

Remove Model Implementation Bottleneck

Zhihong Liu
Cadence Design Systems, Inc.

Model is One of The Keys for Simulation cadence **Accuracy**

- SPICE consists of numerical algorithms to solve nonlinear differential equations that characterize analog circuits that are represented by interconnections and device models
 - Approximately 50 transistor device models supported today
 - Some hundreds of various passive components models are implemented natively or through Verilog-A
 - Major source of quality issues with ANY simulator (second to Parser)
 - Typically implement 3 models every year plus various updates
 - BSIM versions, Philips MOS9, VBIC, SOI ...

Model Implementation

- Simulator vendors do not develop device models in general
 - Easier to support
 - Different expertise for model development
 - Lack of technology excess
- Models are (re)implemented in SPICE by hand
 - Derivate expressions need to be calculated manually
 - Difficult to capture errors and bugs
 - Parameter clamping; calculation efficiency
 - 3-6 man-months of implementation effort
 - Often public domain code is not in commercial quality

Simulator Vendors Are the Bottleneck for New Model Trial

- Model developers can not add model feature freely
 - Each revision takes 3-6 months to the hands of designers
- Different vendors have different tricks/standard for model implementation
 - Standardized model often does not behave the same
- Many proprietary model implementation interfaces
 - Sharp learning curve, required extensive simulator knowledge to make the implementation work correctly

Modelcompiler to Remove This Bottleneck

- Verilog-A language is powerful enough to allow device models to be described and proto-typed completely
 - Speed is the major limitation
- A model compiler will remove the speed limitation
 - Automatically calculates derivatives
 - Bug free by construction
 - Model developers can have a common interface