
Experience of Behavioural Modelling in the
Mixed-Signal ASIC Design Process - a Case Study

Peter R. Wilson (Member IEEE)1, Paul Chapman†, J. Neil Ross, Andrew D. Brown (Senior Member IEEE),

University of Southampton,
Department of Electronics and Computer Science,

Southampton, United Kingdom,
prw99r@ecs.soton.ac.uk

†Avant! Corporation,
Lower Farms Barn, Wasing Lane, Aldermaston,

Berkshire, United Kingdom, RG7 4NG
paul_chapman@avanticorp.com

1 This work was partly supported by a grant from the Engineering and Physical Sciences Research Council (United Kingdom) and Advanced
Power Components (Rochester, United Kingdom).

Abstract
During the last 10 years, the use of computer simulation at
IC level has become prevalent in the design process. As the
size of designs has increased rapidly, the same simulations
have become progressively more difficult to perform, to the
extent that the simulations have become less of a design
tool and more of a bureaucratic step to be carried out.
Behavioural modelling offers a practical route to achieving
productive simulation, by allowing what-if analyses, or
component variations to improve the design prior to and
concurrently with the progression of the design to Silicon
implementation. In this paper, the positive use of
behavioural modelling, multi-level modelling and mixed-
signal simulation is highlighted, based on the authors'
experience during a practical mixed-signal ASIC design
project. The benefits and drawbacks of such an approach
are discussed, with the key aspects identified that led to the
project's successful completion.

Keywords-Behavioural Modeling, MAST, Saber-Verilog,
HSPICE, mixed-signal ASIC, Simulation

1 Introduction

1.1 Design Overview
The ASIC (Application Specific Integrated Circuit) under
investigation in this paper is a 10/100 Mbps Switch
Controller used in Ethernet Networks [1]. The overall
structure of the IC is shown in figure 1.

Figure 1: Overall IC structure

The IC consists of a digital core, carrying out all the DSP
functions and processing of the network data, and a number
of analogue transmit (Tx) and Receive (Rx) channels. In
this variant of the IC, there were 6 Tx and Rx ports, with 2
clock generation ports. Each of the analogue interface ports
has filters, automatic gain control (AGC), analogue-to-
digital conversion (ADC) and digital-to-analogue
conversion (DAC) linking the analogue port to the digital
core.

Each channel operates using a Decision Feedback Equalizer
(DFE), where automatic gain control is used to equalize the
amplitude of the received pulse signal, the clock is then
extracted by using a clock recovery PLL (Phase Locked
Loop), and the data recovered with the correct phase using
the properly extracted clock to synchronize the data. The
data arrives in the form of MLT3 encoded data of the form
shown in figure 2.

Figure 2: MLT-3 Encoded Waveform

Each channel uses a scaling band-pass filter (BPF) to
provide filtering and a companding effect. This is followed
by a digitally controlled AGC, where the control signal is 7
bits wide and is generated by the digital controller. The
AGC is a current mode multiplying DAC, where the output
of the BPF is a gm stage current output. The clock recovery
circuit is shown in figure 3, where the oscillator is current
controlled (ICO). The frequency and phase of the oscillator
is tuned by track up and down pulses from the digital
controller and a charge pump.

Figure 3: Receive Channel Clock Recovery

1.2 Initial Design Process
As is usual with a large and complex IC, a design team of
experts in various aspects of the design process was
assembled in the UK. The senior engineer was responsible
for the overall design and algorithm, with specialists in
analogue cell design and digital processing to implement
their sections of the IC. To further complicate the process,
the final IC layout and integration was to be carried out by a
specialist team in the USA.

During the initial feasibility study, the high level
algorithmic design was accomplished using Matlab, the
digital processor design with Verilog and the IC
simulations using Hspice. While the design of the
individual elements proceeded quite well, problems started
to occur when the pieces needed to be brought together in
an integrated design. It soon became clear that linking the
design elements together for the purposes of system
checking and analysis using these disparate approaches was
impossible practically. This led to a series of fundamental
errors with connections, pin names, interface characteristics
and behaviour, and repeated design changes without full
checking of boundary data transfer. Obviously a new
approach was needed.

1.3 Modified Design Process
The decision was taken to take the individual pieces of the
design and integrate them in a form that could be designed
and analysed properly. This step, which seems obvious to
anyone from a behavioural modelling background, was not
an easy step to take for the design team. Initial hostility,
stemming from a lack of perceived benefit and seemingly
extra work, proved an obstacle in producing new high-level
models, but as soon as the potential of mixing multiple
levels in a single design became apparent, this soon
disappeared.

Using high level, Laplace models of the filters and interface
circuitry, a full architectural model of the ASIC could be
produced. The significant benefit of this step was to allow
complete testing of the Verilog code in a representative
environment, with real analogue data, for the first time in
the design process. As a direct result of this, show-stopping

errors in the Verilog code were identified and corrected.
Another advantage of this type of simulation early in the
design process was the ability to finalise the boundary
connections of the device at a much earlier stage of the
design, thus allowing the IC Level Designers to being work
on the transistor level implementation much earlier than
would have been possible otherwise. A summary of the
process is shown in figure 4.

Figure 4: Modified IC Design Process Flow Diagram

Within the design process there were several key steps that
needed to be taken to ensure that the design would have
minimal errors from its inception. The fundamental starting
point was to ensure that the top-level connection points and
behaviour of the design was correct. To accomplish this, a
behavioural model of the complete IC channel was required
that included the Verilog digital model together with a
complete behavioural model of the analogue and mixed-
signal sections of the channel. This model was used to
check that all the connections were correct, polarities of
signals were correct and the basic digital core functionality
was also correct. With this framework model in place, then
each analogue and mixed-signal block could be designed
down to the transistor level, and checked in the context of a
complete IC simulation, together with the other behavioural
blocks and the digital controller.

2 Channel Simulation

2.1 Introduction
Using the structure shown in figure 3, the channel was
modelled using behavioural MAST [2] models for the
analogue and mixed-signal models and the digital core was
modelled using Verilog [3]. The problem at this stage was
how to practically simulate these elements together, from
the same Concept [4] schematics. The Saber [5] simulator
was used in conjunction with the Verilog Simulator in a co-
simulation. Using the schematic based approach meant that
the same symbols (and hence connection points) were
required for the transistor level (IC) schematic models thus
implicitly ensuring that the connection points were correct.
It was at this point that several connection errors were
identified between the Verilog, Matlab and Hspice
primitive netlists and corrected. It was also apparent at this
stage that several errors in polarity would have not been

spotted until much later in the design process unless this
integrated approach has been taken.

This section describes the behavioural modelling of the key
analogue and mixed signal blocks, and the development of
test benches allowing measured and generated cable data to
be applied to test the Verilog rigorously.

2.2 Channel Behavioural Modeling
The input filter to the channel consists of a non-linear trans-
conductance amplifier stage plus a band-pass filter
(100Mbps) or a low-pass filter (10Mbps). The
characteristics of ideal and practical trans-conductance
(Gm) stages are shown in figure 5.

(a) (b)
Figure 5: Gm Stage Characteristics (a) Ideal (b) Non-

Linear

The basic transconductance function was implemented
using the MAST model in figure 6. This was combined
with the appropriate filter model for the 100Mbps or
10Mbps option as shown in figure 7.

template gm_filter inp inm outp outm = k
#...Declaration of connections
electrical inp,inm,outp,outm
#...Declaration of Parameters
number k = 1m # gm Gain
{
#...Declare Internal Variables
number xk=0.5m
#...Parameters Section
parameters {

xk = k/2.0
}

vccs.1 inp inm outp outm=k=xk
}

Figure 6: Gm Stage MAST model

Figure 7: Gm Stage and Filter Model

These models are purely analogue, but with the introduction
of a digitally controlled AGC, the mixed-signal aspects of
the MAST modelling language become useful. The basic
analogue behaviour of the AGC is a differential voltage to
current converter, with the gain configured by a 7 bit digital
word. The device converts this word to a scaling current,
which is multiplied by the current corresponding to the
input voltage (with a gain of 1). In nominal operation, the
gain from the input to the DFE input (after the AGC)
should be unity. There is also a reference dc bias current
that can be added to the input. The resulting characteristic
function of the AGC DAC is given in (1), with the
behavioural model in figure 8.

indcout I
DD

II *
127

)0:6(+= (1)

template a7bdac vbp vbn vb d_6 d_5 d_4 d_3 d_2 \
 d_1 d_0 iop ion=gain, zin, tt
#...Declaration of Connections
state logic_4 d_0,d_1,d_2,d_3,d_4,d_5,d_6
electrical vbp,vbn,vb,iop,ion
#...Declaration of parameters
number gain=4 # Nominal Gain of the AGC
number zin=0.1 # Nominal Input Impedance of the
input pins
number tt=0.1n # Transition time of the output
voltage
{

#...Internal Declarations
electrical v6,v5,v4,v3,v2,v1,ivbp,ivbn,ivb
val i ip,in,ioutp,ioutn,igain
#...Look for the next data input change
ide_d2an.6 d_6 v6 v5 \
=model=(voh=64,vol=0,vxh=32,vxl=31,tr=tt,tf=tt)
ide_d2an.5 d_5 v5 v4 \
=model=(voh=32,vol=0,vxh=16,vxl=15,tr=tt,tf=tt)
ide_d2an.4 d_4 v4 v3 \
=model=(voh=16,vol=0,vxh=8,vxl=7,tr=tt,tf=tt)
ide_d2an.3 d_3 v3 v2 \
=model=(voh=8,vol=0,vxh=4,vxl=3,tr=tt,tf=tt)
ide_d2an.2 d_2 v2 v1 \
=model=(voh=4,vol=0,vxh=2,vxl=1,tr=tt,tf=tt)
ide_d2an.1 d_1 v1 v0 \
=model=(voh=2,vol=0,vxh=1,vxl=0.9,tr=tt,tf=tt)
ide_d2an.0 d_0 v0 0 \
=model=(voh=1,vol=0,vxh=0.5,vxl=0.4,tr=tt,tf=tt)

Analog system assignments
values {

 igain = gain*v(v6)/127
 ip = v(ivbp) - v(ivb)
 in = v(ivbn) - v(ivb)
 ioutp = igain * ip
 ioutn = igain * in

}
Analog system simultaneous equations
equations {

i(iop) += ioutp
i(ion) += ioutn

 }
#...Netlist Section
#...Input Impedances
r.rvbp vbp ibp=zin
r.rvbn vbn ibn=zin
r.rvb vb ib=zin
#...Input Current Monitors
ccvs_4p.vbp ibp 0 ivbp 0=1
ccvs_4p.vbn ibn 0 ivbn 0=1
ccvs_4p.vb ib 0 ivb 0=1
}

Figure 8: AGC Model

The AGC gain is controlled by the digital inputs d_6 to
d_0. These signals are defined as logic_4 digital pins,
which means they have four discrete levels (high, low,
don’t care and high impedance). They are each fed into
ideal digital to analogue converters that provide an output
voltage proportional to their weighting as bits (32, 16,8
etc). These analogue voltages are then summed together to
provide the analogue gain of the AGC, and this is
multiplied by the input current (using equation(1)) to
provide the scaled output current (iout).

The output of the AGC is fed into a quantizer (8bits) that
also includes a companding function, so the thresholds are
set at the voltage levels –1.0,-0.9,-0.5,-0.1,0.1,0.5,0.9,1.0.
The quantizer is clocked using a digital signal from the
Verilog control block. The MAST model for the quantizer
is given in figure 9.

template quantiser pcas ioptop iontop clk125
cmpout0 cmpout1 cmpout2 cmpout3 \

cmpout4 cmpout5 cmpout6 cmpout7 = irange,
zin, vos, tp

#...Declaration of connections
electrical pcas, iontop, ioptop
state logic_4
clk125,cmpout0,cmpout1,cmpout2,cmpout3,cmpout4,cmp
out5,cmpout6,cmpout7

#...Declaration of arguments
number irange = 1m, # Input Current range

zin = 10, # input Impedance
vos = 0.8, # input voltage offset
tp = 0 # Digital Delay from CLK to

latching output

{
#...Declaration of Analogue intermediate variables
electrical i_inp, i_inm
val i ip,in,idiff

#...Sequential Analogue Equations
values {

#...Calculate the input current
idiff = v(i_inp) - v(i_inm)
}

#...Set Initial Conditions on the outputs
#...Clocked Comparator Equations
when(event_on(clk125)) {

#...Falling Edge
if(clk125 == l4_0) {

#...Comparator Equations
if (idiff>=-1.0*irange) {

schedule_event(time+tp,cmpout0,l4_1)
}
else {

schedule_event(time+tp,cmpout0,l4_0)
}

 if (idiff>=-0.9*irange) {

schedule_event(time+tp,cmpout1,l4_1)
 }
 else {

schedule_event(time+tp,cmpout1,l4_0)
 }
 if (idiff>=-0.5*irange) {

schedule_event(time+tp,cmpout2,l4_1)
 }
 else {

schedule_event(time+tp,cmpout2,l4_0)
 }

 if (idiff>=-0.1*irange) {

schedule_event(time+tp,cmpout3,l4_1)
 }
 else {

schedule_event(time+tp,cmpout3,l4_0)
 }
 if (idiff>=0.1*irange) {

schedule_event(time+tp,cmpout4,l4_1)
 }
 else {

schedule_event(time+tp,cmpout4,l4_0)
 }
 if (idiff>=0.5*irange) {

schedule_event(time+tp,cmpout5,l4_1)
 }
 else {

schedule_event(time+tp,cmpout5,l4_0)
 }
 if (idiff>=0.9*irange) {

schedule_event(time+tp,cmpout6,l4_1)
 }
 else {

schedule_event(time+tp,cmpout6,l4_0)
 }
 if (idiff>=1.0*irange) {

schedule_event(time+tp,cmpout7,l4_1)
 }
 else {

schedule_event(time+tp,cmpout7,l4_0)
 }

}
}

#...Input Stage
r.rp ioptop inp=zin
v.vp inp 0=vos
ccvs.1 i(v.vp) i_inp 0=1

r.rn iontop inm=zin
v.vm inm 0=vos
ccvs.2 i(v.vm) i_inm 0=1

#...Ibias Connection
r.bias pcas 0=10meg
}

Figure 9: Quantizer Model

The comparator function for each signal level is
implemented using the schedule_event() function. This
HDL construct schedules a digital event at a specified time
(after the clock signal) depending on the appropriate
decision criteria having been met.

Using the trans-conductance gain stage, AGC and
Quantizer, the analogue data appearing at the receive
channel pins is suitably processed for direct connection to
the digital core implemented in Verilog.

3 Clock Recovery
With the analogue received waveform decoded into suitable
digital words, the Verilog model of the digital core can
extract the data, after first recovering the clock signal of the

data stream. This is achieved using a classic Phase Locked
Loop (PLL), implemented partially in the digital domain
(phase comparison) and partially in the analogue domain
(ICO - Current Controlled Oscillator). Each MTL3 symbol
is decoded using a number of samples, from which the
phase of the signal can be measured digitally. Figure 10
shows how depending on the decoded value, the phase can
be determined for the symbol.

11
11

10
00

11
11

11
00

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
11

11
00

11
11

10
00

(a) Leading (b) In phase (c) Lagging

Figure 10: Phase Detection for Clock Recovery

This approach is more subtle than the traditional PLL
method of 'brute force' phase detection and the digital core
produces a phase and frequency trim command in the form
of incremental digital data streams to the ICO input. The
control function works on the principle that a phase up
command produces a positive current pulse to the ICO
input and vice versa for a phase down command. A similar
mechanism operates for the frequency trim. The complete
model for the receive ICO including the digital control
function is given in figure 11.

template receive_ico ftracktrim fctrlisol ipllm
i20ux powerdown \

pctrlisol phtracku phtrackd sicoiph_2
sicoiph_1 sicoiph_0 \

txclk10_int iico vco_125 = iif , iph,
vref, fref, slope, \

ftc, ptc, tt, rf, cf

#...Declaration of connections
state logic_4 ftracktrim, fctrlisol, powerdown,
pctrlisol, phtracku, \

phtrackd, sicoiph_2, sicoiph_1, sicoiph_0,
txclk10_int, vco_125
electrical iico, ipllm, i20ux

#...Declaration of arguments
number iif = 0.78u # Internal Frequency
Current Pulse Magnitude
number iph = 0.26u # Internal Phase Current
Pulse Magnitude
number vref = 0 # ICO Reference
Voltage
number fref = 125meg # ICO Reference
Frequency
number slope = 2e12 # ICO F/I Slope
number ftc=undef # Frequency Loop
Time Constant
number ptc = 0 # Phase Loop Time Constant
number tt = 0.1n # Current Pulse Transition
Time
number rf = 15k # Default Time Constant R
number cf = 100p # Default Time Constant C

{

#...Internal Declarations
state nu int_if, int_iphu, int_iphd, ifout=0,
iphout, ioutgain, iadj
state logic_4 vco_int, powerdownselect

electrical f,p,ia,pm
var i iia
number xftc

#...Parameters Section
parameters {

if(ftc==undef) {
xftc = rf*cf

}
else {

xftc = ftc
}

}

#...Calculation of the Current Adjustment

when(event_on(sicoiph_2) | event_on(sicoiph_1) |
event_on(sicoiph_0)) {
 if (sicoiph_2==l4_0 & sicoiph_1==l4_0 &
sicoiph_0==l4_0) schedule_event(time,iadj,-0.3)
 if (sicoiph_2==l4_0 & sicoiph_1==l4_0 &
sicoiph_0==l4_1) schedule_event(time,iadj,-0.2)
 if (sicoiph_2==l4_0 & sicoiph_1==l4_1 &
sicoiph_0==l4_0) schedule_event(time,iadj,-0.1)
 if (sicoiph_2==l4_0 & sicoiph_1==l4_1 &
sicoiph_0==l4_1) schedule_event(time,iadj,-0.0)
 if (sicoiph_2==l4_1 & sicoiph_1==l4_0 &
sicoiph_0==l4_0) schedule_event(time,iadj,+0.1)
 if (sicoiph_2==l4_1 & sicoiph_1==l4_0 &
sicoiph_0==l4_1) schedule_event(time,iadj,+0.2)
 if (sicoiph_2==l4_1 & sicoiph_1==l4_1 &
sicoiph_0==l4_0) schedule_event(time,iadj,+0.3)
 if (sicoiph_2==l4_1 & sicoiph_1==l4_1 &
sicoiph_0==l4_1) schedule_event(time,iadj,+0.4)

}

when(dc_init) {
 if (sicoiph_2==l4_0 & sicoiph_1==l4_0 &
sicoiph_0==l4_0) schedule_event(time,iadj,-0.3)
 if (sicoiph_2==l4_0 & sicoiph_1==l4_0 &
sicoiph_0==l4_1) schedule_event(time,iadj,-0.2)
 if (sicoiph_2==l4_0 & sicoiph_1==l4_1 &
sicoiph_0==l4_0) schedule_event(time,iadj,-0.1)
 if (sicoiph_2==l4_0 & sicoiph_1==l4_1 &
sicoiph_0==l4_1) schedule_event(time,iadj,-0.0)
 if (sicoiph_2==l4_1 & sicoiph_1==l4_0 &
sicoiph_0==l4_0) schedule_event(time,iadj,+0.1)
 if (sicoiph_2==l4_1 & sicoiph_1==l4_0 &
sicoiph_0==l4_1) schedule_event(time,iadj,+0.2)
 if (sicoiph_2==l4_1 & sicoiph_1==l4_1 &
sicoiph_0==l4_0) schedule_event(time,iadj,+0.3)
 if (sicoiph_2==l4_1 & sicoiph_1==l4_1 &
sicoiph_0==l4_1) schedule_event(time,iadj,+0.4)

}

#...Output Selection - choose either ref clk or
vco 125

when(event_on(vco_int) & powerdown==l4_0) {
schedule_event(time,vco_125,vco_int)
}

when(event_on(txclk10_int) & powerdown==l4_1) {
schedule_event(time,vco_125,txclk10_int)
}

equations {
i(ia) += iia
iia : v(ia) = 1.0 + iadj
}

#...Calculation of the tracking frequency current
offset

or2_l4.f powerdown fctrlisol fen
inv_l4.f fen _fctrlisol
inv_l4.f2 ftracktrim _ftracktrim
ictrl.f _fctrlisol ftracktrim _ftracktrim f
0=vmax=iif,tt=tt

#...Calculation of the tracking phase current
offset

or2_l4.p powerdown pctrlisol pen
inv_l4.p pen _pctrlisol
ictrl.p _pctrlisol phtracku phtrackd p
0=vmax=iph,tt=tt

#...Filter for Frequency tracking

lpf1.f f 0 ff 0=tc=xftc

#...Multiply Phase Current by Modifier
multiply.1 p ia pm 0= 1

#...Filter the Phase Output
lpf1.p pm 0 pf 0=tc=ptc

#...Add together the total voltage
vadd.1 ff 0 pf 0 total 0

#...Convert Total Calculated Voltage directly into
a current

vccs.1 total 0 iico 0=1

ccvs_4p.1 iico 0 vi 0=1

vco_l4.1 vi 0
vco_int=vref=vref,fref=fref,slope=slope

#...Dummy connections for the bias pins

r.ipllm ipllm 0=1g
r.i20ux i20ux 0=1g

}

Figure 11: Complete Mixed Signal Receive ICO

Each of the phase and frequency digital control functions
uses simple logic to include power down and enable
functions to gate the command signals. These are then
converted into current pulses. The frequency command is
+/- 0.78uA and the phase command converts to +/- 0.26uA.
These current pulse signals are low pass filtered to provide
a smooth control signal to the ICO (the phase and frequency
control have different filter characteristics. The frequency is
much slower to respond than the phase giving the stability
of a smooth clock frequency, but with the ability to respond
quickly to fast changes in phase). The ICO is based on a
reference frequency of 125MHz, and a sensitivity of
2MHz/uA.

The control signals sicoiph_2, sicoiph_1 & sicoiph_0
provide a further fine adjustment for the current levels
output from the ICO based on the values in table 1.

sicoiph_2 sicoiph_1 sicoiph_0 I Adjust
0 0 0 -30%
0 0 1 -20%
0 1 0 -10%
0 1 1 0%
1 0 0 +10%
1 0 1 +20%
1 1 0 +30%
1 1 1 +40%

Table 1: ICO Current Adjust Values

4 Conclusions
With the architecture of the design in place, key elements in
the design could be designed more precisely with an
implementation in mind. Using test circuits, the behavioural
model was treated as an electronic specification, to which
the transistor implementation was to be designed to. As
each element was designed as the transistor level, it could
then be tested in the complete ASIC model, quickly and
efficiently to ensure that it functioned correctly. The model
was also used to help improve the accuracy of the
behavioural model used. Using this approach, it was
straightforward to test each block in the correct context, in
turn, until the complete IC was simulated at both the
behavioural and primitive IC level. This resulted in an
ability to carry out much more circuit testing, including the
input of measured data, and pre-calculated data with
injected noise, to test the design under realistic conditions.
This aided us in identifying design changes needed prior to
the successful first turn of silicon taking place. Without the
use of behavioural modeling techniques in this design
process, the first turn of Silicon would not have been
successful, and in all probability it would have taken
several iterations to reach that point.

5 References
[1] IEEE Standard 802.3
[2] Mast reference Manual, Avant! Corporation,

http://www.avanticorp.com
[3] Verilog Reference Manual, Cadence Corporation,

http://www.cadence.com
[4] Concept, Cadence Corporation, http://www.cadence.com
[5] Saber Simulator Reference Manual, Avant! Corporation,

http://www.avanticorp.com

	Introduction
	Design Overview
	Initial Design Process
	Modified Design Process

	Channel Simulation
	Introduction
	Channel Behavioural Modeling

	Clock Recovery
	Conclusions
	References

