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 Abstract 
Efficient simulation of mixed signal designs requires the ability 
to quickly exchange analog and digital representations of a cell 
during the design and verification process. For the 
interconnection between analog nets and digital signals, 
connect modules are used. Mostly these connections elements 
are limited to being uni-directional when inserted automatically. 
The paper describes how true bi-directional connect modules 
can be realized in VERILOG-AMS by using special language 
features.  
 Introduction 
It is common to simulate analog and digital represented parts 
of a SOC simultaneously using Mixed Signal Simulators like the 
Cadence AMS Simulator. Mostly mixed signal standard 
languages (VERILOG-AMS, VHDL-AMS) are used throughout 
such designs. They describe the structure as well as the 
behavior of the design or IC. 
 
The simulation tool decides based on the kind of description 
inside of the model or of a part of the model, which structure or 
behavior will be evaluated in the digital domain or in the analog 
domain during the mixed signal simulation. 
 
What about when analog and digital interconnect? -  At these 
connection points discrete digital signals have to be 
transformed into continuous analog information and vice 
versa. Both VERILOG-AMS and VHDL-AMS are capable 
describing of such interaction behavior. Both are true mixed 
signal languages with model-internal cross-domain read access 
of values. 
 
VHDL-AMS requires manual or netlister based insertion of 
these connection elements, whereat types and natures must 
match or be compatible (1). VERILOG-AMS with its additional 
automatic insertion of connect elements during the design 
elaboration phase gives the user more flexibility in terms of 
using the language as a design language. The user is able to 
exchange the implementation of a model very quickly without 
the necessity of an afterwards manual type-matching or re-
netlisting of major parts of the design. The user just 
interconnects digital and analog wires in the schematic or in 
the text based design and specifies the rules defining what 
connect modules should be used for the possible cases of 
inter-connection. During design elaboration the disciplines get 
resolved and based on that the connect modules get inserted 
following the above mentioned connect rules (3). 
This paper talks about connect element modeling in VERILOG-
AMS. 

 Uni-Directional and Bi-Directional Connect Elements 
In a simple mixed signal case analog nets and digital signals are 
connected and only one of them is driving the other one. The 
connection is uni-directional. In the A-to-D case the 
connection element detects the analog voltage level and 
applies the appropriate logic state to the digital receivers. In 
the D-to-A case the connection element reads the state of the 
digital drivers at the input of the connection element and 
applies the voltage to the analog output net accordingly. 
The connection module features built into the VERILOG-AMS 
language enhance the D-to-A case by adding the capability of 
applying a different state than what the output of the digital 
driver delivers to the digital receivers being on the same wire 
like the digital drivers and the logic input of the connection 
element. This is useful for example, applying delay time caused 
by a certain analog load on a digital net. Because of the 
definition of the VERILOG-AMS language this is possible with 
connection modules having one single input pin. 
Especially in large SOC designs a third case is very common. 
There are blocks, represented as analog behavioral or as 
schematic, connected to bi-directional communication or data 
busses. That is, the analog block receives information and is 
also able to send information over the same connection. On the 
digital side there could be several blocks with INOUT 
connections at this bus. Each bus wire needs an INOUT 
connection module. The difficulty is that the connection 
module for automatic insertion during the elaboration phase 
can only have one pin on the logic side. That is, the connect 
module needs to be able to read and write at the same time via 
one single port to ensure true bi-directional behavior. 
 

Uni-Directional Example 
In the uni-directional analog-to-digital (d2a) case every change 
of the digital input state is detected. The input state 
information is used to control voltage and impedance of the 
analog output. In the simplest case the output structure 
consists of a controlled ideal voltage source and a controlled 
serial output resistor. 
The discrete real variables r2set and v2set (see EXAMPLE I) 
are set to the output impedance and output voltage levels that 
represent the analog output behavior for the given digital input 
state. Both trigger transition functions. A change of v2set lets 
the ideal voltage source V(x) change to the appropriate voltage 
level with the specified rise/fall time. At the same time a change 
of r2set triggers the transition of the output resistance 
 
R = V(x, aVal) / I(x, aVal). 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Creating a Bi-Directional Connect Module 
In the above example there was no feedback from the analog 
side back to the digital side. The connection was uni-
directional. In cases like shown in Fig. 1 the connect module 
has to work in both directions. How can we feed back 
information equivalent to the analog solution to the digital 
side? The idea is to use the driver/receiver segregation feature 
of the VERILOG-AMS language. Digital drivers and receivers 
are separated at digital wires connected to connect modules. 
The connect module detects what state the digital drivers 
connected to the digital wire apply. Using this information and 
other conditions the connect module can decide what logic 
state the digital receivers connected to the same wire will 
actually see. 
 

+

-

electrical network Verilog(D) structure

 
Fig. 1 Bi-Directional Connection 
 
A. From Digital to Analog 
Assuming for the moment there is only one logic block 
connected to the wire, the connection module inserted for this 
wire reads what the digital block drives on the net. The state 
could be an active 0 or 1, a Z or it could be undefined X. This 
information needs to be translated to analog and applied with 

the right driver strength at the analog output node. The 0 and 1 
states should apply an appropriate voltage Vout via a lower 
resistance Rout to the analog output node, Z should apply a 
voltage in a high resistive way, which could vary dependent 
on the process and is parameterized (Fig. 2). The undefined X 
state is handled in a special way. If driven to the logic input of 
the connection module, an X is directly applied to the digital 
receivers. In this case the voltage source and resistance 
applied to the analog output node will be set by user-defined 
parameters. Because there is no undefined state in the 
continuous analog domain, it is the choice of the simulation 
user to decide about the voltage he wants having generated in 
this case. He may want to apply this voltage in a very low 
resistive way to force the analog voltage settling at the desired 
voltage level relatively independent of the behavior of the 
connected analog circuitry. 
 
B. From Analog to Digital 
The analog solver of the mixed signal simulator resolves the 
analog output node of the connection element under the full 
recognition of the internal supply network and the analog 
structure of the connected analog cells. The resulting voltage 
V(aVal) from aVal to ground and current flow through Rout 
and through the Vout source represent the logic resolution on 
the analog side of the wire. This logic resolution available as 
analog voltage/current information is detected by the 
connection module (dVal_out) and fed back to the receivers in 
the logic block connected to this INOUT wire.  

dVal_out =

f(V(aVal), I(aVal))

dVal aVal
I(aVal)

V(aVal)

Rout=f(dVal_in)

Vout=f(dVal_in)

 
Fig. 2 Bi-Directional Connect Module 
 
If the voltage at the analog connection is below the 0-
threshold or above the 1-threshold, the 0 and 1 states are 
assigned to the digital INOUT port accordingly. If Vout leaves 
the 0 or 1 range i.e. after a rising edge of the digital input signal 
was detected, dVal_out stays unchanged for the first moment. 
If the voltage remains in the X-range for longer than a preset 
time limit xdelay the output dVal_out will change to X and 
stay X until the voltage moves back into the 0 or 1 range. This 
way too slow rise or fall transitions get detected. 
This mechanism is able to detect the Z-condition at the analog 
connection module node as well. Therefore the current 
information is used. Detection is possible only if the 
designated Z-voltage recognition level is within the X-range. If 
this is the case when a Z is detected at the digital input and the 
absolute current into the analog connect module port is less 
than a certain limit, then dVal_out will be set to Z. 

EXAMPLE I 
SIMPLE DIGITAL-TO-ANALOG CONNECT MODULE 

 
`include "disciplines.vams" 
`timescale 1ns / 10ps 
 
connectmodule d2a(dVal, aVal); 
input  dVal; 
output aVal; 
logic dVal; 
electrical aVal; 
 
// parameter declaration and initialization not shown 
 
always @dVal begin 
 case(dVal) 
  1'b0: begin v2set=vldrive;r2set=rldrive; end 
  1'b1: begin v2set=vhdrive;r2set=rhdrive; end 
  1'bx: begin v2set=vxdrive;r2set=rxdrive; end 
  1'bz: begin v2set=vzdrive;r2set=rzdrive; end 
 endcase 
end 
 
analog begin 
 V(x) <+ transition(v2set,0,vrise,vfall); 
I(x,aVal) <+ V(x,aVal) /  
  transition(r2set,0,rrise,rfall); 

end 
 
endmodule 
 



C. Implementation 
The statement “Assign dVal=dValout” applies the digital 
output state to the receiver connected to the logic INOUT port 
of the connect module (Example II). Cross statements are used 
for a precise detection of the voltage and the current threshold 
crossings related to the analog connect module port. 
The signals vstate and istate are used to monitor the analog 
output voltage and current. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The signal inXrange is used to show the analog voltage being 
in the X-range but for not longer than the time limit parameter 
xdelay. When the connect module read an undefined X on the 
logic side it also applies this X state back to the receivers. 
Table I summarizes the functionality around the istate and 
vstate signals. 
 
D. Example 
Fig. 3 shows the simulated waveform of the bi-directional case 
where the two digital drivers (signals digdrv1 and digdrv2) are 
connected to the digital port of the connect module. At point 
M1 both drivers apply 0. The signal dVal is the logic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXAMPLE II 
BASIC BI-DIRECTIONAL CONNECT MODULE 

 
`include "disciplines.vams" 
`timescale 1ns / 10ps 
 
connectmodule bidir(aVal, dVal); 
inout aVal, dVal; 
electrical aVal; 
logic dVal; 
parameter real maxHiZcurrent = 0.1u; 
parameter real xdelay = 1; 
parameter real zdelay = 0.5 * xdelay; 
 
// some parameter declarations not shown 
 
electrical x; 
reg dValout, istate, inXrange, outOfZcurrent; 
logic dValout; 
real v2set, r2set; 
integer vstate; 
 
assign dVal = dValout; 
 
// initialization not shown 
 
always @dVal begin 
 case(dVal) 
 1'b0: begin v2set=vldrive;r2set=rldrive; end 
 1'b1: begin v2set=vhdrive;r2set=rhdrive; end 
 1'bx: begin v2set=vxdrive;r2set=rxdrive; 

dValout=1'bx; 
  end 

 1'bz: begin v2set=vzdrive;r2set=rzdrive; end 
 endcase 
end 
 
always @(cross(V(aVal)-thresholdHi,1)) 

begin vstate=1; inXrange=0; end 
always @(cross(V(aVal)-thresholdHi,-1)) inXrange=1; 
always @(cross(V(aVal)-thresholdLo,1))  inXrange=1; 
always @(cross(V(aVal)-thresholdLo,-1))  

begin vstate=3; inXrange=0; end 
 
always @(posedge inXrange) begin:XRangeDelay 
    #xdelay 
    vstate=2; 
    inXrange=0; 
end 
 
always @(negedge inXrange) disable XRangeDelay; 
 
always @(posedge outOfZcurrent) 
begin:outOfZCurrentDelay 
    #zdelay 
    istate=1; 
    outOfZcurrent=0; 
end 
 
always @(negedge outOfZcurrent) 

disable outOfZCurrentDelay; 
 
endmodule 

EXAMPLE II 
CONTINUED 

 
always @(cross(abs(I(x,aVal))-maxHiZcurrent,1)) 
outOfZcurrent=1; 
 

always @(cross(abs(I(x,aVal))-maxHiZcurrent,-1)) 
begin istate=0; outOfZcurrent=0;end 

 
always @(vstate or istate) begin 
 case(vstate) 
 1: dValout= (dVal===1'bx) ? 1'bx : 1'b1; 
 2: dValout= ((istate===1'b0)&(dVal===1'bz))?1'bz:1'bx; 
 3: dValout= (dVal===1'bx) ? 1'bx : 1'b0; 
 endcase 
end 
 
analog begin 
 V(x) <+ transition(v2set,0,vrise,vfall); 
 I(x,aVal) <+ V(x,aVal) /  
  transition(r2set,0,rrise,rfall); 
end 
 
endmodule 

TABLE I 
FUNTION TABLE 
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VSTATE 
1  V(aVal) > thresholdHi 
2 thresholdHi >= V(aVal) >= thresholdLo 
3 V(aVal) < thresholdLo 

 
ISTATE 

0 abs(I(aVal)) <= maxHiZcurrent 
1 abs(I(aVal)) >   maxHiZcurrent 

 



 
 
Fig. 3   Example Waveform A 
 
resolution of both driver signals. This is the logic input of the 
connect module. Accordingly v2set is set to the low voltage 
level. The voltage aVal at the analog port of the connect 
module is almost at the same low voltage level. Note that this 
voltage level is determined by the analog circuitry connected 
to the analog port of the connect module as well. This results 
in vstate being at 3 and dValout (the logic state the connect 
module is applying to the digital receivers connected to the 
digital port) being at 0. In this case dVal and dValout are 
equivalent. At point M2 the digital drivers force opposite 
states. This results in a resolution to X on dVal. Therefore also 
dValout turns X immediately. Obviously the analog circuitry at 
the analog port is very high resistive, because only a low 
current is necessary to force 2.5 Volts to this node. That is why 
istate is 0. But istate does not influence dValout, because 
dVal is at X. 
At point M5 both drivers are HiZ. Also dValout shows Z after 
the current through the analog port has settled and istate 
confirms that the analog circuitry at the analog port is in the Z-
state also. 
In Fig. 4 the external analog circuitry at the analog port of the 
connect module drives a voltage close to 0 Volts. This results 
in a 0 logic state at dValout when the digital drivers are at Z 
(see point M1) or at 0 also. In all other cases dValout delivers 
an X to the digital receivers  
 

Enhancements 
The above example contains a minimum set of connect module 
features. Enhancing this model means adding features bringing 
the model closer to the reality.  The user should be aware that 
adding features means also lowering the simulation speed. 
There could be very many connect modules inserted in the 
design, so adding additional features could slow down the 
simulation remarkable. It would be necessary to supply the 
user with several 

 
 
Fig. 4   Example Waveform B 
 
connect modules with different detail level. That way the user 
could choose a model with respect to the desired detail-to-
speed ratio. 
 
A.  Power Supply Dependency 
One of the first enhancements the user would think of is power 
supply dependency of the build-in thresholds and the output 
voltage levels. This could be done easily by binding the 
connect module parameters to global power supply parameter. 
This way a static power supply dependency is realized. If the 
simulation of the design requires dynamic power supply 
dependencies of the connect module, this can be implemented 
in VERILOG-AMS by referencing or connecting to global 
power supply nodes from inside of the connect module. Effects 
like power on/off behavior or transient power supply noise 
become visible. For this purpose the Cadence AMS Simulator 
allows the use of inherited connections (via VERILOG-AMS 
attributes) inside of connect modules as well. 
 
B.  Dependency on The Number of Digital Drivers 
The connect module shown in EXAMPLE II uses the resolved 
logic state of the drivers on the digital pin as the logic input 
signal. The analog network inside of the connect module is 
built independently of the number of drivers on the digital net. 
EXAMPLE III shows a bi-directional connect module 
containing this dependency. 
 
From inside of a connect module information about the digital 
drivers on a digital net can be accessed. The access functions 
are defined in the VERILOG-AMS Language Reference Manual 
(3). The function $driver_count(<wire_name>) returns the 
number of drivers connected. The favorable way to ask for the 
number of drivers is the digital initial block, because the 
number of drivers will not change during the simulation. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The function $driver_state(<wire_name>,<driver_counter>) 
returns the status of the specified driver and the function 
driver_update(<wire_name>) returns true if at least one of 
the connected drivers on this net changes its state.  
If we would stay with our current analog network 
implementation (serial resistance and voltage source to 
ground) it would get difficult to add dependency on the 
number of digital drivers and their state. For every digital driver 
we would need to switch such kind of resistance/voltage 
source branch in parallel. This leads to a topology change 
dependent on the number of digital drivers. It is better if we 
use in this case a different analog output structure (Fig. 5) that 
can be made easily dependent on the number of drivers 
without changing the topology.  
Vhdrive and Vldrive are constant voltage sources. The Rh and 
Rl resistors are dependent on the number of digital drivers and 
on their current states, i.e. Rh is calculated based on the 
number of digital drivers that are X or 1 multiplied with the 
switched-on conductance and added to the switched-off 
conductance multiplied with the number of drivers being Z or 
L. 
The voltage on the analog port and the absolute current 
difference of the current through both of the resistances are 
used to determine the logical state applied to the digital 
receivers. 
After characterizing according to the technology used, this 
connect module models the actual circuit behavior already very 
realistic. An additional enhancement could be to take the 

dVal_out =

f(V(aVal), Ih, Il)

dVal aVal

V(aVal)

Rh=f(drivers)

Vldrive

Rl=f(drivers)

Vhdrive

Ih

Il

 
Fig. 5 Connect Module Structure 

EXAMPLE III 
BI-DIRECTIONAL CONNECT MODULE WITH DEPENDENCY ON NUMBER 

OF DIGITAL DRIVERS 
 

`include "disciplines.vams" 
`timescale 1ns / 10ps 
 
connectmodule bidir(aVal, dVal); 
inout aVal, dVal; 
electrical aVal; 
logic dVal; 
 
electrical x, y; 
reg dValout; 
 
// some declarations not shown 
 
parameter real ghondrive=1.0/rhondrive; 
parameter real ghoffdrive=1.0/rhoffdrive; 
parameter real glondrive=1.0/rlondrive; 
parameter real gloffdrive=1.0/rloffdrive; 
real rh2set, rl2set; 
integer DrCount, i; 
integer XCount, ZCount, LCount, HCount; 
 
assign dVal = dValout; 
 
initial DrCount=$driver_count(dVal); 
 
// initialization not shown 
 
 always @(driver_update(dVal)) begin 
    XCount=0; ZCount=0; LCount=0; HCount=0; 
    for (i=0; i<DrCount; i=i+1) 
     case($driver_state(dVal,i)) 
     1'b0: LCount=LCount+1; 
     1'b1: HCount=HCount+1; 
     1'bx: begin XCount=XCount+1; dValout=1'bx; end 
     1'bz: ZCount=ZCount+1; 

endcase 
rh2set=1.0/((XCount+HCount)*ghondrive+  

(ZCount+LCount)*ghoffdrive); 
  rl2set=1.0/((XCount+LCount)*glondrive + 

(ZCount+HCount)*gloffdrive); 
 end 
 
always @(cross(V(aVal)-thresholdHi,1))  

begin vstate=1; inXrange=0; end 
always @(cross(V(aVal)-thresholdHi,-1)) inXrange=1; 
always @(cross(V(aVal)-thresholdLo,1))  inXrange=1; 
always @(cross(V(aVal)-thresholdLo,-1))  

begin vstate=3; inXrange=0; end 
 
 always @(posedge inXrange)  
   begin : XRangeDelay 
   #xdelay 
   vstate=2; 
   inXrange=0; 
 end 
 
 always @(negedge inXrange) disable XRangeDelay; 
 
 always @(posedge outOfZcurrent) 
   begin : outOfZCurrentDelay 
   #zdelay 
   istate=1; 
   outOfZcurrent=0; 
 end 
 
always @(negedge outOfZcurrent) disable 
outOfZCurrentDelay; 
 
always @(cross(abs(I(x,aVal)-I(aVal,y))-

maxHiZcurrent,1)) outOfZcurrent=1; 
always @(cross(abs(I(x,aVal)-I(aVal,y))- 

maxHiZcurrent,-1)) 
begin istate=0;  outOfZcurrent=0; end 

 

EXAMPLE III 
CONTINUED 

 always @(vstate or istate) begin 
     case(vstate) 
     1: dValout= (dVal===1'bx) ? 1'bx : 1'b1; 
     2: dValout= ((istate===1'b0) & (dVal===1'bz)) ? 
1'bz : 1'bx; 
     3: dValout= (dVal===1'bx) ? 1'bx : 1'b0; 
     endcase 
 end 
 
analog begin 
 V(x) <+ vhdrive; 
 V(y) <+ vldrive; 
 I(x,aVal) <+ V(x,aVal) / 
transition(rh2set,0,rrise,rfall); 
 I(aVal,y) <+ V(aVal,y) / 
transition(rl2set,0,rrise,rfall); 
end 
 
endmodule 



 
strength of each digital driver into account and  varying both 
resistances accordingly. 
 
 Summary 
Bi-directional connect modules have been created using 
VERILOG-AMS language features. Connect module examples 
with different level of modeled detail were shown. These 
modules can be used for rule based automatic insertion 
according to the VERILOG-AMS language reference manual. 
Automatic Insertion of connect modules during the design 
elaboration phase enables an efficient mixed-signal simulation 
of schematic as well as text based designs. 
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