

Sharif University of Technology Department of Computer Engineering Dependable System Lab [DSL]

Fault Injection in Mixed-Signal Environment Using Behavioral Fault Modeling in Verilog-A

Seyed Nematollah Ahmadian, Seyed Ghassem Miremadi

Behavioral Modeling and Simulation (BMAS) Conf. September 2010

Outline

- Dependability
- Mixed Signal Flow
- Behavioral Fault Modeling
- Fault Models
 - Single Event Transient / Upset (SET/SEU)
 - Power Line Disturbance (PLD)
 - Electro Magnetic Interference (EMI)
- Results

Dependability and Reliability

- Dependability and Reliability
 - Not just words!
- An effective technique for the experimental dependability evaluation
- We propose a simulation-based fault injection method in mixed-signal environment.

u<mark>tíon:</mark>

Mixed-signal fault injection

• Level of abstraction

HDL

Does not include enough details For accurate modeling

Circuit

Too slow, too old. cannot include verification method like testbenches, etc.

Flow

- Fault injection and simulation is performed in Mixed-Signal environment
 - Performance/Accuracy tradeoff
 - More accurate than RTL simulation
 - Faster than SPICE simulation
 - Fault injection on SoCs with analog cores
 - PLLs, DLLs, SRAMs, ...

Flow

- SPICE simulation near the fault site:
 - accurate fault simulation
- HDL Simulation (elsewhere)
 - Motive: Most of the fault manifest themselves as and error outside the fault site
 - HDL simulation provides enough accuracy to continue simulation.
 - Original testbenches/verification scripts are intact
 - Faster simulation. Can compensate for the SPICE simulation penalty.

Fault Modeling

- We develop fault models in behavioral modeling languages (such as Verilog-A)
 - Easy modeling
 - Reduce development time
 - Accurate simulations
 - Access to internal nodes/ structure of transistor/electrical element

Tool-chain architecture

• Mixed-signal three-level of abstraction

- Faults are embedded inside Verilog-A model.
- Resulted fault models are inserted to Circuit as an external component

Fault models

• Behavioral fault modeling

- Single Event Upset (SEU)
- Electro-Magnetic Interference (EMI)
- Power Supply Disturbance (PSD)
- Our flow supports other fault models as well.

SET Fault Modeling

Power Line Disturbance Modeling

- Common PLDs:
 - Power supply noise
 - Overshoot, Undershoot
 - Ground Bouncing

Electro-Magnetic Interference Modeling

- EM or RF induced interference
- Modeled as a Continues-wave RFI superimposed on specific nodes.
 - Input
 - Clock

. . .

Flow: Initialization/Injection

Abstract fault description for SET: I(drain, bulk) <+ TYPE * Q/(TO-TB) *(exp(-1*((\$abstime-TINJECT)/TO)) -exp(-1*((\$abstime-TINJECT)/TB)));

-exp(-1*((\$abstime-IINJEC)

Flow: Simulation/Evaluation

Experimental Setup

- We used the following 3rd party tools and IPs:
 - HDL Simulator: ModelSim 6.5 SE
 - Spice Simulator: Synopsys HSIM 2008.09
 - Process: TSMC 0.25µm
- Our fault characteristics:
 - SET: Q=10pc, with TO=TB=10ns, Random injection, Two exponential model
 - EMI: 100 MHz CW RF signal, Vpeak= 0.5V, 100ns pulse envelope, Random injection
 - PLD: 100ns duration, Voltage shortage (from 2.5V to 0V) on VDD line, Random injection

Results of System Failures

Thank you!

• Questions?

• Thank you for your attention.