
 BI-DIRECTIONAL MIXED SIGNAL CONNECTION MODULES
FOR AUTOMATIC INSERTION

Olaf Zinke

Cadence Design Systems
San Diego, CA, USA
ozinke@cadence.com

 Abstract
Efficient simulation of mixed signal designs requires the ability
to quickly exchange analog and digital representations of a cell
during the design and verification process. For the
interconnection between analog nets and digital signals,
connect modules are used. Mostly these connections elements
are limited to being uni-directional when inserted automatically.
The paper describes how true bi-directional connect modules
can be realized in VERILOG-AMS by using special language
features.
 Introduction
It is common to simulate analog and digital represented parts
of a SOC simultaneously using Mixed Signal Simulators like the
Cadence AMS Simulator. Mostly mixed signal standard
languages (VERILOG-AMS, VHDL-AMS) are used throughout
such designs. They describe the structure as well as the
behavior of the design or IC.

The simulation tool decides based on the kind of description
inside of the model or of a part of the model, which structure or
behavior will be evaluated in the digital domain or in the analog
domain during the mixed signal simulation.

What about when analog and digital interconnect? - At these
connection points discrete digital signals have to be
transformed into continuous analog information and vice
versa. Both VERILOG-AMS and VHDL-AMS are capable
describing of such interaction behavior. Both are true mixed
signal languages with model-internal cross-domain read access
of values.

VHDL-AMS requires manual or netlister based insertion of
these connection elements, whereat types and natures must
match or be compatible (1). VERILOG-AMS with its additional
automatic insertion of connect elements during the design
elaboration phase gives the user more flexibility in terms of
using the language as a design language. The user is able to
exchange the implementation of a model very quickly without
the necessity of an afterwards manual type-matching or re-
netlisting of major parts of the design. The user just
interconnects digital and analog wires in the schematic or in
the text based design and specifies the rules defining what
connect modules should be used for the possible cases of
inter-connection. During design elaboration the disciplines get
resolved and based on that the connect modules get inserted
following the above mentioned connect rules (3).
This paper talks about connect element modeling in VERILOG-
AMS.

 Uni-Directional and Bi-Directional Connect Elements
In a simple mixed signal case analog nets and digital signals are
connected and only one of them is driving the other one. The
connection is uni-directional. In the A-to-D case the
connection element detects the analog voltage level and
applies the appropriate logic state to the digital receivers. In
the D-to-A case the connection element reads the state of the
digital drivers at the input of the connection element and
applies the voltage to the analog output net accordingly.
The connection module features built into the VERILOG-AMS
language enhance the D-to-A case by adding the capability of
applying a different state than what the output of the digital
driver delivers to the digital receivers being on the same wire
like the digital drivers and the logic input of the connection
element. This is useful for example, applying delay time caused
by a certain analog load on a digital net. Because of the
definition of the VERILOG-AMS language this is possible with
connection modules having one single input pin.
Especially in large SOC designs a third case is very common.
There are blocks, represented as analog behavioral or as
schematic, connected to bi-directional communication or data
busses. That is, the analog block receives information and is
also able to send information over the same connection. On the
digital side there could be several blocks with INOUT
connections at this bus. Each bus wire needs an INOUT
connection module. The difficulty is that the connection
module for automatic insertion during the elaboration phase
can only have one pin on the logic side. That is, the connect
module needs to be able to read and write at the same time via
one single port to ensure true bi-directional behavior.

Uni-Directional Example
In the uni-directional analog-to-digital (d2a) case every change
of the digital input state is detected. The input state
information is used to control voltage and impedance of the
analog output. In the simplest case the output structure
consists of a controlled ideal voltage source and a controlled
serial output resistor.
The discrete real variables r2set and v2set (see EXAMPLE I)
are set to the output impedance and output voltage levels that
represent the analog output behavior for the given digital input
state. Both trigger transition functions. A change of v2set lets
the ideal voltage source V(x) change to the appropriate voltage
level with the specified rise/fall time. At the same time a change
of r2set triggers the transition of the output resistance

R = V(x, aVal) / I(x, aVal).

 Creating a Bi-Directional Connect Module
In the above example there was no feedback from the analog
side back to the digital side. The connection was uni-
directional. In cases like shown in Fig. 1 the connect module
has to work in both directions. How can we feed back
information equivalent to the analog solution to the digital
side? The idea is to use the driver/receiver segregation feature
of the VERILOG-AMS language. Digital drivers and receivers
are separated at digital wires connected to connect modules.
The connect module detects what state the digital drivers
connected to the digital wire apply. Using this information and
other conditions the connect module can decide what logic
state the digital receivers connected to the same wire will
actually see.

+

-

electrical network Verilog(D) structure

Fig. 1 Bi-Directional Connection

A. From Digital to Analog
Assuming for the moment there is only one logic block
connected to the wire, the connection module inserted for this
wire reads what the digital block drives on the net. The state
could be an active 0 or 1, a Z or it could be undefined X. This
information needs to be translated to analog and applied with

the right driver strength at the analog output node. The 0 and 1
states should apply an appropriate voltage Vout via a lower
resistance Rout to the analog output node, Z should apply a
voltage in a high resistive way, which could vary dependent
on the process and is parameterized (Fig. 2). The undefined X
state is handled in a special way. If driven to the logic input of
the connection module, an X is directly applied to the digital
receivers. In this case the voltage source and resistance
applied to the analog output node will be set by user-defined
parameters. Because there is no undefined state in the
continuous analog domain, it is the choice of the simulation
user to decide about the voltage he wants having generated in
this case. He may want to apply this voltage in a very low
resistive way to force the analog voltage settling at the desired
voltage level relatively independent of the behavior of the
connected analog circuitry.

B. From Analog to Digital
The analog solver of the mixed signal simulator resolves the
analog output node of the connection element under the full
recognition of the internal supply network and the analog
structure of the connected analog cells. The resulting voltage
V(aVal) from aVal to ground and current flow through Rout
and through the Vout source represent the logic resolution on
the analog side of the wire. This logic resolution available as
analog voltage/current information is detected by the
connection module (dVal_out) and fed back to the receivers in
the logic block connected to this INOUT wire.

dVal_out =

f(V(aVal), I(aVal))

dVal aVal
I(aVal)

V(aVal)

Rout=f(dVal_in)

Vout=f(dVal_in)

Fig. 2 Bi-Directional Connect Module

If the voltage at the analog connection is below the 0-
threshold or above the 1-threshold, the 0 and 1 states are
assigned to the digital INOUT port accordingly. If Vout leaves
the 0 or 1 range i.e. after a rising edge of the digital input signal
was detected, dVal_out stays unchanged for the first moment.
If the voltage remains in the X-range for longer than a preset
time limit xdelay the output dVal_out will change to X and
stay X until the voltage moves back into the 0 or 1 range. This
way too slow rise or fall transitions get detected.
This mechanism is able to detect the Z-condition at the analog
connection module node as well. Therefore the current
information is used. Detection is possible only if the
designated Z-voltage recognition level is within the X-range. If
this is the case when a Z is detected at the digital input and the
absolute current into the analog connect module port is less
than a certain limit, then dVal_out will be set to Z.

EXAMPLE I
SIMPLE DIGITAL-TO-ANALOG CONNECT MODULE

`include "disciplines.vams"
`timescale 1ns / 10ps

connectmodule d2a(dVal, aVal);
input dVal;
output aVal;
logic dVal;
electrical aVal;

// parameter declaration and initialization not shown

always @dVal begin
 case(dVal)
 1'b0: begin v2set=vldrive;r2set=rldrive; end
 1'b1: begin v2set=vhdrive;r2set=rhdrive; end
 1'bx: begin v2set=vxdrive;r2set=rxdrive; end
 1'bz: begin v2set=vzdrive;r2set=rzdrive; end
 endcase
end

analog begin
 V(x) <+ transition(v2set,0,vrise,vfall);
I(x,aVal) <+ V(x,aVal) /
 transition(r2set,0,rrise,rfall);

end

endmodule

C. Implementation
The statement “Assign dVal=dValout” applies the digital
output state to the receiver connected to the logic INOUT port
of the connect module (Example II). Cross statements are used
for a precise detection of the voltage and the current threshold
crossings related to the analog connect module port.
The signals vstate and istate are used to monitor the analog
output voltage and current.

The signal inXrange is used to show the analog voltage being
in the X-range but for not longer than the time limit parameter
xdelay. When the connect module read an undefined X on the
logic side it also applies this X state back to the receivers.
Table I summarizes the functionality around the istate and
vstate signals.

D. Example
Fig. 3 shows the simulated waveform of the bi-directional case
where the two digital drivers (signals digdrv1 and digdrv2) are
connected to the digital port of the connect module. At point
M1 both drivers apply 0. The signal dVal is the logic

EXAMPLE II
BASIC BI-DIRECTIONAL CONNECT MODULE

`include "disciplines.vams"
`timescale 1ns / 10ps

connectmodule bidir(aVal, dVal);
inout aVal, dVal;
electrical aVal;
logic dVal;
parameter real maxHiZcurrent = 0.1u;
parameter real xdelay = 1;
parameter real zdelay = 0.5 * xdelay;

// some parameter declarations not shown

electrical x;
reg dValout, istate, inXrange, outOfZcurrent;
logic dValout;
real v2set, r2set;
integer vstate;

assign dVal = dValout;

// initialization not shown

always @dVal begin
 case(dVal)
 1'b0: begin v2set=vldrive;r2set=rldrive; end
 1'b1: begin v2set=vhdrive;r2set=rhdrive; end
 1'bx: begin v2set=vxdrive;r2set=rxdrive;

dValout=1'bx;
 end

 1'bz: begin v2set=vzdrive;r2set=rzdrive; end
 endcase
end

always @(cross(V(aVal)-thresholdHi,1))

begin vstate=1; inXrange=0; end
always @(cross(V(aVal)-thresholdHi,-1)) inXrange=1;
always @(cross(V(aVal)-thresholdLo,1)) inXrange=1;
always @(cross(V(aVal)-thresholdLo,-1))

begin vstate=3; inXrange=0; end

always @(posedge inXrange) begin:XRangeDelay
 #xdelay
 vstate=2;
 inXrange=0;
end

always @(negedge inXrange) disable XRangeDelay;

always @(posedge outOfZcurrent)
begin:outOfZCurrentDelay
 #zdelay
 istate=1;
 outOfZcurrent=0;
end

always @(negedge outOfZcurrent)

disable outOfZCurrentDelay;

endmodule

EXAMPLE II
CONTINUED

always @(cross(abs(I(x,aVal))-maxHiZcurrent,1))
outOfZcurrent=1;

always @(cross(abs(I(x,aVal))-maxHiZcurrent,-1))
begin istate=0; outOfZcurrent=0;end

always @(vstate or istate) begin
 case(vstate)
 1: dValout= (dVal===1'bx) ? 1'bx : 1'b1;
 2: dValout= ((istate===1'b0)&(dVal===1'bz))?1'bz:1'bx;
 3: dValout= (dVal===1'bx) ? 1'bx : 1'b0;
 endcase
end

analog begin
 V(x) <+ transition(v2set,0,vrise,vfall);
 I(x,aVal) <+ V(x,aVal) /
 transition(r2set,0,rrise,rfall);
end

endmodule

TABLE I
FUNTION TABLE

0d30

xd20

xd10
xd31

xd21

1d11

0d3z
x12z

z02z

1d1z

xddx
dVal_outISTATEVSTATEdVal_in

0d30

xd20

xd10
xd31

xd21

1d11

0d3z
x12z

z02z

1d1z

xddx
dVal_outISTATEVSTATEdVal_in

VSTATE
1 V(aVal) > thresholdHi
2 thresholdHi >= V(aVal) >= thresholdLo
3 V(aVal) < thresholdLo

ISTATE

0 abs(I(aVal)) <= maxHiZcurrent
1 abs(I(aVal)) > maxHiZcurrent

Fig. 3 Example Waveform A

resolution of both driver signals. This is the logic input of the
connect module. Accordingly v2set is set to the low voltage
level. The voltage aVal at the analog port of the connect
module is almost at the same low voltage level. Note that this
voltage level is determined by the analog circuitry connected
to the analog port of the connect module as well. This results
in vstate being at 3 and dValout (the logic state the connect
module is applying to the digital receivers connected to the
digital port) being at 0. In this case dVal and dValout are
equivalent. At point M2 the digital drivers force opposite
states. This results in a resolution to X on dVal. Therefore also
dValout turns X immediately. Obviously the analog circuitry at
the analog port is very high resistive, because only a low
current is necessary to force 2.5 Volts to this node. That is why
istate is 0. But istate does not influence dValout, because
dVal is at X.
At point M5 both drivers are HiZ. Also dValout shows Z after
the current through the analog port has settled and istate
confirms that the analog circuitry at the analog port is in the Z-
state also.
In Fig. 4 the external analog circuitry at the analog port of the
connect module drives a voltage close to 0 Volts. This results
in a 0 logic state at dValout when the digital drivers are at Z
(see point M1) or at 0 also. In all other cases dValout delivers
an X to the digital receivers

Enhancements
The above example contains a minimum set of connect module
features. Enhancing this model means adding features bringing
the model closer to the reality. The user should be aware that
adding features means also lowering the simulation speed.
There could be very many connect modules inserted in the
design, so adding additional features could slow down the
simulation remarkable. It would be necessary to supply the
user with several

Fig. 4 Example Waveform B

connect modules with different detail level. That way the user
could choose a model with respect to the desired detail-to-
speed ratio.

A. Power Supply Dependency
One of the first enhancements the user would think of is power
supply dependency of the build-in thresholds and the output
voltage levels. This could be done easily by binding the
connect module parameters to global power supply parameter.
This way a static power supply dependency is realized. If the
simulation of the design requires dynamic power supply
dependencies of the connect module, this can be implemented
in VERILOG-AMS by referencing or connecting to global
power supply nodes from inside of the connect module. Effects
like power on/off behavior or transient power supply noise
become visible. For this purpose the Cadence AMS Simulator
allows the use of inherited connections (via VERILOG-AMS
attributes) inside of connect modules as well.

B. Dependency on The Number of Digital Drivers
The connect module shown in EXAMPLE II uses the resolved
logic state of the drivers on the digital pin as the logic input
signal. The analog network inside of the connect module is
built independently of the number of drivers on the digital net.
EXAMPLE III shows a bi-directional connect module
containing this dependency.

From inside of a connect module information about the digital
drivers on a digital net can be accessed. The access functions
are defined in the VERILOG-AMS Language Reference Manual
(3). The function $driver_count(<wire_name>) returns the
number of drivers connected. The favorable way to ask for the
number of drivers is the digital initial block, because the
number of drivers will not change during the simulation.

The function $driver_state(<wire_name>,<driver_counter>)
returns the status of the specified driver and the function
driver_update(<wire_name>) returns true if at least one of
the connected drivers on this net changes its state.
If we would stay with our current analog network
implementation (serial resistance and voltage source to
ground) it would get difficult to add dependency on the
number of digital drivers and their state. For every digital driver
we would need to switch such kind of resistance/voltage
source branch in parallel. This leads to a topology change
dependent on the number of digital drivers. It is better if we
use in this case a different analog output structure (Fig. 5) that
can be made easily dependent on the number of drivers
without changing the topology.
Vhdrive and Vldrive are constant voltage sources. The Rh and
Rl resistors are dependent on the number of digital drivers and
on their current states, i.e. Rh is calculated based on the
number of digital drivers that are X or 1 multiplied with the
switched-on conductance and added to the switched-off
conductance multiplied with the number of drivers being Z or
L.
The voltage on the analog port and the absolute current
difference of the current through both of the resistances are
used to determine the logical state applied to the digital
receivers.
After characterizing according to the technology used, this
connect module models the actual circuit behavior already very
realistic. An additional enhancement could be to take the

dVal_out =

f(V(aVal), Ih, Il)

dVal aVal

V(aVal)

Rh=f(drivers)

Vldrive

Rl=f(drivers)

Vhdrive

Ih

Il

Fig. 5 Connect Module Structure

EXAMPLE III
BI-DIRECTIONAL CONNECT MODULE WITH DEPENDENCY ON NUMBER

OF DIGITAL DRIVERS

`include "disciplines.vams"
`timescale 1ns / 10ps

connectmodule bidir(aVal, dVal);
inout aVal, dVal;
electrical aVal;
logic dVal;

electrical x, y;
reg dValout;

// some declarations not shown

parameter real ghondrive=1.0/rhondrive;
parameter real ghoffdrive=1.0/rhoffdrive;
parameter real glondrive=1.0/rlondrive;
parameter real gloffdrive=1.0/rloffdrive;
real rh2set, rl2set;
integer DrCount, i;
integer XCount, ZCount, LCount, HCount;

assign dVal = dValout;

initial DrCount=$driver_count(dVal);

// initialization not shown

 always @(driver_update(dVal)) begin
 XCount=0; ZCount=0; LCount=0; HCount=0;
 for (i=0; i<DrCount; i=i+1)
 case($driver_state(dVal,i))
 1'b0: LCount=LCount+1;
 1'b1: HCount=HCount+1;
 1'bx: begin XCount=XCount+1; dValout=1'bx; end
 1'bz: ZCount=ZCount+1;

endcase
rh2set=1.0/((XCount+HCount)*ghondrive+

(ZCount+LCount)*ghoffdrive);
 rl2set=1.0/((XCount+LCount)*glondrive +

(ZCount+HCount)*gloffdrive);
 end

always @(cross(V(aVal)-thresholdHi,1))

begin vstate=1; inXrange=0; end
always @(cross(V(aVal)-thresholdHi,-1)) inXrange=1;
always @(cross(V(aVal)-thresholdLo,1)) inXrange=1;
always @(cross(V(aVal)-thresholdLo,-1))

begin vstate=3; inXrange=0; end

 always @(posedge inXrange)
 begin : XRangeDelay
 #xdelay
 vstate=2;
 inXrange=0;
 end

 always @(negedge inXrange) disable XRangeDelay;

 always @(posedge outOfZcurrent)
 begin : outOfZCurrentDelay
 #zdelay
 istate=1;
 outOfZcurrent=0;
 end

always @(negedge outOfZcurrent) disable
outOfZCurrentDelay;

always @(cross(abs(I(x,aVal)-I(aVal,y))-

maxHiZcurrent,1)) outOfZcurrent=1;
always @(cross(abs(I(x,aVal)-I(aVal,y))-

maxHiZcurrent,-1))
begin istate=0; outOfZcurrent=0; end

EXAMPLE III
CONTINUED

 always @(vstate or istate) begin
 case(vstate)
 1: dValout= (dVal===1'bx) ? 1'bx : 1'b1;
 2: dValout= ((istate===1'b0) & (dVal===1'bz)) ?
1'bz : 1'bx;
 3: dValout= (dVal===1'bx) ? 1'bx : 1'b0;
 endcase
 end

analog begin
 V(x) <+ vhdrive;
 V(y) <+ vldrive;
 I(x,aVal) <+ V(x,aVal) /
transition(rh2set,0,rrise,rfall);
 I(aVal,y) <+ V(aVal,y) /
transition(rl2set,0,rrise,rfall);
end

endmodule

strength of each digital driver into account and varying both
resistances accordingly.

 Summary
Bi-directional connect modules have been created using
VERILOG-AMS language features. Connect module examples
with different level of modeled detail were shown. These
modules can be used for rule based automatic insertion
according to the VERILOG-AMS language reference manual.
Automatic Insertion of connect modules during the design
elaboration phase enables an efficient mixed-signal simulation
of schematic as well as text based designs.

 References

(1) “IEEE Standard VHDL Analog and Mixed-Signal Extensions,"

Institute of Electrical and Electronics Engineers, New York,
December 1999.

(2) “ IEEE Standard Verilog Hardware Description Language,”
Institute of Electrical and Electronics Engineers, IEEE 1364-
2001, New York, September 2001.

(3) “Verilog-AMS Language Reference Manual,” Open Verilog
International, Los Gatos, Version 2.0.

