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ABSTRACT
This paper considers the advantages of statistically motivated rea-
soning in analyzing the nonlinear model reduction problem. By
adopting an information-theoretic analysis, we argue that the gen-
eral analog macromodeling is tractable on average by nonlinear re-
duction methods. We provide examples to illustrate the importance
of utilizing prior information, and provide a general outline of al-
gorithms based on reproducing kernel Hilbert space machinery.

1. NEED FOR AUTOMATIC MODELING
In the past decade, the need to reduce the time and risk required

for implementation of analog/mixed-signal (AMS) designs has be-
come increasingly evident. This is particularly true because of the
increasingly complex designs arising in the communications area.
As a result, interest has grown, as witnessed by the emergence of
the analog modeling languages Verilog-AMS and VHDL-AMS, in
more structured design methodologies that utilize behavioral mod-
eling in the specification, design, and verification stages. Good
behavioral models are difficult to write and verify by hand. Model
creation requires a skill set somewhat distinct from that needed for
circuit design. Those designers who do possess the necessary skills
are often not the consumers of the final models, thus often not mo-
tivated to produce high quality models. The intent of developing
automated nonlinear analog modeling tools is to ameliorate these
difficulties, while still reaping the advantages of behavioral mod-
eling. Most recent work on automatic macromodeling systems has
originated from two major driving forces.

The first driver is the desire to create automatic or semi-automatic
analog synthesis systems. Several approaches to analog synthe-
sis[1, 2] depend on the generation of macromodels that describe the
performanceof a circuit or class of circuits, as a function of design
parameters. This type of model typically describes the high-level
behavior, in terms of figure of merit parameters such as gain, noise
figure, and power consumption, of a single circuit block, as a func-
tion of high-level design parameters. An interesting reversal on the
usual theme is found in [3], where performance macromodels are
obtained as a by-product of the data obtained from a synthesis tool
operating via circuit level analysis.

The second driver is the need for verification of the operation of
analog sub-components when integrated into a larger design such
as a wireless communications system. Macromodels are potentially
helpful in this context as they can accelerate simulation-based ver-
ification, offer isolation from the details of the lower-level imple-
mentation, and provide some degree of IP-protection if constructed
to hide implementation details. To date, simulation models, un-
like the performance type models, typically are constructed for a

specific circuit topology and a fixed set of circuit parameters (how-
ever see [4] for a contrary example). Their most important feature,
which to date has not typically been shared by the synthesis-driven
models, is that simulation macromodels, since they can be instan-
tiated in a simulator, can be composed with other macromodels
in a circuit testbench familiar to designers. Composability is very
important, as it means that complex systems can be modeled by
assembling together models of simpler blocks. Composability also
means that a macromodel can be utilized or verified in the context
of other circuitry. This paper will focus on macromodels intended
primarily for simulation applications. In particular, we will be con-
cerned with themodel reductionparadigm.

2. A MODEL REDUCTION BESTIARY
An automatic macromodeling algorithm must meet three main

criteria. First, the models it creates must be accurate, and the ac-
curacy must be controllable. Second, the models must be suffi-
ciently compact to achieve substantial simulation speedups. Third,
the models must be generated using reasonable amounts of compu-
tational resources. The definition of “reasonable computational re-
sources” is context dependent. Models that are generated “on-the-
fly” and used once must be generated very quickly, more quickly
than a full simulation would take. Models that are generated off-
line and repeatedly re-used can be generated in a langorous fashion.
These requirements, particularly the accuracy and compactness re-
quirements, encourage a “white-box” approach to the model gener-
ation problem, that is, an approach that uses the maximal amount of
information available to the macromodel generation tool, the orig-
inal circuit itself. This is the model reduction paradigm.

2.1 Linear Model Reduction
Model reduction has met with considerable success for modeling

linear, time-invariant passive components algorithms [5, 6] as well
as time-varying linear systems[7, 8]. The now-standard means for
analyzing these algorithms is the projection formalism. Projection
methods reduce linear systems of the form

E
dx
dt

= Ax+Bu; y=Cx+Du (1)

whereu(t) represents system inputs,y(t) system outputs,x(t) sys-
tem state, a by drawing an approximate state vector ˆx = Vz from
a lower-dimensional subspace defined by the column span ofV.
A matrix W specifies a Petrov-Galerkin condition; the residuals of
the system (1), under the substitution ˆx = Vz, must be orthogonal
to the column space ofW. OftenW =V, an orthogonal projection,
is used, and this will be assumed henceforth. The projection-based
reduced model is of the same form as the original,

Ê
dz
dt

= Âz+ B̂u; y= Ĉx+ D̂u (2)



with the matrices defining the reduced model defined by

Â�VTAV B̂�VTB Ê �VTEV Ĉ�CV;D̂ = D: (3)

Common choices for the projectors are Krylov subspaces[6] and,
in the truncated balanced realization (TBR) procedure, the princi-
ple eigenvectors of the product of controllability and observability
Grammians.

Recently, there have been several techniques proposed in an at-
tempt to generalize reduction techniques to nonlinear systems which,
for simplicity, we will consider in the somewhat restricted form

dx
dt

= f (x)+Bu; y=Cx+Du (4)

where f (x) is an arbitrary nonlinear function. The projection for-
mula may be applied as in the linear case (see [8] for references)
to obtain (with the additional constraintVTV = I imposed for con-
venience of notation) a reduced model

dz
dt

=VT f (Vz)+VTBu; y=CVz+Du: (5)

So far, this has been a purely formal exercise: we don’t know
how to chooseV, and, assuming we can find a good choice forV
(which in turn makes the strong assumption that a linear, or affine,
transformation is desirable in the first place) the cost of evaluating
VT f (Vz) is unknown.VT f (Vz) can of course be evaluated explic-
itly in the “reduced” model, by reference to the original function
f (x), but such a model is not “reduced” by any reasonable defini-
tion. Without a more compact representation off̂ (z) � VT f (Vz),
no practical acceleration of computation is achieved over the orig-
inal system. Several recent attempts have been made to develop
practical algorithms. The algorithms differ primarily in how the
approximation toVT f (Vz) is constructed, and to some extent in
the construction of the matrixV.

2.2 Volterra Motivated Methods
Several authors (again see [8]) have proposed using multi-dimensional

polynomial expansions to simplify the evaluation of nonlinear func-
tions. In this approach, the nonlinear function is approximated with
the series,

f (x) = A1x(1)+A2x(2)+A3x(3)+ � � � (6)

with

x(1) � x; x(2) � x
x; x(3) � x
x
x; etc. (7)

where theAk 2 Rn�nk
are the multi-dimensional (tensor) polyno-

mials coefficients of the expansion. The polynomial terms may be
projected by application of the rule

Âk =VTAk(V
V
�� �V): (8)

so that eacĥAk 2 Rq�qk
(assumingq is the rank ofV). The general

complaint with these methods, and the related bilinearization tech-
nique[8], is that the number of coefficients in the reduced model
grows exponentially with with orderk. This makes them imprac-
tical for order greater than three or so. Recent improvements[9]
in reducing the size of theV matrix postpone but do not eliminate
this fundamental underlying problem. What is worse, the reduced
models may be larger than the original models. For example, con-
sider a network of simple diodes. Diodes are two-terminal devices,
with a single I-V constitutive relation. The tensorsAk for k � 2
are very sparse, they containO(n) entries for ann-diode network,
independent ofk. However, this sparsity is not preserved under pro-
jection as written above. Consider representing the original diodes
with order 10 polynomials, leading to a total of 10n coefficients in

theAk. But after “reduction” to say ten states, a typical size of the
state space for a macromodel, the set of order-10 polynomials in ten
dimensions has dimension 2�106, and the redundant tensor prod-
uct representations used in [8] are more than a factor of 210 larger.
What is going on? Is there a defect in the projection algorithm, in
the use of polynomials, or in our conception of the problem?

2.3 Trajectory Motivated Methods
The perceived limitations of the polynomial-based techniques

was one motivation behind the development of the trajectory-piecewise-
linear algorithm [10] and its extensions[11]. In this approach, the
function f is approximated by a linear combination of affine mod-
els,

f̂ (x) = ∑
k

wk(x) [ f (xk)+Ak(x�xk)] : (9)

After projection, the reduced̂f (z) then has the similar form

f̂ (z) = ∑
k

wk(z)
h
VT( f (xk)�Akxx)+VTAkVz

i
: (10)

Piecewise models themselves are subject to the same criticisms
as the polynomial-base methods: covering a multi-dimensional space
with uniformly sized piecewise regions requires a number of re-
gions that grows exponentially large with dimension. To circum-
vent this problem, [10] proposed taking the center pointsxk only
along the trajectory of the ODE system when driven by a specific
“test” input. As the number of points is now bounded, the method
can represent fairly strong nonlinearities along the trajectory. The
suprising aspect of the results in [10] is that the model obtained of-
ten exhibits good accuracy when driven by inputsdifferentfrom the
“test” input used to construct the model.

2.4 Analysis
In retrospect, both the polynomial and trajectory methods brought

more questions than answers. To make progress in analog macro-
modeling, we need some way of decomposing the problem into
distinct component parts that can be analyzed and compared. In
the polynomial methods, from the previous arguments we cannot
tell if the ostensibly exponential cost is due to underlying problem
complexity, or the algorithm used for choosing the polynomial co-
efficients. In the trajectory methods, it isn’t clear if the observed
good performance is due to a superior choice of functional rep-
resentation, a superior methodology, or even a “lucky” choice of
examples. We advocate decomposing the macromodeling problem
into three parts:

1. Thespecificationof the modeling problem itself, in terms
of what fundamental information the macromodel needs to
preserve about the original system. Thespecificationof the
modeling problem determines a lower bound on the com-
plexity of a given macromodel.

2. Therepresentationof the model itself, for example, a projec-
tion matrixV and polynomials to describe a functionf (x).

3. Thealgorithmsused to determine a specific choice of macro-
model given a candidaterepresentationand problemspecifi-
cation.

Historically, this type of decomposition played an important part in
development of projection methods for linear systems. The canon-
ical representation of models in state-space form with reduction
achieved via a projection matrixV cleanly separates the mechanical
aspects from the information (specification) carried by the model
itself, determined by the choice of column span ofV. Once this
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realization occurred, it became apparent that there are several pos-
sible algorithms to computeV in a numerically stable way.

3. HOW HARD IS NONLINEAR MODEL
REDUCTION, REALLY?

The first question to be addressed in developing a nonlinear mod-
eling approach regards the problemspecification: whether the prob-
lem is even tractable at all, in general, or for a specific circuit. Is
automated nonlinear analog modeling fundamentally tractable, or
are we trying to build a sort of perpetual motion machine? We have
some idea from the preceding algorithms of the complications in-
troduced by nonlinear functions, but how severe are these from a
fundamental perspective? The thesis of this section is that the diffi-
culty of nonlinear model reduction problem can be describedquan-
titatively by adopting a statistical viewpoint and an information-
theoretic analysis. The recent adoption by some groups active in
analog macromodeling research[3, 12, 13] of techniques from the
data mining and machine learning communities is indicative of the
attraction of this perspective.

3.1 Analysis of Analog Information
At its root the analog model reduction problem is about removal

of information perceived to be redundant, given a level of mod-
eling accuracy. Quantifying likelihood of success requires a pre-
cise definition of the “amount of information” in a given base sys-
tem to be modeled. The typical viewpoint in circuit simulation,
and numerical analysis generally, is rather imprecise. Cost of in-
formational representation, or computation, is typically measured
by the number of basis functionsN used to represent the known
or unknown functions in a given computation. These basis func-
tions are classically designed to span a complete function space in
some limit, with specific choices (e.g., low-order finite elements
vs. high-order spectral discretizations) guided more or less by pre-
vious experience. With modern techniques, it is usually possible
to develop algorithms that are of low polynomial complexity in
N, O(N)�O(N2), andN is of sufficiently moderate size for most
problems of interest. Linear model reduction algorithms adopt very
much the same philosophy: the matrixA is represented by explicit
enumeration of its entries, the reduced model is defined by basis
vectors that are the columns of the projection matrixV. However,
the experience with Volterra methods as developed to date indicates
that this view of information content is insufficiently sophisticated
for effective nonlinear modeling strategies.

Leaving aside for the moment the dynamics of the system, con-
sider only the right-hand-side functions in then-state linear ( ˙x =

fL(x) = Ax) and nonlinear ( ˙x = fN(x)) models. In the linear case,
the function can be described by a matrix, a member of the setR

n2
.

The set of general nonlinear functionsRn�Rn is of vastly larger
cardinality. Of course, the vast majority of the possible functions
are not “reasonable” physical choices, but as the previous example
of polynomials shows, explicit enumeration of even a single class
of possible “reasonable” functions is computationally impractical.
Is there a better measure?

A basic theory of information is the Shannon theory[14]. Infor-
mation is associated with the probability of occurancep of a ran-
dom variableX as� log p. The entropyH(X) of a random variable
is defined to be

H(X)��Epflog p(x)g (11)

whereEpfg denotes expected value over the distributionp. For a
discrete variable,H(X) = �∑ p(x) log p(x). A fundamental result
in information theory is that the entropy represents a lower bound

on the average length of a code needed to describe a random vari-
ableX drawn with probability densityp. In a very abstract view of
information of any sort, the best achievable, i.e. minimal represen-
tation, is tied to entropy.

With a probabilistic interpretation of appropriate variables in the
analog modeling problem, systems for which good compact macro-
models exists are those of low entropy. We can, in principle, quan-
tify the smallest achievable model, and compare the size of this
optimal model to the original detailed description.

EXAMPLE 1. Consider the statement: “A number between one
and ten.” This is a reasonable model for a box that provides as
output a an integer I2 [1;10]. The entropy is unspecified without
knowledge of the distribution. A reasonable assumption might be
a uniform distribution. This is in fact the maximum entropy distri-
bution – all other probability distributions of I have lower entropy.
The uniform distribution isnon-informative.As log10 is a bound
on the average length of an optimal code (thus a model) to de-
scribe I with uniform distribution, in principle we can always find
a “model” of sizelog10bits to describe a box that emits “a number
between one and ten.”

3.2 Impact of imperfect prior knowledge
Entropy based reasoning does not seem very useful so far. Con-

sider the Volterra models. Cubic Volterra models are models “with
third order multi-dimensional polynomials.” This statement is as
equally non-informative, in its context, as Example 1 above. In
general, if a variableX is drawn from a setH, the entropy is
bounded for all distributions by[14]

H(X)� logjHj (12)

wherej � j denotes cardinality of the set. The uniform distribution
achieves this bound. Example 1 above illustrates a model that is
sized more or less regardless of the actual details of the behavior
of the random variable. The model not surprisingly is of maxi-
mal size. In practice, we always have some additional information
about the probability distribution that can be formalized as an addi-
tional variableY. The entropy of interest is the conditional entropy

H(XjY) =�Ep(x;y)flog p(XjY)g (13)

wherep(x;y) is the joint probability distribution ofX;Y andp(XjY)

the conditional probability distribution ofX (givenY). Prior infor-
mation reduces the entropy,H(XjY)�H(X) with equality holding
only if X;Y are independent (Y gives no information aboutX).

EXAMPLE 2. Suppose in the previous example that we know
in addition the mean of the distribution to be drawn. Again, for
any given mean µ, there is a unique maximal entropy distribu-
tion[15] pµ(x). Choosing µ= 5:5 gives the uniform distribution,
with entropylog10. Any other mean results in a skewed distri-
bution with lower entropy; we have added information about the
problem. Means close to 1 or 10 almost completely specify the dis-
tribution and have very low entropies. Figure 1 illustrates. These
distributions have low information content, and samples from them
are easy, on average, to represent. The stronger the prior knowl-
edge, the farther the distribution from the uninformative uniform
distribution, and the lower the entropy.

This example suggests that the difficulty with exponential growth
of cost in the Volterra methods is not fundamental, but stems from
not exploiting prior knowledge in the use of the polynomial basis.
Of course, in actual computation, the information picture is more
complicated than the idealized situation above portrays. First, we
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Figure 1: Maximum entropy probability distributions on
[1..20] with constrained meanµ.

don’t know the exact densities. Second, in computation we will
choose some parametric form for the possible densities, and the
“exact” densities may not be on the candidate list thus formed.
A minimal complexity density estimation ofp will asymptotically
choose a representation with distributionq that minimizesH(p)+
D(pjjq) [16]. The relative entropyD(pjjq)� Epflog(p=q)g is the
fundamental penalty for description withq 6= p. Third, we must
represent continuous quantities. These considerations complicate
the analysis, but are ameliorated by the fact that, since we are de-
signing approximate models, we can accept some degree of error in
our representation. Precise discussion of minimal representations
of continuous data in the presence of an error criterion takes us
into the area of lossy data compression and rate distortion theory
and is beyond the scope of this paper. Minimal representations will
arise from minimizing over distributionsq that meet an admissible
expected errorε. The rate distortion functionR(ε) for a random
variableX with approximationX̂ and error functiond

R(ε) = min
p(xjx̂):Epfdg<ε E

�
log

p(x; x̂)
p(x)p(x̂)

�
(14)

determines the achievable lossy data description length[17]. Note
that the quantity in brackets is the mutual informationI(X; X̂) =

H(X)�H(XjX̂), and so is bounded by the entropyH(X). In the
simplest contexts our length estimates with error will pick up a logε
factor.

EXAMPLE 3 (TBR). Consider the controllability operatorL :
[�∞;0]m! R

n which maps the inputs of an m-input n-state linear
state-space model to the state x0 = x(0) at time zero, x0 =Lu. Sup-
pose for simplicity that the system is in balanced coordinates. The
controllability Gramian Xc is

Xc = LL
† =

Z 0

�∞
eAtBBTeATtdt (15)

(withL† denoting the adjoint operator). Consider interpreting u(t)
as a zero mean random variable with Gaussian distribution, in-
puts uncorrelated, and each input having autocorrelation function
Ru(t1;t2) = δ(t1� t2). The time-domain inputs are unit power. x0
is then also a Gaussian random variable with correlation matrix

Efx0xT
0 g= EfLuu†

L
†g= LEfuu†gL† = Xc: (16)

The entropy of an n variable Gaussian distribution is[14]

H(X0) =
n
2

log(2πe)+
1
2 ∑

i
logσi (17)

whereσi are the eigenvalues of the covariance matrix. By this met-
ric a low entropy state-space model is one whose Grammian has
many small singular values. If the admissible error after truncat-
ing states is more than the usual twice-the-sum-of-the-tail bound,
the small singular values are irrelevant to the description length as
described by the rate distortion function. In the modeling context, if
most of the entropy is concentrated in the first few normal models,
model reduction is very effective. The probabilistic interpretation
and the classical criterion agree.

Furthermore, note that the stronger the degree of prior informa-
tion, the lower the entropy. Consider the impact of input choice on
the degree of reducibility of the model. A large circuit may have
many possible ways to construct the input/output ports, i.e., theB/C
matrices. Letℵ j andℵk denote two possible subsets of possible
input vectorsBℵ j ;Bℵk . The conditioning property of entropy im-
plies

ℵ j �ℵk ) H(Xj)< H(Xk): (18)

EXAMPLE 4 (TBR, CONTINUED: PRIOR RESTRICTION). In the
context of the previous linear modeling example, it is easy to verify
explicitly that addition of input vectors monotonically increases the
entropy. The Gramian Xc is the solution to the Lyapunov equation
AXc+XcAT = BBT : Let

B1 = Bℵ j\ℵk; B2 = Bℵk�ℵ j\ℵk: (19)

If

AP1+P1AT = B1BT
1 (20)

AP2+P2AT = B2BT
2 (21)

and

AP+PAT = [B1B2][B1B2]
T (22)

then it follows that P= P1+P2. The claim follows from the strict
concavity of the functionlogdetP and the symmetric positive defi-
niteness of P1;P2.

Eq. (18) seems to match with our intuition based on linear model
reduction algorithms. However, Eq. 18 is quite general, and sug-
gests the remarkable speculation that many or most nonlinear cir-
cuits are “reducible” with sufficiently strong prior conditions on
the input vectors. This lends some theoretical support to the obser-
vations[10, 13] that even seemingly vague priors seem to lead to
practically useful results.

CONJECTURE 1. Substantially all practical analog modeling
problems are low-entropy relative to non-informative distributions
over the circuit class.

It also suggests why the trajectory methods seem to have an ad-
vantage over polynomials in treating more nonlinear circuits with a
given size model. More prior information is available, specifically
about the expected form of the input waveforms, when trajectories
are computed. However this observation raises the interesting ques-
tion of whether polynomial methods would exhibit increased effi-
ciency given a means of exploiting similar prior information. The
answer turns out to be yes, see [13]. Given that, a broader question
arises: how should we compare the two methods? A deeper under-
standing of the methods requires factoring out differences due to
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the choice of functional representation (piecewise linear vs. poly-
nomial vs. piecewise polynomial etc.) from advantages due to ex-
ploiting different underlying prior information. In information the-
oretic terms, we wish to quantify separately the impact of reducing
entropy by prior informationH(X)!H(XjY) from the relative en-
tropy penaltyD(pjjq) due to imperfect parametrization, as well as,
eventually, the errors due to imperfect estimation. To make such a
comparison it will be useful to have a common mechanism to de-
scribe the various choices of representation, particularly later when
we desire to combine disparate choices in a single algorithm.

4. REPRESENTATION
To say a function isnon-linear says only that: it isnot linear.

Nonlinearity is not a property, it is alack of a property. Without
further specific information about the function class under consid-
eration, we are forced to consider the possible inclusion of a very
large class of functions. This is the fundamental issue in nonlinear
model reduction: before we approach any given problem, we need
to include thepossibilityof an exponentially large number of basic
functions. But by the arguments of the previous section, we hy-
pothesize that anygivenproblem leads to a relatively small class of
necessary basis functions. The particular function class must be al-
gorithmically deduced from the problem at hand. We advocate the
machinery ofreproducing kernel Hilbert spacesas a mechanism
for implicit specification of high dimensional function spaces; [18]
is the standard reference from which we crib

DEFINITION 1 (RKHS). A reproducing kernel Hilbert space
S is a Hilbert space of functions f on an index setI such that for
each t2 I the evaluation functional Lt f 7! f (t) is a bounded linear
functional.

Definition 1 is a fairly abstract condition on a function space,
probably sufficently general for most residual functionsf (x) en-
countered in circuit modeling, and it leads to a general form for
nonlinear representations that is useful because it is not overly ver-
bose a-priori. By the Riesz representation theorem for eacht 2 I
there is anRt 2 S called the representer of evaluation such that
f (t) =< Rt ; f >, and this representer is associated with a function
of present interest:

THEOREM 1. For every RKHS there is a unique positive defi-
nitekernel functionR(t;s) : I�I!R and vice versa.S is spanned
by the functions R(t; �) 8t 2 I.

The convenience of the RKHS machinery for our purposes stems
from two sources: the representer theorem and the duality with
stochastic processes.

THEOREM 2 (REPRESENTERTHEOREM). Given a setX, a
function L: (X�R�R)n ! R, and a strictly monotonic function
Ω :R+!R, each minimizer f of L(x1;y1; f (x1); : : : ;x1;y1; f (xn)))+

Ω(jj f jj2) admits a representation of the form

f (x) =
n

∑
k=1

αkK(xk;x): (23)

The implication of the representer theorem is that we may spec-
ify a space of functions in which to work, by selecting a kernel
function K(s;t), independently of the precise needs of the prob-
lem at hand. The particular basis functions, theK(xk;x), are only
chosen once we choosexk, which is done based on the particular
problem data. Theorem 2 guarantees that these are indeed the right

d a

c b

Algorithm 1. Nonlinear Model Reduction

1. Select a starting system g(x; ẋ) = 0
where x2 Rn, g : Rn�Rn ! R

n.

2. Use prior assumptions on the model properties to
obtain a setfxkg of samples xk 2 Rn.

3. Usingfxkg, compute the projector V: Rq ! R
n.

4. Obtain a setfzkg of samples zk 2 R
q by zk =V†(xk).

5. Usingfzkg, compute a representation for the reduced
DAEĝ(z; ż) =V†[g(V(z);(∂V=∂z)ż)]:

6. Assess the accuracy and increase the order q
or sample spacefxkg size as needed.

functions to fit data to minimize a cost function (e.g. square error)
L in the space of interest. Note that we did not unduly restrict the
choice of norm here. In particular norms involving derivatives are
of interest as they lead to splines. Thus the RKHS is minimal in a
certain important sense: in any particular problem we include just
the basis functions we observe in the sample space defined by the
xk, which are in turn determined by the problem data. We have no
reason to believe any particular basis function is relevant for our
problem unless and until we observe it in data, and until then it
remains latent in the RKHS. At this point we have opened a route
to bypass intractability, but created an experiment design problem.
We must somehow choose thexk, and a poor choice will lead us
back to the intractably large full basis. Assuming a sufficiently rich
RKHS, low-entropy arguments imply that suchxk exist; now we
must look for them.

5. ALGORITHMS
A high level outline of modeling algorithms is shown as Algo-

rithm 1. The critical steps are 2, 3, and 5. A key point is that Step
2 is the proxy for experiment design. The hope is that we have
sufficient prior knowledge to choose the setfxkg such that (1) the
projector will be moderate in size in step 3, (2) the choice leads
to fzkg that are good choices for the approximations in Step 5. In
linear projection based reduction, we choosefxkg to span a Kry-
lov space because we know (prior information!) from the theory
of projection based models that such subspaces are highly corre-
lated with the desired frequency response of the model, which in
turn is derived from our knowledge of frequency characteristics of
the inputs. In trajectory methods, prior assumptions are made on
the inputs, withfxkg taken from the simulation response to those
inputs. In the linear case with uniform priors on the inputs, under
the trajectory method the vectorsxk will be drawn from the control-
lable space of the model with probabilities according to the weights
of the principle controllable modes as given by eigenvalues of the
controllability Grammian. More selective choice offxkg can re-
duce computational complexity, and also lead to superior models.

EXAMPLE 5 (TBR: BAYESIAN INTERPRETATION). The assump-
tion of inputs uncorrelated in time is equivalent to assumption of a
flat spectrum. The TBR model is the best (in an entropy, i.e. max-
imal entropy, sense) q-state model under the prior assumption of
flat spectrum, i.e. a non-informative prior on frequency content of
input.

In standard polynomial (and by extension Volterra) models, the
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fxkg can be interpreted as representative of a noninformative prior
distribution. This is not a good choice as it leads to the need for
an exponentially large number ofxk as previously discussed. Supe-
rior choices were illustrated in [13], where structural information or
trajectory information was used to formfxkg. These choices were
demonstrated to lead to strong regularizers (the standard priors im-
plicit in kernels are quite weak in contrast).

Assuming reasonable choices in Step 2, Steps 3 and 5, dealing
with nonlinear function representation, are the core of the modeling
computation. If we adopt the RHKS representations, then in each
case the nonlinear functions (V(z) andg(z; ż)) are represented by
kernel expansions of the form

f (z) = ∑
k;p

αkK(p)
λ (z; ẑk): (24)

The algorithm must choose the coefficientsα, the kernel parame-
tersλ, the kernel type itselfK(p) as indexed byp, and the support
vectorsẑk that determine the usable portion of the RKHS. Each of
the parameters may in turn be parametrized in a model with hier-
archical form. For example, it is common to regularize coefficients
in an expansion by assigning a statistical distribution (such as the
normal distribution) to them; the distribution in turn is specified
by hyperparameters. Ignoring the distinctions introduced by hi-
erarchical modeling, for each of the parameters in the model we
have several choices for its treatment:Choice 1: Guess!.Choice
2: optimize for minimum error or maximum probability. Classi-
cal numerical optimization, statistically motivated procedures such
as cross-validation, as well as “boosting” fall into this category.
Choice 3: A committee or averaging strategy, e.g. bootstrap, based
on Choice 2.Choice 4: A full Bayesian analysis that integrates the
model parameters over a posterior probability distribution. With
good choice of thefxkg, theẑk can be taken from the setfzkg[13].

EXAMPLE 6 (REF. [13]). In [13], a full instance of Algorithm
1 was given. In Step 3, a linear projector was chosen via SVD of
the samplesfxkg, and kernel principal components used to pick
the ẑk for the final construction of the reduced DAE; again inter-
pretable as using a maximum entropy argument in conjunction with
utilizing a specific prior condition on the accessible model space.
Cross-validation was used to choose the (unique) kernel types and
parameters for Step 5.

6. SUMMARY
In this paper we have tried to motivate analyzing some of the re-

cent attempts at automated nonlinear modeling in a statistical light.
We see four advantages from this perspective. First, it is a suit-
able way to reason in the presence of uncertainty. In almost all
cases we, as algorithm or model designers, are lacking some infor-
mation about the way models are used. Second, in the very high
dimensional spaces that are the home of nonlinear models, we can-
not account forall possible occurences. A possible approach is
to account for all situations that wereasonably believemay occur,
and then provide tests for robustness (that may be statistical). The
third motivator is the connection to information theory, classically
formulated in probabilistic terms, which may not directly suggest
algorithms, but may suggest new ways of thinking about modeling.
Finally, we can exploit the large and growing literature on statistical
learning, inferences, and data mining.
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