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Abstract-A behavioral modeling procedure has been 
developed that enables the movement of poles and zeros 
to be modeled with changes in operating conditions. A 
major component of this procedure, known as the root 
localization algorithm, identifies when such an approach 
is applicable, resulting in models that more accurately 
reflect the distinctive behavior of the circuit.  
 
 

1. Introduction 
 

Model order reduction techniques that enable the 
creation of highly accurate low-order models for linear 
circuits exist today [1-4]. Often, the roots (poles and 
zeros) of these models do not reflect the actual roots 
arising in the circuit, and so long as the model 
characteristics accurately match those of the circuit the 
model is considered to be accurate. However, such 
modeling techniques produce models that are accurate 
for only one operating condition. In [5], a unique step-
by-step modeling procedure was described that enables 
the extraction of nonlinear dynamic behavior (i.e., pole 
and zero movement as a function of operating 
conditions) when modeling nonlinear circuits.   

Using the circuit netlist and specifications this 
modeling procedure produces differential equation-based 
behavioral models that, unlike other modeling 
procedures, can represent pole / zero movement with 
changing operating conditions, thus improving accuracy 
and also model efficiency. An integral part of this 
modeling procedure, and the topic of this paper, is the 
root localization algorithm. This algorithm utilizes a 
signal path-tracing algorithm, circuit specifications, and 
root sensitivity measurements to classify critical nodes in 
the circuit necessary for creation of bias-sensitive 
models. 

The classifications provided by the root localization 
algorithm allow the modeler to identify when it is 
possible to use the bias-sensitive modeling technique 
described here. The ability to model poles and zeros in 
this way results in models that are more predictive of the 
circuit’s distinctive (and nonlinear) behavior.  

This paper will describe the modeling approach 
taken when using the root localization in section two; 
discuss the mathematics of the algorithm in section three; 
explain in section four the ways in which poles and zeros 
are implemented in the behavioral model once the 
algorithm has been employed; and finally illustrate the 
algorithm through the use of an op-amp example in 
section five.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Bottom-up behavioral modeling procedure. 

 
 

2. Modeling Approach 
 

To understand the context of the root localization 
algorithm it is necessary to briefly describe the modeling 
procedure it is a part of, which is graphically represented 
by the flowchart in Figure 1 shown above. The first step 
in the modeling procedure is to classify nodes as signal 
path nodes or non-signal path nodes. A signal path node 
is one through which the signal passes in order to go 
from an input node to an output node. All other nodes are 
classified as non-signal path nodes. There are usually 
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multiple signal paths in a circuit and the modeler 
typically possesses such knowledge in advance. 
However, an automated signal path-tracing algorithm 
(SPT) exists to aid in the determination. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Analyses performed on linearized circuit. 
 

The second step in the modeling procedure is to 
perform a linear analysis of the circuit, which is 
graphically represented by a flowchart in Figure 2. For 
this step the circuit must be biased in its linear region of 
operation such that analysis would consists of only the 
small-signal models of its components, namely its 
diodes, BJT’s, and MOSFETs. This modeling procedure 
is only applicable to circuits that can be linearized about 
an operating point. The high-gain region of an op-amp is 
an example of such an operating point. Even though the 
circuit is required to be biased at one operating point, the 
goal is to produce a model that is valid, or at the very 
least, informative for multiple operating conditions, as 
will be discussed later. Once the circuit is biased at what 
is considered to be normal operating conditions, it is then 
necessary to determine the poles and zeros and perform 
root sensitivity analyses, which indicate to what extent a 
root is sensitive to element value changes. It is at this 
point where the root localization algorithm is used. In an 
arbitrary circuit, the poles and zeros will often arise 
largely due to the reactive elements connected to a single 
node or between a pair of nodes. The root localization 
algorithm attempts to determine the degree to which a 
root in the original circuit can be “localized” to a single 
node or a coupled pair of nodes. When this occurs, such 
roots will be referred to as localized. In contrast, other 
poles and zeros are not dominated by elements at a single 
node, or two, but rather are a function of many elements 
connected in various parts of the circuit. These roots will 
be referred to as delocalized. The root localization 
algorithm uses root sensitivity calcualtions to determine 
the extent to which roots are localized or delocalized. 
Once this classification has been made, localized and 
delocalized roots can be further classified as signal path 

or non-signal path roots. A root may be localized to a 
certain node, however if it is not in the signal path, it 
need not be included in the model (i.e., eliminate bias 
circuitry-based roots). The specific details of the 
algorithm itself will be presented in the next section.  

The third step of the modeling procedure is where 
the model formulation occurs. In this step additional 
nodes, which may be important topologically, are 
identified for inclusion in the model and the set of 
differential algebraic equations that represent the model 
behavior are derived. An example of important nodes 
would be nodes where signals are summed from different 
parts of the circuit. 

Finally, the fourth step of the modeling procedure 
involves the extraction of behavioral model 
characteristics from the original circuit by obtaining data 
tables through simulation. This step is used to ensure that 
the model characteristics match the desired 
characteristics as closely as possible.  
 
 

3. Algorithm 
 

As mentioned earlier, the root localization 
algorithm uses root sensitivity calculations to determine 
the extent to which roots are localized to certain nodes. 
For every root, a root sensitivity calculation is made with 
respect to each element h using the following normalized 
expressions for poles and zeros, respectively.   
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Division by the root values in the above expressions 
indicates that the real and imaginary parts are 
independently normalized. Thus for a generic root rj = σ 
+ jω, the root sensitivity is given by 
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Even though non-reactive elements contribute to root 
values, the root localization algorithm does not consider 
them since experimental results have shown that such 
sensitivities do not accurately predict localized roots. 
This is intuitive as inductors and capacitors are the 
elements that give rise to roots. Furthermore, since 
inductors are not used on ICs nor found in the small 
signal models of transistors and diodes, only capacitive 
elements will be considered from this point. Thus, for a 
circuit with four roots and four capacitances there will be 
a total of 16 root sensitivities. 
 Once the root sensitivities have been calculated, the 
first step of the root localization algorithm is to calculate 



the total sensitivity of a root given by the following 
expression: 
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where n is the number of capacitors and  j is the number 
of roots. Thus, there will be a total sensitivity calculation 
for each root in the circuit.  

The second step of the algorithm is to calculate the 
nodal sensitivity ratio (NSR) Mk given by the following 
expression: 
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where m is the number of nodes in N and lk is the number 
of capacitors connected to the node k. Thus, there will be 
a NSR for each combination of root and node in the 
circuit. The result Mk, j represents the ratio of the sum of 
the root sensitivities with respect to the capacitances 
connected to a single node k in the network N to the total 
sensitivity measure ST, j. The ratio portrays what 
percentage of the overall capacitive sensitivity is due to 
the capacitances connected to node k. Put otherwise, the 
NSR indicates to what extent a root is localized to a 
single node.  

Two user-specified tolerances are used to determine 
what extent is acceptable for a root to be considered 
localized: an absolute tolerance and a relative tolerance. 
The absolute tolerance is imposed on each NSR and sets 
the maximum amount of error that is acceptable for a 
root to be considered localized to the corresponding 
node. For an absolute tolerance of 0.10, the NSR must be 
greater than 0.90 (1-0.10) for the corresponding node and 
root to be considered as a localized pair. 
 A relative tolerance is also used to ensure that the 
largest NSR for a root rj is sufficiently greater than the 
second largest. If the second largest NSR is sufficiently 
large, but does not meet the absolute tolerance, it would 
be incorrect to assume that the root is localized simply 
because the largest nodal sensitivity ratio meets the 
absolute tolerance. For example, if the nodal sensitivity 
ratios M1, j and M2, j of a root rj are close in value, but M1, 

j meets the absolute tolerance and M2, j does not, it would 
be incorrect to claim that the root rj is localized to node 1 
since a significant portion of the root is sensitive to 
elements connected to node 2. If the relative tolerance 
were 0.4, M2, j / M1, j must be greater than 0.6 (1 - 0.4) to 
be localized.  It is important to note the tolerances do 
necessarily mean that the results will be that bad, but 
rather that the results are guaranteed to be at least that 
good. A NSR of 0.99 would indicate that the pole is 

highly localized within in 1% regardless of the absolute 
tolerance. 
 In the event that none or more than one of the nodal 
sensitivity ratios for a given root meet the absolute 
tolerance further analysis is performed to determine if 
the root is localized to a coupled pair of nodes. To do so, 
the NSRs are sorted from largest to smallest and a cross 
nodal sensitivity ratio (CNSR) is calculated using the 
following expression:  
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where Mx, j is the largest NSR and My, j is the next largest 
sensitivity ratio in which the corresponding node y is 
capacitively coupled to node x of the largest NSR. The 
last term represents the common factors in Mx, j and My, j 
due to the coupling capacitances between nodes x and y 
which must be subtracted to avoid redundancy.  

After the largest NSR Mx, j and the next largest 
coupled NSR My, j are used to calculate Mxy, j the 
algorithm moves the third largest coupled NSR Mz, j 
which is used to calculate another CNSR Mxz, j. Once all 
the NSRs whose corresponding nodes are capacitively 
coupled to the largest NSR Mx, j have been used to 
calculate a set of CNSRs, the algorithm is repeated using 
the second largest NSR as Mx, j and the process repeats 
using only NSRs smaller than the new Mx, j, thus 
avoiding redundant CNSR calculations.  

The results of the CNSR calculations are 
interpreted just as the original NSRs were (using 
absolute and relative tolerances) to determine if a root is 
localized to a capacitively coupled pair of nodes. If no or 
multiple CNSRs meet the tolerance requirements then 
the node is classified as delocalized.  
 The root localization algorithm is applied to every 
root after its calculation from the linearized circuit. The 
roots are divided into two groups as a result of the 
application of the algorithm: localized and delocalized. 
The localized roots are then divided into signal and non-
signal path roots based on their nodal correspondence. 
The delocalized roots are further analyzed to determine 
whether or not they influence the signal from input to 
output by summing the largest NSRs until the tolerance 
is met and then determining if any NSRs included in the 
summation correspond to those of signal path nodes. 
Only one signal path node is required to make a 
delocalized root a signal path root, thus worthy of 
consideration for inclusion in the behavioral model.  
 
 



4. Implementation 
 

The classifications provided by the root localization 
algorithm allow the modeler to begin developing the 
behavioral model of the circuit. The first step in this 
process is it to eliminate any roots that do not fall in the 
frequency range over which the models are required to 
be accurate. For op-amps and comparators a good 
convention is to include only those poles and zeros that 
fall within a decade beyond the gain bandwidth. 

Next, the modeler must choose to model the roots 
in one of two ways: physically or linearly. The term 
“physically” is used to mean that the nonlinear static and 
the linear dynamic characteristics of the root are 
accurately modeled such that the model is valid for all 
domains of simulation. A root can be modeled physically 
when it is localized to a node in the circuit. A general 
representation of a physically modeled node is given 
below in Figure 3.  
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Figure 3. General representation of a physically 

modeled node. 
 

Notice that the controlled current source in Figure 3 
is not only a function of node voltages elsewhere in the 
circuit, but also the voltage of the node to which it is 
connected. In this way a nonlinear resistance is 
incorporated as part of the source, since the current into 
the node partially depends on its voltage. The nonlinear 
resistance of the current source and the capacitances 
connected at the node determine the root value. Other 
commonly used modeling techniques use both constant 
resistances and capacitances to model root values.  In 
this way, the roots are not sensitive to other parts of the 
circuit and thus are not sensitive to changes in operating 
conditions. The method described here, models roots in 
such a way that they are sensitive to other parts of the 
circuit resulting in models that are valid for all domains 
of simulation. Signal path nodes that have localized roots 
are examples of those that will be modeled physically. 
Non-signal path nodes that do not have localized roots 
can be excluded from the model since they do not affect 
the signal from input to output (i.e., eliminate bias 
circuitry-based roots). 
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Figure 4. General node in an analog circuit. 
 

A general nonlinear ordinary differential equation 
can be derived to model a node physically from Figure 4, 
which depicts a general node in an analog circuit. From 
this figure the following nonlinear ordinary differential 
equation can be written.  
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where i1, i2, …, im are the current contributions to the 
i+1st node (via transistors, resistors, diodes, etc.) and 
 

C C Ceq i i j
j

n

= ++ +
=
∑1 1

1
, . (8) 

 
Ci+1,  j are the coupling capacitances between node i+1 
and other nodes. By letting  
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the nonlinear differential equation above can be rewritten 
as 
 

i C
dV

dt
C

d V V
dts i

i
i i

i i= +
−

+
+

+ +
+ +

1
1

1 2
1 2

,

( )
 (10) 

 
 to correspond to the equation of the general physically 
modeled node given in Figure 3, where only one 
coupling capacitance has been used for simplicity. 

Once a root has been determined to be localized to 
a single node, the nonlinear dc forcing function and 



nonlinear resistance at the node must be extracted from 
the original circuit by extracting a data table through 
transistor level simulation. These tables are determined 
by tabulating currents as a function of voltages 
throughout the circuit, whose relationships can be 
determined from the signal path analysis. As described 
above, since the current into the node in Figure 3 
depends partially upon its voltage, these current-voltage 
relationships can be thought of as source currents and 
nonlinear resistances in tandem. Thus, once the table 
extraction is complete, the resistance value at the 
operating point from which the circuit was linearized can 
be determined. Using this resistance value and the pole 
value, the equivalent capacitance for the model can be 
determined. For an in depth description of the equations 
used to determine the equivalent capacitance for either a 
single node or a coupled pair of nodes refer to Appendix 
A in [6]. 

The other way in which a root can be modeled is 
linearly. To model a root linearly simply involves 
implementing a transfer function. The differential 
equations describing these roots will be linear and are not 
intimately associated with the nonlinearities present in 
the actual circuit. The modeler can choose to model a 
localized pole using linear or nonlinear differential 
equations depending on the importance of the static 
nonlinearities at the node. However, a delocalized root 
must be modeled linearly. Thus, roots that are 
determined to be delocalized will be modeled using a 
transfer function comprised of these poles and zeros. 
 
 

5. Operational Amplifier Example 
 

The following example will be used to illustrate the 
way in which the root localization algorithm is used to 
aid in the development of behavioral models. Figure 5 is 
the schematic of a high dynamic-range CMOS op-amp. 
Details about this circuit can be found in [7]. As can be 
seen from the schematic, it consists of two differential 
amplifiers and a completely symmetrical output structure 
intended to reduce distortion.  

As outlined earlier, the first step in the modeling 
process is to determine the signal path nodes of the 
circuit. They are nodes 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 20, 
and 22. The second step is to determine the operating 
point about which the circuit is to be linearized. For an 
op-amp, the natural selection is to bias it in the high-gain 
linear region of operation. Thus, the inputs should be set 
at the mid-supply voltage with an input referred –8.44 
mV on the noninverting terminal to compensate for the 
systematic offset voltage. Once the circuit has been 
linearized about an operating point, the next step is to 
determine the poles and zeros in the circuit. The results 
are given in Table 1. 
 

 
Figure 5. High Dynamic-range Op-amp 

 
Table 1. Differential-mode Pole-zero Analysis of Op-

amp 
 

  Poles (kHZ)   Zeros (kHz)
j Real Imag. j Real Imag. 
1 -.029 0 13 -199 22 
2 -107 0 14 -199 -22 
3 -162 0 15 -307 0 
4 -381 0 16 -808 402 
5 -459 0 17 -808 -402 
6 -745 0 18 -1,196 645 
7 -793 0 19 -1,196 -645 
8 -1,346 0 20 -1,626 0 
9 -1,601 0 21 -2403 0 
10 -1,636 0       
11 -2,404 0       
12 -4,271 0       

 
The gain-bandwidth of the op-amp was determined 

to be approximately 100 kHz by transistor level 
simulation. Any roots not within one decade past the 
bandwidth were eliminated for consideration of inclusion 
in the model. The shaded boxes represent those roots that 
meet this criterion. 

At this point the root localization algorithm is used 
and the nodal sensitivity ratios (NSRs) are calculated. 
Using an absolute tolerance of 10% and a relative 
tolerance of 40% it was determined that four poles and 
one zero are localized. The nodal sensitivity ratios for the 
poles and zeros are shown below in Table 2.  

Inspection of the Table 2 reveals that for three roots 
a single nodal sensitivity ratio (NSR) stands out as being 
much larger than all others. These roots are indicated in 
columns where only one is box is shaded. A value of 1 
for M4, 2 reveals that the pole at 107 kHz arises solely due 
the capacitances connected at node four. Thus, modeling 
node four physically is all that is required to model this 



pole and the equation would take on the form of eq. 10. 
The same situation exists for the pole at 460 kHz and 
node 5. The result of 0.939 for M22, 3 reveals that the pole 
at 162 kHz is localized to node 22, but not as exclusively 
as the poles at 107 kHz and 460 kHz were localized to 
their corresponding nodes.  For these two highly 
localized roots, one notices that the nodal sensitivity 
ratios in the respective columns are very small 
percentages—much less than 1%. For the pole at 162 
kHz this is not the case, since there is an approximate 
nodal sensitivity ratio of 12%  corresponding to node 20. 
The root still arises mostly due to the capacitances 
connected to node 22, however it can be seen that the 
process is interpretive.    
 

Table2. Nodal Sensitivity Ratios of Localized Poles 
and Zeros 

 
 Poles (kHz) Zero (kHz) 
 -0.029 -107 -162 -460 -307 
 Mk, 1 Mk, 2 Mk, 3 Mk, 5 Mk, 15 

M1, j 20.3 f .216 m 45.1 n .142 m 32.4 µ 
M2, j .283 p 41.8 µ .100 µ .483 m 21.7 µ 
M3, j 17.4 f .103 m 68.1 µ .338 m 34.4 µ 
M4, j 2.80 p 1 1.45 µ 8.70 µ .281 m 
M5, j 12.7 µ 2.96 µ .472 m 0.997 .693 m 
M6, j 31.0 f 1.06 µ 44.1 n 62.5 µ 33.7 µ 
M7, j .426 p .403 µ .123 µ 1.08 m 72.0 µ 
M8 j 5.76 µ 1.27 m .117 µ 35.3 µ 79.8 µ 
M9, j 8.93 a 1.26 µ 1.36 n .363 m 70.4 µ 
M10 ,j 60.6 a 3.64 n .131 n 71.1 µ 35.2 µ 
M12, j 2.17 m .579 µ 34.7 m 3.8 m 46.8 m 
M13, j .811 m .189 µ 10.3 µ 12.2 µ 3.00 m 
M20, j 0.989 1.15 µ 0.119 1.06 m 0.998 
M22, j 0.997 3.11 µ 0.939 1.18 m 0.922 
 
 

Further inspection of Table 2 reveals that for two 
roots, one NSR did not stand out: they are the dominant 
pole at 29 Hz and the zero at 307 kHz. For these roots, 
two NSRs meet the tolerance of 10%. Therefore, in each 
case a cross nodal sensitivity ratio (CNSR) must be 
further calculated to determine if the root is localized. 
Using M20, 1 and M22, 1 as Mx, j and My, j, respectively, the 
resulting CNSR was calculated to be 0.998 for the 
dominant pole at 29 Hz. Thus this pole is highly 
localized to the coupled nodes 20 and 22, which is 
expected since inspection of the op-amp schematic in 
Figure 5 reveals that the Miller capacitance is connected 
between these two nodes. Similarly, using M20, 15 and 

M22, 15 for the zero at 307 kHz resulted in a CNSR of 
0.998 as well. Thus, both the zero and dominant pole are 
localized to the capacitively coupled nodes 20 and 22. 

 
 

6. Conclusion 
 

Most modeling techniques model poles and zeros 
using linear ordinary differential equations and although 
they often produce accurate low-order models by simply 
modeling poles and zeros as a transfer function they 
sacrifice the ability to model nonlinear dynamic 
behavior. The root localization provides the modeler 
with the ability to decide when modeling pole and zero 
movement is possible through the modeling procedure 
outlined above. Models created in this fashion are more 
predictive of the circuit’s distinctive behavior while 
maintaining a high level of accuracy.  

As illustrated by the op-amp example in the 
previous section, the root localization algorithm 
identifies important nodes in the circuit, which when 
modeled physically capture the behavior of the localized 
roots. It is reasonable to conclude that, for models 
produced in this fashion to be effective, the dominant 
pole must be localized. When it is, extraneous nodes are 
eliminated from inclusion in the model and nonlinear 
dynamic behavior is extracted. 

The following plots were obtained from simulation 
of the resulting op-amp model. As can be seen, the 
characteristics of the model, represented by the dotted 
lines, accurately match those of the circuit, represented 
by the solid lines. 

 

 
 

Figure 6. Frequency response curves (magnitude and 
phase) of the op-amp and its behavioral model. 

 



 
 

Figure 7. Large-signal transient response of the op-amp 
and its behavioral model in a voltage follower 

configuration. 
 

 

  
 

Figure 8. Small-signal transient response of the op-amp 
and its behavioral model in a voltage follower 

configuration. 
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