
Simulation and Verification of a Mixed-Signal Programmable System-on-a-Chip

Monte Mar and Bert Sullam

{monte.mar,bert}@cypressmicro.com
Cypress MicroSystems, Inc.

Bothell, WA 98072

Abstract
An overview of a simulation strategy for the verification
of one of the first mixed-signal field-programmable
system on a chip (FPSOC) is presented. The FPSOC
integrates a microcontroller, FLASH memory,
programmable digital blocks, and programmable analog
blocks. A proprietary digital Verilog with analog
extensions was used to verify system interactions between
the analog and digital blocks. First-pass functional silicon
was obtained because of the simulation methodology.

Introduction
Recent advances in programmable devices have provided
a viable solution for rapid prototyping of complex
systems. Time-to-market can be minimized and
engineering changes can be made late in the design cycle.
The main focus for programmable devices has been on
devices such as FPGAs, CPLDs, and reconfigurable
processors aimed at mostly digital systems. Discrete
programmable analog arrays have also been released as
products, albeit with limited acceptance [1][2][3]. For
embedded systems, the typical application makes use of a
small processor or controller which co-ordinates the
execution and processing of data from peripheral devices.
The integration of a microcontroller and programmable
analog and digital blocks allows realization of single chip
solutions for embedded systems, allowing for a compact,
low-cost solution.

A mixed-signal programmable architecture provides
inherent problems during design, simulation, and
verification. During design, the definition and evaluation
 of the micro-architecture and the communication
between blocks provide significant challenges [4]. Bad
decisions at this stage can lead to problems in developing
the software programming model. For the digital
portions, digital design flow methods such as RTL
synthesis and digital simulation methods provide fast and
efficient methods for developing and verifying the micro-
architecture. For the analog portion, ad-hoc techniques
are available but no real methods and tools analogous to
the digital flow are available. Thus simulation becomes
important for early micro-architecture design, pre-silicon
design verification and for later use in verifying designs.
Additional simulation methods are needed to handle

interactions between the analog and digital sections. For
chip verification prior to tape-out, behavioral modeling is
essential to ensuring proper interaction between analog
and digital domains. Time-step driven analog simulation
is computationally expensive, slowing down the overall
system simulation. This means that some form of
behavioral modeling is necessary. However, accuracy of
the behavioral model is needed to properly verify system
function. In this paper, the simulation approach to
verifying the functionality of a mixed-signal Field
Programmable System on a Chip (FPSOC) device will be
presented. A discussion of the analog micro-architecture
and simulation methodology is presented. In the next
section, the strategy used for simulation and verification
is presented. A few examples of the chip simulation and
measured results are discussed to show the effectiveness
and efficiency of the modeling approach.

Device Description

Figure 1 shows a block diagram of the part.

The device contains an 8-bit microcontroller, flash
memory, SRAM, digital programmable blocks, and
analog programmable blocks. The analog array consists
of programmable switched-capacitor blocks, continuous
time amplifier blocks and programmable reference
generators. The programmable interconnection between

FLASH
Program
Memory

SRAM

8-Bit
Microcontroller

Analog

PSoC Blocks

Digital
PSoC Blocks

General Purpose
I/O

Internal I/O Bus

Programmable

Interconnect

32 kHz Crystal
Oscillator

Interrupt
Controller

Temperature
Sensor

Low Voltage
Detection

Power-on-Reset
Control

Precision Oscillator
and
PLL

Sleep
Timer

Watchdog
Timer

Internal 32 kHz
Oscillator

Voltage
Reference

Addr/Data

Addr/Data

Internal A
ddress/D

ata B
us

X1

X2

Pin by Pin Configurable
I/O Transceivers

Total I/O Pin Count
Varies by Device

PSoC Blocks

MAC
Multiply/Accumulate

In
te

rn
al

 A
dd

re
ss

/D
at

a
B

us Decimator

Core

M8C

Figure 1. Block diagram of the FPSOC device.

these blocks enables them to be combined in ways to
create more complex functions or to extend data
resolution. Examples of these analog functions include
DACs, various types of ADCs, programmable gain
amplifiers, comparators and filters.

The digital programmable array consists of blocks that
may be configured as variable precision timers, counters,
pulse width modulators, UARTs, and CRC generators.
The analog and digital blocks have a large range of
clocking choices that can be harmonically related, but
independent of the microcontroller clock. The analog
and digital programmable blocks are controlled by
register settings. Various functions are created by
programming the values in the registers, which are
mapped into the I/O address space of the microcontroller.
Functions can be preconfigured during the initialization
of the part or they can be dynamically reconfigured
during operation.

Analog Micro-Architecture and Simulation Strategy

A. Analog Micro-Architecture
 The definition of the analog micro-architecture is a key
feature in the design of a mixed signal programmable
processor. The level of abstraction used in the blocks
characterizes the architecture. In FPGAs and CPLDs, the
level of abstraction focuses on logic gate primitives and
flip-flops or latches. Complex systems are built by
programming the routing resources to combine gates and
latches into complex functions built through hierarchy. In
contrast, analog programmable arrays generally have a
trade-off between abstraction and performance. Using
programmable blocks at low levels of abstraction, for
example differential pairs and current mirrors, provides
great flexibility [1]. However, the necessary routing
resources for combining the blocks exposes the circuit to
extra loading and parasitic coupling to noise sources in
other parts of the array. These limitations make it
difficult to predict the bandwidth and noise performance
of the resulting programmable circuit. There is value in
the analog programmability, but it is difficult to achieve
high performance.

 More recent efforts at analog arrays have focused on
higher levels of abstraction and more complex routing
architectures [2]. Op-amps are used as the building
blocks, and various passive elements are provided to
allow higher-level functions such as filters and gain
stages to be constructed. The higher level of abstraction
enables better prediction of performance. It also limits the
choices of topology for circuits, providing a much easier
framework for constructing synthesis tools [5]. A recently
reported device focuses the architecture towards the

implementation of continuous time filters, providing
OTAs and capacitor and routing resources [3]. By
limiting both topology and the types of functions that can
be implemented, extremely good performance (roughly
16 bit) can be achieved in spite of the programmable
architecture.

 In the FPSOC architecture, the emphasis is on general
purpose analog signal processing. Since the target
application is the 8-bit microcontroller market, a large
number of analog function blocks are needed in the
smallest possible area. The analog circuits need to
support 8-10 bit resolutions. Higher resolutions are
useful, but they require 2 byte operations within the
micro to process. In addition, gain amplifier paths in the
range of 50-100 need to be supported for sensor
applications. This requirement means that either large
capacitors need to be provided for switched-capacitor
stages to minimize kT/C noise or some type of continuous
time processing is needed for lower noise amplification.

 Under these constraints, the array was architected with
functional blocks defined at a fairly high level of
abstraction. Only single-ended circuitry was used. Rather
than providing a pool of op-amps and a pool of capacitor,
switch, and resistor resources, the analog programmable
block was defined as an op-amp and dedicated resources.
Two types of blocks were created, one with an op-amp
and resistors dedicated to continuous time signal
processing and the other with an op-amp and capacitors
for switched-capacitor signal processing. The
interconnections are broken down into local connections
within the block to configure the function and inter-block
connections that govern how blocks are connected to
create more complex functions.

φ1* FSW0

φ1 *
!AutoZero

BMuxSCA

BQTAP

ABUS

CBUS

C Inputs

CCap
0..31 C

BCap
0..31 C

ACap
0..31 C

FCap
16,32 C

φ2

φ2+AutoZero

φ1*AutoZero

(φ2+!AutoZero)
* FSW1

Power

AnalogBus*φ2B

CmpBus

φ1

ASign
ARefMux

OUTφ2

φ1

REFHI
REFLO
AGND

 A basic diagram of the switched-capacitor block is shown
in Figure 2. The block is built around a switched-
capacitor integrator with 3 capacitor arrays for the input
branch and an adjustable integrating capacitor. Functions

Figure 2. Block diagram of a SC block.

like a delta-sigma modulator, a gain amplifier, or
summing amplifier can be implemented in one block.
Blocks can be combined to implement biquad filters or
other functions. More detailed descriptions of the blocks
are found elsewhere [6].

 Ideally, the programming model for the analog array
would be similar to a VLIW architecture. A long control
word allows more flexibility in determining how the
resources can be connected within a block. Since the
programming model has the control registers for the
block in the microcontroller I/O address space, the
control word was broken into 4 bytes.

B. Analog Array Simulation Strategy
Designing the array as a set of self-contained blocks
provides advantages in simulation. For simulation of the
FPSOC architecture, it is desirable to have a relatively
fast simulation. The digital portion could be verified
quickly using Verilog. A solution was needed that would
allow analog models to be incorporated within a Verilog
simulation. Time-step driven modes of Verilog were to be
avoided due to the slower speed of execution that would
limit the number of machine cycles that could be
simulated.

A high-level model usually implies loss of simulation
accuracy. However, previous work in the modeling of
∆−Σ modulators has shown that a fairly simple
behavioral model can be used while still maintaining
good accuracy [7]. The basic approach is to exploit the
sampled time nature of two-phase switched capacitor
circuits. The value at the output of a SC circuit is on valid
on the falling edges of the two clock phases. The circuit
can then be modeled in terms of finite difference
equations. Furthermore, the difference equations can be
implemented using an event-driven formulation provided
that no zero delay loops are present in the circuit. Non-
ideal effects can be incorporated in the difference
equation model, and this can further improve the
accuracy of the simulation. The initial implementation of
the array simulation was performed using the
synchronous data flow (SDF) domain of Ptolemy [8].

While the event-driven formulation works well for the SC
circuits, an extension is needed for the continuous time
blocks. It was noted that SC circuits typically have clock
rates that are much higher than the bandwidth of the
signals being processed, i.e. the signals are oversampled.
Under this assumption, the continuous time signal
processing is modeled as sampled data signals. The clock
rates of the SC circuits set the sampling rate at which the
continuous time blocks are modeled.

Figure 3 shows a primitive programmable SC block.
Figure 4 shows an implementation of the event driven
formulation for the signal processing. The formulation
uses charge as signal stored, and this requires a slight
modification from the classic node voltage analysis. The
programmable interconnect and capacitor values are
handled through extra lines in the code. Note that the

output goes valid on the falling edge of the clock edges
phi1 and phi2. Input sampling occurs on the falling edge,
allowing changes to propagate through the blocks.

Figure 3. Block diagram of a simple SC block.

Figure 4. Verilog description of the simple SC block.

Digital Programmable Blocks
A. Architectural Considerations
The digital PSOC blocks are designed to offer an array of
peripheral functions commonly used in micro-controller
applications. The key difference between the PSOC
architecture and previous micro-controller architectures
is the configurability of these digital resources. Timers,
counters, PWMs, and CRC generators are available in all
digital PSOC blocks. A second type of digital block
combines these functions and adds capabilities for
UARTs and SPI communications. In this scheme the
granularity of configuration is very coarse. A few register
bits determine the function and mode of operation. The
advantage of this approach is that the digital PSOC block
can be optimized to support hardware structures that are
common to this set of functions. In contrast, an FPGA
implementation has a very fine level of granularity. It
would provide these and many more potential functions,
but at a much higher cost in terms of chip area and
configuration complexity. The key to the PSOC
approach is reflected in the fact that the target micro-
controller market is extremely cost sensitive and chip
area must be minimized.

The basic digital PSOC block is 8-bits wide and in the
current implementation, there are 8 blocks organized as a
linear array. Nearest neighbor blocks may be
programmatically chained together to create functions of
larger data widths. For example, the 8 available blocks
can be 8 8-bit timers, or 4 16-bit timers, or 2 32-bit
timers or any arbitrary combination of these and other
available functions. The configuration is achieved
through the use of a peripheral register programming
interface in firmware. If a given application only
requires a fixed set of digital peripheral functionality, the
configuration programming can typically be done as part
of an application’s initialization sequence. Figure 5
illustrates some possible configurations of the digital
PSOC blocks.

The digital PSOC blocks are designed to interface with
the analog array to create higher level functions. For
example, a switched capacitor analog block may be
configured as an incremental A/D converter. In this
configuration, the analog block drives the comparator
output signal with a duty cycle proportional to the analog
input voltage. A digital PSOC block, using the
comparator output signal as a gate to a counter
configuration can integrate the result of the duty cycle
over the required period of time. An additional timer can
be used set the overall conversion time, generating an
interrupt when the integrated result is ready to read.
Since the timers and counter can be made any multiple of
8-bits, there is a lot of support for different conversion

rates and data resolution requirements.

Figure 5 Example Digital PSOC configurations

 These digital resources can be used even more efficiently
through time multiplexing. During application runtime,
a few register writes can change one or more block
functions on the fly. To illustrate the potential of this
approach, consider the example of a remote sensor
application. Typically, the system may be in a low power
state during a dormant period, which may be
implemented with a 32-bit timer, configured from 4
digital PSOC blocks. When the timer reaches its
terminal count, an interrupt can wake up the system. The
firmware executing at this point can configure the analog
blocks to support the required sensor signal chain and
take the samples. The digital blocks may be used to
support the analog acquisition, or set up as
communications blocks send the result to a host. After
the acquisition and transmission of the data, the previous
32-bit timer configuration can be reloaded, and the next
wait period can be initiated.

Integrated System Simulation and Verification

A. Problem Description
As illustrated in the last section, analog blocks, digital
blocks, and microcontroller firmware are combined in
various ways to create the desired system level
functionality. The range of functional blocks and the
large number of possible connections creates complexity
problems for system simulation. At the lowest level,
interconnections between analog and digital blocks need
to have the correct handshake for both signal value and
timing. A second layer of complexity is the fact that a
given function may be mapped to many different
combinations of blocks. For example, a 10-bit DAC can
be created from two switched-capacitor analog blocks,
however, there may be twelve or more legal mappings of
this DAC in a 2 x 4 array of analog PSOC blocks. Each
of these different combinations requires a slightly
different interconnection and feature interaction to verify.
 A final layer of complexity is created by the use of

8-bit
Timer

16-bit PWM Baud
Rate Gen

TX
UART

RX
UART

32-bit Timer

SPI
MASTER

SPI
SLAVE

16-bit CRC

8-bit
Counter

8-bit
Timer

dynamic reconfiguration.

B. Verification Strategy
To achieve the desired system verification within the
constraints of the time and tool budget, a strategy was
developed in which the entire chip, including the analog
subsystems, could be simulated with Verilog. A standard
Verilog netlist was generated for the digital portions of
the chip, including the microcontroller and the digital
PSOC blocks. The structural portions of the analog
array, which implemented the programmability and
interconnections, were also netlisted in Verilog. Hand
crafted behavioral models were substituted for the leaf
cell analog blocks, which implement the switch capacitor
or continuous time functions.

The functionality of the analog behavioral models was
verified against circuit simulation. The models were
written so that when the values are sampled at a
particular time in the clock cycle, the output of the
behavioral model closely matches the silicon. However,
rise times and behavior outside the sampled region may
not be accurate. This abstraction was sufficiently
accurate for verifying communication between the analog
blocks and between analog and digital blocks.

A minor enhancement was added to a proprietary Verilog
simulator in order to seamlessly support this
methodology. Real valued variables were used to
compute and pass signal voltages in the analog
behavioral models. This allowed real valued signals to be
passed from module to module through the hierarchy
without any special declarations. A standard Verilog wire
construct would be sufficient. This also allowed the same
netlist, (except for the leaf cell models) to be used in all
phases of the design (simulation, layout, lvs).

The fast simulation time achieved in this modeling
scheme facilitated the functional validation of complex
systems, providing close matching to execution in silicon
and capture of any conceptual errors in the design. In
addition, more combinations of function mappings could
be simulated. The integrity of the structural portion of
the analog subsystems, such as array interconnections,
could be verified as efficiently as that of a digital
simulation.

C. Mixed Signal Functional Verification Example: SAR
Analog to digital converters are commonly used in
microcontroller applications. The FPSOC architecture
offers a number of types and combinations of A/D
converters, created through a combination of analog
blocks, digital blocks and/or firmware support. One such
configuration available in the FPSOC architecture is the

successive approximation (SAR) A/D. The SAR A/D
converter requires the following building blocks: A
digital to analog converter (DAC), a comparator, and a
method to sequence successive writes to the DAC based
on the comparator output. In its simplest description the
SAR algorithm is a binary search on the DAC code that
best matches the input voltage.

Depending on the resolution required, a DAC can be
created from one or more switched capacitor analog
blocks. For simplicity, one analog block will be
considered, with a resulting data resolution of 6-bits.
Another analog block was allocated to function as a
comparator.

The binary code for the DAC can be written or read
through the microcontroller register interface. Similarly,
the result of the comparison may be accessed by the
microcontroller through a bit in a read-only register.
With this capability, the SAR algorithm sequencing can
be implemented easily in firmware. Figure 6 shows a
block diagram of this function.

Figure 6. High Level Block Diagram of SAR6 A/D

The binary code for the 6-bit DAC is in signed magnitude
format. A code of all zeros corresponds to analog
ground, which is nominally mid supply. The references
were selected to be +/- a bandgap around analog ground.
With a nominal bandgap value of 1.25C, our total DAC
range is 1.25V to 3.75V, which corresponds to DAC
binary values of 111111 to 011111, respectively. The
SAR firmware algorithm first determines the sign of the
input voltage and then sets the sign of the DAC voltage
to the opposite polarity. When the algorithm is complete,
the DAC outputs the same voltage, but opposite polarity
so that the sum at the comparator is as close to analog
ground as the resolution will allow. With 64 levels
across 2.5V, the resolution of this DAC is 39mV/bit.

This SAR6 simulation was run on a Verilog netlist of the
full chip, with analog enhancements. The code was
assembled and loaded into the flash memory model.
After power-on reset and a boot sequence, the main code

Comparator

6-bit DAC

M
icrocontroller

VIN

D
A

C
R

egister
C

M
P

R
egister

REF

configures the PSOC device and then a loop runs
continuous conversions. The input voltage is applied to a
chip pin, initially set in behavioral code to a fixed value.
The firmware consists of about 30 lines of assembly code
to program the PSOC device, then about another 30 lines
of code to run the SAR conversion algorithm.

A 3.0V input voltage is +0.5V relative to analog ground,
therefore the expected result of the DAC output after the
SAR algorithm is 2.0Vor –0.5V relative to analog
ground. Below is a table of simulation results for an
input value of 3.0V.

Hex
Code

Binary
Code

DAC
Voltage

Comp Decision

20 100000 2.5 0 Keep Sign
30 110000 1.875 1 Clear
28 101000 2.1875 0 Keep
2C 101100 2.03125 0 Keep
2E 101110 1.95325 1 Clear
2D 1.01101 1.99218 1 Done!

The result of the behavioral simulation shows that the
expected code is 2D, which in signed magnitude format
is –13 or in terms of voltage, (13*39mV/lsb) = -507mV
relative to analog ground.

Figure 7 shows the current value of the DAC output,
DAC register value, and the comparator value logged as
waveforms from the Verilog simulation.

Figure 7. Simulation waveforms of one SAR conversion

Figure 8 shows the results running the identical set up
and firmware on the target silicon. The highest voltage
at the beginning of the waveform corresponds the start of
conversion and to analog ground. The binary search
from 2.5V to 2.0V is clearly evident. The intermediate
steps and final value of –508mV relative to analog
ground corresponds quite closely to simulation results.
One conversion of this SAR algorithm runs in about 30

seconds on a 550Mhz Pentium III Linux PC.

Figure 8. DAC output waveform running on silicon

Conclusion
In this paper, an approach to the design and verification
of a mixed-signal programmable system-on-a-chip was
presented. By using simplified, but accurate event-driven
behavioral models for the programmable analog cells,
complete system simulation was performed in Verilog.
System verification of complex algorithms can be done in
minutes instead of hours or days.

References

[1] E. K. F. Lee and P. G. Gulak, “A CMOS Field-Programmable
Analog Array”, in Proceedings of ISSCC, Feb. 1991, pp. 186-187.

[2] Anadigm LTD, “AN10E40 Datasheet”, http://www.anadyne-
micro.com.

[3] Lattice Semiconductor, Inc., “Lattice ispPAC Devices”,
http://www.latticesemi.com.

[4] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli, “System Level Design: Orthogonalization of Concerns
and Platform-Based Design”, IEEE Transactions on CAD, Vol. 19,
No. 12, Dec. 2000.

[5] S. Ganesan and R. Vemuri, ``A Methodology for Rapid Prototyping
of Analog Systems,'' International Conference on Computer Design
(ICCD'99), IEEE Computer Society, October 1999.

[6] Cypress MicroSystems, Inc., “PSOC MCU Devices”,
http://www.cypressmicro.com.

[7] M. F. Mar and R. W. Brodersen, “Simulation Techniques for
Systems with Oversampling A/D Converters”, Proc. of the IEEE
ASIC Conference, Rochester, New York, 1993.

[8] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, ``Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous Systems,''
Int. Journal of Computer Simulation, special issue on ``Simulation
Software Development,'' vol. 4, pp. 155-182, April 1994.

[9] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
Framework for Simulating and Prototyping Heterogeneous Systems”,
Int. Journal of Computer Simulation, special issue on “Simulation
Software Development,” vol. 4, pp. 155-182, April 1994.

