
a Jordan normal form of the state space representation by
applying the transformation

x(t) = Tx̃(t) (8)

The transformation matrix T consists of the eigenvectors of
the reduced system. Eventually the new state space repre-
sentation results in

˙̃x(t) = Ãx̃(t) + B̃u(t)

y(t) = C̃x̃(t) + Du(t)
(9)



where Ã is a diagonal matrix with all eigenvalues on the
main diagonal.

2.3 Model Compilation
The time domain solution of the state space representation
is

x̃(t) = eÃtx̃0 +
t

R

0

eÃ(t−τ)B̃u(τ)dτ

y(t) = C̃eÃtx̃0 + C̃
t

R

0

eÃ(t−τ)B̃u(τ)dτ + Du(t)

y(t) = C̃x̃(t) + Du(t)

(10)

with the initial values x̃0 and the inputs u(t) of the system.
The matrix exponential eAt is defined as

e
Ãt =

∞
X

k=0

Ãktk

k!
= I + Ãt +

Ã2t2

2!
+ · · · (11)

Calculating the infinite sum is both symbolically and nu-
merically difficult. In order to avoid this computation, we
exploit the fact that the diagonal matrix Ã facilitates the
simple relationship

e
Ãt = e

diag(λi) = e
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and therefore each entry of the result matrix can be com-
puted independently. Considering the diagonal matrix Ã

and the piecewise constant inputs, the time domain solution
can be simplified to

x̃(t) = eÃt
“

x̃0 + Ã−1B̃u(t)
”

− Ã−1B̃u(t)

y(t) = C̃x̃(t) + Du(t)
(13)

At this point of the flow the circuit model is compiled and
can be used for simulation.

2.4 Simulation
Substituting piecewise constant input segments

u(t) = const, 0 ≤ t < T (14)

into (13) yields the corresponding output functions depend-
ing on the respective initial circuit state and the current
piecewise constant input segments u(t).

The general software architecture of our C++ implemen-
tation Inum is shown in Fig. 2. It primarily consists of
two parts, the Transformation package on the left side and
the Representation package at the center. The former per-
forms transformations and conversions on the different data
structures of the Representation package. Starting at the
bottom, the circuit netlist is swayed between both packages
until the output functions are calculated at the top. The Li-
brary package provides equations for nonlinear elements as
piecewise-linear structures. The Tools packages comprises
all auxiliary libraries including BLAS and LAPACK [1] for
matrix operations.

Figure 2: PRAISE software architecture

3. APPLICATION TO WIRE MODELS
Interconnects, being used for the transportation of signals
between distant points on a chip, often exhibit malicious
electrical properties. Such so called parasitics introduce un-
desired effects (e.g. delay and dispersion), which can be
derived from Maxwell’s equations. As solving Maxwell’s
equations is very time-consuming, wire models consisting of
resistors, capacitors and inductors are employed. State-of-
the-art delay calculation methods are based on model order
reduction (MOR) of lumped RCL networks.

In order to evaluate the performance of our approach ap-
plied to such wire models, we employ two scalable circuit
examples, described below. The RCL-circuit C

N
rcl is shown

in Fig. 3. Throughout the paper we use the parameter N

Figure 3: Dynamically Generated RCL-Circuit C
N
rcl

to denominate the size of the circuit C
N
x . C

N
rcl is of the order

2N (15)

with

3N + 1 (16)

elements. As RC-models often deliver sufficient results while
allowing for reduced simulation times, as a second example
we will use the RC-circuit C

N
rc depicted in Fig. 4. This

circuit is of the order

N (17)

and contains

2N + 1 (18)



Figure 4: Dynamically Generated RC-Circuit C
N
rc

elements. Due to the linearity of RC and RCL wire models,
our approach requires only one, yet complex, precomputa-
tion step. Hence, only one circuit state exists which is highly
beneficial, since our approach in this case yields a closed
form representation for each monitored circuit variable.

4. SYSTEMC SIMULATION KERNEL
In recent years, SystemC has been established as one of the
most broadly accepted system description languages for be-
havioral modeling and the emerging transaction level design
methodology (TLM). Anyhow, due to the huge spectrum
of possible applications, various publications reveal a vari-
ety of interpretations, rendering TLM to remain an ambigu-
ous term. The success of SystemC is certainly to be cred-
ited with the fact, that SystemC is not only a description
language but beyond that a stand-alone simulation kernel.
Hence, the choice of SystemC as an interface language to
other simulation environments enables us to deliver precom-
piled executable models of analog blocks.

As our circuit descriptions represent the complete circuit
and potentially contain precomputed terms for every node
voltage and branch current in the circuit, a further abstrac-
tion layer has to be added in order to create interfaceable cir-
cuit models. Primarily, the sources serving as inputs to the
module and the output values to be monitored during sim-
ulation have to be specified. Additionally, a module name
is specified. For coupling with event-driven simulators it is
possible to specify a signal input called stepclock. This sig-
nal will then be used to trigger the computation of output
values during runtime. We chose an XML-based format as
shown below:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE praiseSpec SYSTEM "praise.dtd">
<module name="valveControl">

Inputs, as described in Section 2, are characterized by an
identifier of the form

{V|I}, na, nb (19)

with a, b ∈ {0, . . . , n} whereas V or I denominate a voltage
or a current between the two given nodes na and nb. A
SystemC data type for each value (such as double, float,
int, bool) can be appointed. Input values are analogously
defined:

<inputs>
<input name="V,n_1,n_2" type="double"/>
<input name="I,n_15,n_21" type="double"/>
</inputs>

<outputs>
<output name="V,n_12,n_18" type="double"/>
<output name="V,n_27,n_39" type="double"/>
</outputs>

The module declaration ends with the optional specification
of the signal name for time synchronization with discrete
event simulators:

<stepclk name="slck"/>

</module>

Fig. 5 depicts the mandatory steps for the creation of a
SystemC interface layer around the precomputed models.
Given a netlist and the XML input specification described

Figure 5: Generation of the SystemC-Interface

above, our model compiler precomputes and stores output
equations for the circuit variables. The resulting numerical
model can be used to perform a stand-alone model-based
simulation of the considered analog block, as described in
Section 2. In order to trigger the evaluation of the model
from a SystemC wrapper file, two steps are necessary: firstly,
the simulation kernel has to be compiled as a dynamically
linkable shared object and secondly, the precomputed out-
put functions have to be stored on mass storage media.

4.1 Persistence of Circuit Models
We compile the simulation kernel as a shared object, which
guarantees platform independence, since several target plat-
forms are possible. Storage of the precomputed data is per-
formed using the serialization technique. The term serial-
ization describes the process of converting an object into
a sequence of bits. This technique can be used to create
a semantically identical clone of the original object. How-
ever, for many complex objects, such as those that make
extensive use of references, this process is not straightfor-
ward. As pointer objects are too fragile to save, a step called
unswizzling is required. Runtime and resulting file sizes of
this automated process are depicted in Table 1. The circuit
size N refers to the corresponding parameter of the auto-
matically generated netlists, as described in Section 3. It
becomes obvious, that this approach of storing the precom-
puted data structures excels with respect to performance
while yielding models of acceptable size. The measurements
presented in Table 1 are valid for linear circuits. As nonlin-
ear circuits require the precomputation of multiple circuit



Table 1: Serialization Runtime and File Sizes for C
N
rcl

Size N Plain (byte) Zipped (byte) Read (s) Write (s)
100 46k 8.6k 0.0 0.01
200 92k 17k 0.01 0.01
250 115k 21k 0.01 0.01
300 139k 25k 0.01 0.01
400 185k 32k 0.01 0.01
500 231k 40k 0.02 0.01

1000 463k 77k 0.04 0.02

states, file sizes will increase. We expect 500MB model files
and read/write times of about 1 s for large nonlinear circuits
containing about 200 elements.

4.2 Generation of SystemC Wrapper
Given the I/O-specification file described above, we auto-
matically generate a SystemC file with the required input
and output definitions. This file includes the previously
compiled shared simulation object and hence evaluates the
stored models when input value changes are detected. An
exemplary output of the SystemC wrapper generator is listed
below:

#include <vector>
#include "systemc.h"
#include "SimulationCore.h"

SC_MODULE (Example) {

sc_in<int> a;
sc_in<int> b;
sc_out<int> c;

void simulate() {
std::vector<int> inputs_vector(2);
inputs_vector[0] = a;
inputs_vector[1] = b;
std::vector<int> outputs_vector(1);
SimulationCore sC;
sC.simulate(inputs_vector, outputs_vector);
c.write(outputs_vector[0]);

}

SC_CTOR(Example) {
SC_METHOD(simulate);
sensitive << a;
sensitive << b;

}
};

In this simple example, two input values are passed to the
simulation kernel (linked as shared object), are then evalu-
ated and the result is passed on as output of the module.

5. RESULTS
Fig. 6 and Fig. 7 depict the simulation results of two exem-
plary circuits. All data presented in this section has been
generated on a 16 core system with AMD 8220 processors at
2.8GHz. For the sake of clarity the two relatively simple cir-
cuits C

2
rc and C

3
rcl containing 5 and 10 elements respectively,

are employed. Nevertheless, C
3
rcl already represents a circuit

of the 6th order. Correctness of the presented simulation re-
sults has been proven by verification against the results of a
traditional analog simulator. Table 2 and Table 3 show the
runtime of the model generation and the consecutive sim-
ulation step using our symbolic implementation Isymb. As
expected, simulation runtime scales approximately linearly,

Figure 6: Simulation Result for Circuit C
2
rc

Figure 7: Simulation Result for Circuit C
3
rcl

when model size increases. This implementation certainly
does not excel with respect to absolute runtime, but serves
to show the feasibility of the approach. Due to the use of
symbolic math toolboxes, we are confident that the runtime
behavior of this implementation can be further optimized.
Table 4 and 5 show the model generation runtimes of the

Table 2: Model Generation and Simulation Runtime

for C
N
rcl with implementation Isymb

Size N Model Generation (s) Simulation (s) Total (s)
1 1.11 0.83 1.94
2 1.74 1.50 3.24
3 2.70 2.55 5.25
4 4.67 3.67 8.34
5 5.48 5.53 11.01
6 7.51 7.85 15.36

Table 3: Model Generation and Simulation Runtime

for C
N
rc with implementation Isymb

Size N Model Generation (s) Simulation (s) Total (s)
1 0.93 0.40 1.33
2 1.04 0.69 1.73
3 1.32 0.83 2.15
4 1.60 1.02 2.62
5 2.11 1.28 3.39
6 2.47 1.58 4.05



high-performance implementation Inum for very large cir-
cuits C

N
rc and C

N
rcl up to a size of N = 1000. The largest cir-

cuit, C
1000
rcl , of the 2000th order already exceeds the limits of

realistic circuit examples. The tables present the constituent
of the model generation runtime in detail. Runtimes of the
parsing and MNA steps for circuit equation formulation are
given as well as the time-consuming state space transforma-
tion step and the runtime of the eigenvector computation,
which can be considered a major bottleneck of the proce-
dure.

Table 4: Model Generation Runtime for C
N
rc with

implementation Inum

Size N Parsing (s) MNA (s) ~veig (s) State Space (s) Total (s)
100 0.01 0.01 0.05 0.08 0.13
200 0.01 0.02 0.43 0.63 0.72
250 0.01 0.04 0.84 1.38 1.50
300 0.01 0.05 1.52 2.74 2.92
400 0.02 0.09 4.11 7.10 7.27
500 0.03 0.14 8.24 13.61 13.94

1000 0.10 0.56 49.42 97.09 98.01

Table 5: Model Generation Runtime for C
N
rcl with

implementation Inum

Size N Parsing (s) MNA (s) ~veig (s) State Space (s) Total (s)
100 0.0 0.05 0.32 0.68 0.86
200 0.01 0.18 2.99 7.33 7.85
250 0.02 0.27 6.10 13.71 14.29
300 0.02 0.44 9.65 24.19 24.85
400 0.04 0.73 23.72 58.56 59.66
500 0.06 1.14 48.27 118.05 119.81

1000 0.29 6.32 432.25 1015.44 1020.09

6. CONCLUSION AND OUTLOOK
We have presented the PRAISE approach to the accelerated
transient analysis of mixed-signal systems by generating pre-
computed circuit models of the crucial analog blocks during
simulation runtime. The approach was applied to the simu-
lation of wire models. The methodology has proven to work
with the expected accuracy in this new domain of appli-
cation by verifying our results against a traditional analog
simulator. In addition, an extended simulation methodol-
ogy, exploiting certain characteristics of the matrix exponen-
tial function, has been presented. Runtime behavior of two
implementations, differing in the usage of symbolic and nu-
merical expressions, has been discussed in detail. An XML-
based approach for interfacing our implementations to other
simulation environments via SystemC has been detailed.

We plan to build up a database of non-linear element models
tailored to the automotive domain. Multiple models will
allow a trade-off between simulation speed and precision.
Due to the superior performance of numerical methods, our
final implementation will be based completely on the C++
language and will offer a SystemC interface for effortless
integration within other simulation environments.
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