
Piecewise-Linear Modeling of Analog Circuits
Based on Model Extraction from Trained Neural Networks

Gaurav Gothoskar and Alex Doboli
VLSI Systems Design Laboratory

Electrical and Computer Engineering Department
State University of New York at Stony Brook, Stony Brook, NY, 11794-2350

Email:
�
gaurav, adoboli � @ece.sunysb.edu

Simona Doboli
Department of Computer Science

Hofstra University, Hempstead, NY, 11549
Email: cscszd@hofstra.edu

��������	�
���

This paper presentsa new technique for automatically creating
analog circuit models. The method extracts piecewise linear
models from trained neural networks. A model is a set of lin-
ear dependenciesbetween circuit performancesand design pa-
rameters. The paper illustrates the technique for an OTA cir-
cuit for which models for gain and bandwidth are generated.
As experiments show, the obtained models have a simple form
that accurately fits the sampled points. These models are use-
ful for fast simulation of systems with non-linear behavior and
performances.

��� � ��	���������� � �

The need for mixed analog-digital designs is predicted to dra-
matically increase over the next years [1] [9]. The digital part
of mixed-signal systems can be efficiently designed with a low
effort using modern high-level, logic-level and physical-level
design automation tools. In contrast, there is a lack of system-
atic design methods and efficient general-purposesynthesisen-
vironments for analog circuits [1] [9]. As a result, analog de-
signs continue to seize a considerable portion of the total de-
sign time for mixed-signal systems [8] [9]. There is a persistent
need for developing improved methods and tools to level the
design productivity and quality of analog circuits. This paper
presents an original analog circuit modeling method that can
be efficiently employed for both circuit design and synthesis.

Analog circuit models (macromodels) expressmathematical re-
lationships between significant electrical and geometrical pa-
rameters of a circuit (like device sizes, layout parasitics, sig-
nal frequencies, noise etc) and specific performance attributes (
such as circuit gain, bandwidth, power consumption, slew rate,
harmonic distortion etc) [9]. For example, it is customary to
formulate mathematical equationsfor an op amp gain and band-
width as functions of transistor sizes and the value of the com-
pensating capacitor [13]. Models are key components for both
manual design and automated synthesis of analog circuits. A
designer uses circuit models to capture the relevant dependen-
cies in a design, and then find the design parameters (i.e. device
sizes) according to the performance requirements that need to�

Supported by Defense Advanced Research Projects Agency (DARPA) and
managed by the Sensors Directorate of the Air Force Research Laboratory,
USAF, Wright-Patterson AFB, OH 45433-6543

be satisfied [13]. Circuit synthesis tools use circuit models to
improve the effectivenessof the exploration processand speed-
up their convergence towards optimal solutions [14] [20]. In
both cases, models must accurately capture the behaviorof cir-
cuits without increasing the complexity of their mathematical
expression [14].

Circuit models are very important for speeding up the conver-
gence of simulation-based circuit synthesis tools. It has been
reported that one of the important challenges is the large num-
ber of optimization variables that must be simultaneously tack-
led [11] [14]. This poses challenges to traditional exploration-
based synthesis methods, which need a very long time to com-
plete their search, or might even not converge towards a good
solution [11]. A solution to this problem is to use models to
speed up synthesis by guiding the search towards attractive so-
lution space regions [6]. Most of the time, models are used to
quickly find the performance attributes of the explored designs.
Periodically, exhaustive circuit simulations are performed to
correct the inaccuracies introduced by the models. Even for
very sensitive designs such as RF mixer circuits, it has been
shown that performance estimation through a combined circuit
model evaluation and circuit simulation offers good accuracy
levels while significantly reducing synthesis time [20].

Another important application of circuit models is for top-down
design and synthesis of analog systems [5]. Top-down system
synthesis proceeds in two steps [5]: the first step (called ar-
chitecture generation) explores alternative architectures for a
system expressed at an abstract level. The second step (named
constraint generation) allocates performance constraints to each
block in an architecture so that the overall system performances
are optimized. Note that an abstract perspective on the analog
circuits is maintained during both synthesis steps. As a result
the constraints allocated to a block might be very difficult to
be obtained with real analog circuits (for example large gains
for large circuit bandwidths, high slew rates etc). Also, impor-
tant aspects such as noise and layout parasitics are neglected
during system design. Circuit models help eliminating these
limitations by providing knowledge on (1) circuit performance
trade-offs, (2) feasibility ranges for circuit performances, and
(3) impact of physical-level elements such as noise and layout
parasitics on circuit performances.

Circuit modeling techniques fall into two categories: (1) phys-
ical modeling methods and (2) mathematical modeling tech-
niques [14]. Physical modeling methods simplify a circuit to
a reduced sub-circuit that includes only the dominant devices

in the circuit. Such models are useful in offering a qualitative
insight into the circuit but are limited in offering also a quanti-
tative perspective. Models can be successfully used for circuit
analysis but not for device sizing, circuit optimization and syn-
thesis. Mathematical models capture quantitative relationships
between the parameters and performances of a circuit. How-
ever, these models might not have any connection to the phys-
ical structure of the circuit. Non-linear regression methods are
traditionally used to produce mathematical models [10] [3] [4].
The main limitation is that for a large number of data points, it
is very difficult to find a single mathematical formula that ac-
curately fits all points [14].

This paper presents a new technique for extracting piecewise
linear models from trained neural networks. A model is a set of
linear dependencies between circuit performances and design
parameters. Dependenciesare valid over a range of the param-
eters. Section 5 presents for an OTA circuit [13] the extracted
models for gain and bandwidth as functions of frequency and
layout parasitics. As experiments show, the produced piece-
wise linear models have a simple form that accurately fits the
sampled points. Moreover, piecewise linear models are a promis-
ing method for approximating nonlinear behavior and perfor-
mances with a small error [12]. There are powerful simulation
methods that use piecewise linear models to quickly calculate
system performances [12]. Our work addresses the need for a
method to systematically create piecewise linear models used
for simulation [12].

The model generation techniques starts with the step of train-
ing a neural network. A backpropagation algorithm is used for
training until the desired accuracy is obtained at the output of
the network. Next, a pruning method is applied to eliminate the
neurons with insignificant contributions to the model. The size
of the network is thus reduced without significantly affecting
the modeling accuracy. Then, the sigmoidal activation func-
tion of each neuron is approximated with a piecewise linear
function that includes three linear segments. Finally, the piece-
wise linear functions for input, hidden and output neurons are
composed together to generate the final model of a circuit. The
function composition algorithm is based on automatically ex-
pressing linear equations and inequalities for the neurons. Equa-
tions are then solved to find the feasibility (input) domain for
each linear segment in the model.

The paper includessix sections. Section 2 presents related work
on modeling with neural networks, and highlights the main con-
tributions of this paper. Section 3 offers a theoretical descrip-
tion of the modeling problem. Section 4 presents the algorithm
for extracting piecewise-linear models from trained neural net-
works. Section 5 illustrates the models generated for an OTA
circuit. Finally, we put forth our conclusions.

�������
�� � ��� �	
	 � ��� ��� ��� � ���� � ����� � �	�
 � � � � � �	
	 �

Neural networks have been successfully used in various types
of problems, including classification and function approxima-
tion. They are able to learn any type of nonlinear mapping based
on their well known property of universal approximators. The
main problem of neural networks consists in their opaque rep-
resentation of the knowledge embedded in the parameters of
the model. Due to the nature of processing that takes place in
a neural network - parallel distributed processing among con-
nected neurons - it is very difficult to interpret what a neural
network does.

Extracting symbolic knowledge out of a neural network would
make the interpretation of the solution much easier. Several
methods have been proposed for extracting rules from trained
neural networks [19, 7, 2, 18] (for a review see [19]). Most

techniqueswere developedfor classification problems, and very
few have been proposed for regression or function approxima-
tion problems [18, 16]. Previous extraction methods for classi-
fication problems attempt to translate a neural network model
into a set of if-then rules. Rule extraction methods differ in the
type of neural networks on which they are designed to work, in
the type of rules they extract, in the complexity of the extrac-
tion algorithm and in the easiness of the rule interpretation.

Recently a new technique has been proposed to extract linear
models for regression problems [16]. The method is similar
to the one we use here. A neural network is first trained and
pruned. Then, the activation function of each hidden neuron is
substituted with a piecewise linear function with three or five
regions. For each nonempty combination of hidden neuron re-
gions a linear model is generated . The coefficients of the model
depend on the weights of the network. The number of linear
models that are generated is equal to the number of linear re-
gions for the activation function of a hidden neuron to the power
of the number of hidden neurons. The output neuron has a lin-
ear activation function. The limits of the constraints which de-
fine such a region are fixed and correspond to the values delim-
iting the piecewise linear regions of the activation function.

The main differences between our method and [16] consists in
the way linear models are generated and in the way the set of
constraints - which define the region where a linear model is
valid - are extracted. In our approach a linear model is gener-
ated only when a region in the input space is valid, meaning
that is has a nonempty solution set. Moreover, the constraint
limits are adjusted until they represent the smallest possible re-
gion. Also, the constraint set is reduced by eliminating redun-
dant information. In this way, we minimize the number of gen-
erated linear models and the number of constraints that define
a linear model’s valid region. The latter aspect is necessary to
improve the understandability of the generated rules.

��� 	�� � � ��� � ��� � � ��� � �

The task is to approximate the nonlinear function represented
by a trained feedforward neural network with a piecewise lin-
ear mapping. The neural network considered here has three
layers: an input layer � , a hidden layer � and an output layer�

. The goal of the extraction method is to find a set of � lin-
ear models each of the following form: ���! #"%$&#' &)("�$* ' * (
+,+,+ ("�$-#' -#.�/ �10 +,+,+ � . "�$243 57698;: , where '=< is the output
of a neuron in the � layer. The region in the input space where
model / is valid is defined by a set of constraints of the follow-
ing form: >�$;�? #@,A&7'�0 (@,A* ' * (+,+,+ (@,A-;' - CB .�D7.FE
.7G :IH A .;J �K0 +,+,+�L $. @,A< . H A 6M8;: , where L $ is the
number of constraints for model / .
The model / is active if all the constraints in >N$ are satisfied
for a set of input values: #' &#. +,+,+ . ' - : and inactive if at least
one of the constraints is violated. The region in the input space
where a constraint set >O$ is satisfied is called the valid region
of model / . All constraint sets >O$ must satisfy the following
requirements:

1. The valid regions of any pair of linear models must not
intersect in any point in the input space: >=PIQF>�R��KS ,
for T�U�!V .

2. The set of constraints in >O$ is minimal. By removing any
constraint, the valid region for model / changes.

� � ��� ������� ��	�
����� � ���F� �������
The neural networks consideredhere are three layer feed-forward
networks. There are � input neurons in the � layer, � hidden
neurons in the � layer and � output neurons in the

�
layer.

The weight matrix between the input and the hidden layer is� -
	 �K ����< .�� �K0 +,+,+ � .�� �K0 +,+,+ � (0 : , where ���< is
the weight of the connection between the input neuron � and the
hidden neuron � . The input layer and the hidden layer are aug-
mented with a bias neuron. The weight matrix between the hid-
den and the output layer is

� 	�� � ����� .
� � 0 +,+#+ � .�� �0 +,+,+ � (0 : with ���� the strength of the connection between
output neuron � and hidden neuron � .
The activation function of the hidden and output neurons is the
sigmoidal function ���4'��)� &&������ P 2� �! � 5 , with "IB$# D 0 . The
weighted sum at the input of a hidden neuron and at the input
of an output neuron are respectively:% ;� &'

< (& ���< '=< . % �7� 	' �)(& ����#'* + (1)

where '=< is the output of the input neuron � . The output of the
hidden neuron � is: '+;�,��� % �� , and the output of the '-� neu-
ron is: '��;�,��� % �.� .
First, the network is trained with the backpropagationalgorithm
[15] until the desired mean square error on the training and val-
idation data sets is reached. Second, a pruning technique is ap-
plied to eliminate the insignificant weights.

The pruning repeatedly removes the most insignificant weight
from the remaining weights until a stopping criteria is satis-
fied. The significance of a weight is proportional with the re-
duction in accuracy on both training and validation data. The
accuracy reduction is measured iteratively as: / L,021 �4V��I�L,021 �4V�3F0��*3 L,021 �4V�� , where L,021 �4V�� is the mean square
error on the traininig and validation data of the neural network
at step V of the pruning process. The weight that produces the
least reduction in accuracy at each step is eliminated. The stop-
ping criteria is the total loss of accuracy, which has to be smaller
than a maximum limit. If a weight between a hidden and an
output neuron is eliminated then the hidden neuron and all the
weights between the input layer and the hidden neuron are also
eliminated. The pruning is necessary in order to reducethe num-
ber of liner models.

The extraction algorithm starts with the pruned network. The
idea is to approximate the nonlinear sigmoidal activation func-
tion with a piecewise linear function. One way to do this is by
dividing the input space into three regions: for small x values���4'�� is approximately 0 – the constant region 0, for large val-
ues ���4'�� is close to 1 – the constant region 1 and for values
in between ���4'�� can be approximated with a linear function –
the variable region. The corresponding linear mapping 4��4'�� is
shown in Figure 4 and is defined as follows:4��4'�� �65 " '�B,3�7����8* 8 3�7 D ' D 7

0 ' E 7 (2)

where 7 is a real value that separates the constant regimes from
the variable one. The linear function of the variable region is a
first order approximation of the Taylor series decomposition of���4'�� for '��9" . The value of 7 is chosensuch that it minimizes
the error between the sigmoidal function ���4'�� and the linear
mapping 4��4'�� . The linearization of the sigmoidal function can
be done in other ways as well. One possibility to improve the
accuracy of the linearization is by increasing the number of lin-
ear regions. In the case of 4��4'�� the number of linear regions is: �,; .

0

1

−γ γ
x

φ(x)
g(x)

Figure 1: The graph of the sigmoidal function (���4'��) and of
the approximated piecewise linear mapping (4��4'��)

.

The next step consists in finding the the linear models and the
regions in the input space where they are valid. For each re-
gion, a linear function in the input variables is generated by
substituting the sigmoidal activation function ���4'�� with the lin-
ear one 4��4'�� in '�� �<��� % �.� . The coefficients of the linear
functions depend on the weight values:

'��7�9��� 	' = (& �������� &' < (& ���< '=<>����?$4�� 	' = (& ����)4�� &' < (& � < #'=<>���
(3)

The main steps of the linear model extraction method are as
follows:

1. Linearization of the hidden neurons. Extract and refine
the sets of constraints > R , % � 0 +,+,+ � , V � 0 +,+,+ : ,
with

:
the number of linear regions of 4��4'�� . A set > R

represents the region where the output of the hidden neu-
ron � is given by '+��@4 R � % �� , with 4 R � + � the V branch
of the linear function 4��4'�� . The refining process of a set
of constraints A R is described below.

2. Evaluatation of the weighted sum input to the output neu-
rons (

% �). Find all valid combinations of linear regions
in the hidden neurons of the following form:� PM�? #V P & V P* +,+,+ V P 	 : . V P

=
6 C0 .CB�. +,+,+ . : : and

T9� 0 +,+,+ : 	 . For each such combination, the output
of all hidden neurons is completely specified, and there-
fore

% � can also be evaluated. The region in the input
space where combination

� P is valid is defined by the
constraint set: > P��!> & R�DE;Q > * R�DF Q +,+,+ QF> 	 R DG . The
process of intersecting sets of constraints is detailed be-
low. A combination

� P is valid if its constraint set > P
delimits a nonempty region in the input space. The valid
constraint sets > P are refined as in step 1.

3. Linearization of the output neuron. For each valid com-
bination region defined by > P , express the output of the
network as a linear combination of input variables. De-
pending on the range of values for

% P � - the weighted sum
input to output neuron � for combination T - the activa-
tion function of the output neuron can be split into one or
more linear regions (4 R � % P � �). The maximum number of
linear models that can be generated is

: 2 	H��& 5
. The set

of constraints that define the validity region of a linear

model is obtained as follows: > P#R �9> P Q�> R , where > R
is the inequality constraint for the V branch of the linear
function 4 R �4'�� (relation (2)). The set of constraints for
each linear model > P#R is refined using the same method-
ology as in step 1. The linear models are expressedusing
relation (3), with 4�� + � substituted with the right branch4 R � + � .

The process of refining a set of linear inequality constraints is
now detailed and ilustrated for one of the hidden neurons. For
example, the initial set of constraints for which hidden neuron� is in the constant region 0 ('+;�94 & � % .�)�,") consists of the
following (> &):

A & � ����� ����
� &
< (& ���< '=< B 3�7' & D L &' & G JF&+,+,+,+#+,+,+,+,+,+,+,+,+,+,+,+,+,+,+#+
' - D L -' - G JF-

(4)

where L < and J < are the maximum and respectively minimum
values of the input neuron � . The set of constraints (> *) corre-
sponding to the variable region is composed of the same con-
straints, except for the first one, which is substituted with two:� &
< (& ���< '=< G 3�7 , and

� &
< (& ���< '=< D 7 . The set > �� corre-

sponding to the constant region 1 is defined similarly. The total
number of A R sets is equal to � : .

The first step of the refining process consists in determining
whether a set of constraints is valid, meaning that it has a nonempty
solution set. For example, to verify the validity of A R , the
set of constraints is passed to a linear programming solver with
the first constraint as objective function, the optimization type
- minimization (for E or G) or maximization (for B or D), and
the rest of the inequalities as constraints. Any other constraint
could have been chosen for verification of the existence of a
solution. The initial set of variables has to be modified such
that each variable is positive definite [17]. If the linear opti-
mizer returns a solution which inside the limits of the first con-
straint, then the system of linear constraints A R is valid, oth-
erwise A R is invalid.

The second step of the refining process adjusts the limits of all
the constraints in a set > 243 5 . The goal is to reduce the region de-
fined by the set of constraints. To exemplify this step we take
a valid set of constraints A R . The limits of each constraint in
the set > R are adjusted iteratively using the linear optmizer:
at each step, a constraint becomes the objective function and a
minimization is done if the inequality type of that constraint isE or G or a maximization, if the inequality type is B or D . The
right hand side of the constraint chosen as objective function
is adjusted if the solution of the optimization is inside the limit
(i.e. a minimum value greater than the right side coefficient for
inequalities of type E or G or a maximum value smaller than
the right side coefficient for inequalities of type B or D). The
procedure for adjusting the limits stops when none of the con-
straint limits undergoes any changes.

Next, we detail the process of intersecting sets of constraints.
The purpose here is to eliminate redundant information between
the sets of constraints that get combined. To show how this
works, we take a combined set of constraints > P � > & R�DE Q
> * R�DF Q +,+#+ Q7> 	 R DG . The constraints are placed in the set > P in
an iterative process as follows: first, the set of constraints from
the first hidden neuron (> & R�DE) is added to > P , then each con-
straint from the subsequent sets > , � � B +#+,+ � is checked for
similarity against all constraints already in >=P . If a new con-
straint is similar to one already in > P then the intersection be-
tween them is placed in the final set > P . If a new constraint is

not smilar to any other in > P then is simply added to the set>%P . Two inequality constraints are similar if they have equal
coefficients in the same input variables and similar inequality
type. For example: ' & B9; + " and ' &;D$B + " are similar and the
intersection between them is ' &�D6B + " . In this way the num-
ber of constraints in the combined set >=P is kept at minimum.
Once a set of constraints are intersected, the resulting set >=P is
checked for validity and the limits refined in the same way as
shown above.

The first requirement stated in the previous section - that the
solution from any pair of constraints corresponding to two dis-
tinct linear models must be the empty set - is always true. The
reason is that the set of constraints of each linear model (>=P) is
obtained by intersecting > R constraints for each hidden neu-
ron. Each > R defines a linear region for a hidden neuron. All
> R for the same hidden neuron � , but for distinct linear regions
do not intersect: > R E QF> ��F � S , with V &C. V * 6 0 . +,+,+ : andV & U�KV * because the

:
linear regions defined by the function4��4'�� do not overlap as well. The combined sets of constraints

(>%P) are obtained by intersecting the > R of all hidden neurons
for a combination of the linear regions given in (

� P). Two dis-
tinct sets of constraints > P E and >%P F do not intersect because at
least one hidden neuron must be in a different linear region.

	 ��� ��� � � �

The method for linear model extraction is applied to model the
frequency response of an analog circuit for different parasitic
levels. The data is obtained using SPICE simulations of the
analog circuit for a number of frequency (
) and parasitic (�)
values:
?�� and �?�� . Correspondingly, there are
��
gain values.

The two inputs - frequency(f) and parasitics (c)- are first scaled:
' & � $ ��� 2��#5> ��#2 $ ��� 2��#5 5����� 2 $ ��� 2��#5 , with ��� + � the average and ��� H � + � the
standard deviation. Similarly the parasitics input is also scaled
(' *). The output - the gain (4) - is translated (� �) to fall inside
the range of the sigmoidal activation function.

With these transformations, the data is split into a training (� � !)
and a test set (0"� !). A three layer neural network is trained
and the best performance on the training set is obtained for a
neural network with �?�#� hidden neurons. There are $�� B
input neurons one for freqency (' &) and one for parasitics (' *)
and one output neuron - the gain. Figure 5 shows the simula-
tion gain compared to the unscaled output of the trained neural
network for four values of the parasitics. The network output
approximates well the simulation data.

The trained network is pruned. From the initial set of weights
between the input and hidden neurons (��$ (0����1� B 0) eight
weights are eliminated. Becauseone of the hidden neuronsgets
disconnected completely from the input layer - all its weights
were deleted - one hidden neuron is removed. The loss in accu-
racy for the pruned network is % + 0"� ! of the original network
mean square error.

The pruned network is linearized according to the procedure
described in Methods section. First, the sets of constraints -
> R - for all hidden neurons are found. Not all sets are valid,
meaning that not all hidden neurons have output in all possi-
ble linear regions of 4��4'�� . Second, the constraint sets >=P are
obtained by intersecting the A R sets corresponding to combi-
nation of linear regions

� P . From the initial number of com-
binations

: 	 �#� B � only 0"� are possible - all hidden neurons
have solutions in the linear regions specified in each combina-
tion. Then, the 0"� combinations are checked for validity and

0 1 2 3 4 5
−20

20

60

100

Frequency (log10)

G
ai

n
(d

B
)

C=1nF
C=10nF
C=100nF
C=100fF

Figure 2: The gain frequency response of an analog circuit.
With stars (*) are represented the network outputs and with
circles (o) the SPICE values. The values of the parasitics for
the four plots are: A � 0 �
 , A � 0�" �
 , A � 0�"." �
 ,A �K0�"." �
 . The values of the gain and are in the initial do-
main (unscaled).

out of them 0�" have a nonempty solution set. From the 0�" valid
combinations � generate a single linear model, corresponding
to the variable region (4 * �4'��) of the output neuron. The rest
produce two linear models, one in the variable region and the
other in one of the two remaining constant regions of the linear
mapping 4��4'�� .
For example, one of the linear models is: ' � �9" + " B "�0"� B ;C' &C(" + 0 B �"% � �C' * (0 + 0"� ����� . The region where this output function
is valid is defined by the set of 14 constraints with refined lim-
its shown in Figure 3. In total, there are 0�% linear models, 0�" of
them with a variable linear dependency in the input variables
and % of them with a constant output.

Figure 4 shows the comparative results obtained with the ini-
tial neural network and with the linear models. The error be-
tween the nonlinear neural network model and the piecewise
linear one is small in most of the points, but there are some ar-
eas where the error is bigger. These areas correspond to bigger
linearization errors between the sigmoidal function and the lin-
earized one.

��� � � � � ����� � � �

A method was developed to extract piecewise linear models to
approximate the nonlinear frequency response of analog cir-
cuits for different parasitics values. First, a neural network is
trained to approximate the nonlinear mapping of the simulation
points. A method of extracting piecewise linear models from
the neural network is proposed, where the activation function
of the neurons is approximated with a piecewise linear map-
ping. The number of generated linear models is reduced by
checking the validity of each possible solution. The number of
constraints that defines a region in the input space correspond-
ing to a linear model is also reduced by eliminating redundant
constraints. The extraction method was used to approximate
the gain frequency plots of a simulated analog circuit for dif-
ferent parasitic values. The extracted piecewise linear model

0 1 2 3 4 5
−20

20

60

100

Frequency (log10)

G
ai

n
(d

B
)

C=1nF
C=10nF
C=100nF
C=100fF

Figure 4: The gain frequency response of an analog circuit.
With stars (*) are represented the outputs of the original neural
network and with triangles (/) the outputs of the linear mod-
els. The values of the parasitics for the four plots are: A �0 �
 , A � 0�" �
 , A � 0�"." �
 , A � 0�"." �
 . The values of
the gain and are in the initial domain (unscaled).

looses a little in accuracy compared to the initial neural net-
work, but it gains in interpretability. One way to improve the
accuracy of the linear models is to use instead of constant re-
gions 0 and 1, variable regions where the output varies linearly
with the input. Another possibility is to use the upper and lower
limits of the weighted sum input to a hidden neuron to define
a customized linear mapping for each neuron. It might be that
the weighted sum input to a hidden neuron has a very restricted
range, in which case the error for most input values will be large
if we use a fix linearization function. For example, if most of
the time the input to a hidden neuron falls around � 7 then the
linearization error will be big. In this case it is better to find a
more appropriate linearization mapping that reduces the error
for that neuron.

���	� � 	 ��� � � �

[1] L. Carley et al, “Synthesis tools for mixed-signal ICs:
Progress on Frontend and Backend strategies”, Proc. of
DAC, 1996, pp. 298-303.

[2] M.W. Craven and J.W. Shavlik. Using sampling and
queries to extract rules from trained neural networks. In
Proc. of the Eleventh International Conference on Ma-
chine Learning. Morgan Kaufmann, San Mateo, CA, 1994.

[3] W. Daems, G. Gielen, W. Sansen, “Simulation-Based Au-
tomatic Generation of Signomial and Posynomial Perfor-
mance Models for Analog Integrated Circuits”, Proc. of
the International Conference on Computer-Aided Design,
2001.

[4] W. Daems, G. Gielen,
W. Sansen, “An Efficient Optimization-Based Technique
to Generate Posynomial Performance Models for Analog
Integrated Circuits”, Proc. of the Design Automation Con-
ference, 2002, pp. 431-436.

������ �����
� + " �"% �.;C' & (� + " ��0�% �C' * B " + %*; ��� B.B1. � + " �"% �.;C' & (� + " ��0�% �C' * E � 3 B + ; �.; B �' & E � 3�" + � � ����0 � . ' & B;� " + ; � � �.;�0' * E � 3�" + ; � �"% � BI. ' * B;� " + ; �.; � � �370 + B.B � B �C' & (B + � ��0�; �C' * B 0 + %*" ��� � . 370 + B.B � B �C' & (B + � ��0�; �C' * E � 370 + �"%%0�; �3 B + � ��0 � �C' & 3 % + 0 B.B ��0#' * B " + � � B ; � � . 3 B + � ��0 � �C' & 3 % + 0 B.B ��0#' * E � 3�" + � B " � � �" + �"% �.;"%%0#' & (0 + B 0"��0C0#' * E � 3�" + B �"%*;�0"� . " + �"% �.;"%%0#' & (0 + B 0"��0C0#' * B;� " + ; B ; B 0 �" + 0�" � �.;�0#' & (" + � � � B � B ' * B;� " + B ;�0 B � � . " + 0�" � �.;�0#' & (" + � � � B � B ' * E � 3�" + B.B ; � �.; (5)

Figure 3: Constraint set defining the validity region for a linear model

[5] A. Doboli, “Specification and Design-space Exploration
for High-level Synthesis of Analog and Mixed-signal Sys-
tems”, Ph.D. Thesis, University of Cincinnati, 2000.

[6] N. R. Dhanwada, A. Nunez, R. Vemuri, “Hierarchical
Constraint Transformation using Directed Interval Search
for Analog System Synthesis”, Proc. of DATE, 1999, pp.
328-335.

[7] L.M. Fu. Rule generation from neural networks. IEEE
Trans. Syst., Man., Cybern., 28:1114–1124, 1994.

[8] G.Gielen et al, “Analog circuit design optimization based
on symbolic simulator and simulated annealing”, IEEE
JSSC, Vol.25, 1990, pp.703-711.

[9] G. Gielen, R. Rutenbar, “Computer Aided Design of Ana-
log and Mixed-signal Integrated Circuits”, Proc. of IEEE,
vol 88, No 12, Dec 2000, pp. 1825-1852.

[10] R. Harjani, J. Shao, “Feasibility and Performance Region
Modeling of Analog and Digital Circuits”, Analog Inte-
grated Circuits and Signal Procesing, Kluwer, 1996.

[11] M. Krasnicki, R. Phelps, R. Rutenbar, R. Car-
ley, “MAELSTROM: Efficient Simulation-Based Synthe-
sis for Custom Analog Cells”, Proc. of the 36th ACM/IEEE
Design Automation Conference, 1999, pp.945-950.

[12] D. Leenaerts, W. van Bokhoven, “Piecewise Linear Mod-
eling and Analysis”, Kluwer, 1998.

[13] K. Laker, W. Sansen, ”Design of Analog Integrated Cir-
cuits and Systems”, McGraw Hill, 1994.

[14] H. Liu, A. Singhee, R. Rutenbar, R. Carley, “Remem-
brance of Circuit Past: Macromodeling by Data Mining in
Large Analog Design Spaces”, Proc. of the 39-th Design
Automation Conference, 2002, pp. 437-442.

[15] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learn-
ing internal representations by error propagation. In
D.E. Rumelhart and J.l. McClelland, editors, Parallel Dis-
tributed Processing, volume I+II. MIT Press, 1986.

[16] R. Setiono, W.K. Leow, and J.M. Zurada. Extraction of
rules from artificial neural networks for nonlinear regres-
sion. IEEE Trans. Neural Networks, 13(3):564–577, 2002.

[17] P.R. Thie. An introduction to linear programming and
game theory. John Wiley & Sons, 1988.

[18] S. Thrun. Extracting rules from artificial neural net-
works with distributed representations. In D. Touretzky
G. Tesauro and T. Leen, editors, Advances in Neural Pro-
ceesing Systems, volume 7. MIT Press, 1995.

[19] A.B. Tickle, R. Andrews, M. Golea, and J. Diederich.
The truth will come to light: directions and challenges
in extracting knowledge embedded within trained artifi-
cial neural networks. IEEE Trans. Neural Networks,
9(6):1057–1068, 1998.

[20] P. Vancorenland et al, ”A Layout-
Aware Synthesis Methodology for RF Circuits”, Proc. of
ICCAD, 2001, pp. 358-362.

