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Abstract
Simulation accuracy of a methodology for composable mod-
eling of microelectromechanical systems (MEMS) is 
assessed by comparing against analytic equations and finite 
element simulations. Several MEMS canonical problems are 
composed hierarchically as networks of simple elements 
with models written in an analog hardware description lan-
guage. Schematics built from this model library, called 
NODAS (NOdal Design of Actuators and Sensors), produce 
DC simulation results that are accurate to at least three dig-
its, demonstrating suitable accuracy and lumping trade-offs.

I. Introduction
MEMS designers rely on analytic equations and finite ele-
ment simulations to design their devices. Analytic equations 
allow the designer to find a ballpark solution, which is 
refined using a finite element package. However, with the 
integration of MEMS devices and CMOS circuits, the 
designer requires a simulation environment for the system. 
NODAS [1] is a set of lumped element electromechanical 
models developed at Carnegie Mellon University which can 
perform this function. NODAS uses the Verilog-A hardware 
modeling language [2] and can be simulated using Cadence’s 
Spectre simulator [3]. This paper focuses on DC accuracy as 
a step toward a comprehensive analysis of the NODAS mod-
els for use in accurate time domain simulation of MEMS. 
Prior work in MEMS modeling have included SUGAR from 
UC Berkeley [4] [5], Coventor Architect [6] [7], and [8].

In order to produce a physically accurate model of a MEMS 
device, the structural representation of the physical system is 
broken down into a network of atomic elements. Each 
atomic element is a behavioral model which describes how 
the element reacts to external stimuli. The NODAS library 
contains three atomic elements: beams, plates and electro-
static gaps. Each element has a 2D or 3D model, with the 
exception of the gap element, which has currently only a 2D 
model [1]. Based on Kirchhoff’s flow law, nodal analysis 
can be performed on these elements by ensuring that the sum 
of forces and moments into a node is zero, which is equiva-
lent to performing force and moment balance. Complex 
MEMS structures can be composed using these elements.

RF MEMS devices is an area which has generated much 
research recently. RF switches which utilize both cantilever 
beams (Fig. 1a

Figure 1: (a) Cantilever and (b) Fixed-fixed RF MEMS switch structure.
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) [9] and fixed-fixed beams (Fig. 1b) [10] [11]
have been demonstrated. Possible applications include wire-
less devices such as cell phones and switching networks for 
satellite systems. RF filters utilizing cantilever beams [12]
and RF mixers and mixer-filters using fixed-fixed beams 
[13] have also been demonstrated. These passive MEMS 
mixers offer a low power alternative to active circuit mixers 
in transceivers. MEMS filters can replace discrete off-chip 
components with on-chip devices. 

Simulation of RF MEMS devices brings two challenges to 
the AHDL-based circuit-level simulation approach used in 
SUGAR, Architect, and NODAS. The first is the preponder-
ance of nonlinear models due to the large displacements rela-
tive to the size of the MEMS device. The second is the 
dominance of distributed nature of the physical forces. 

NODAS nonlinear beam and electrostatic gap models have 
been derived in [1] (beam models are based on [15]). [1]
contains the Verilog-A code for these models. Both of these 
elements have nonlinearities in the force equations. The non-
linear beam model includes geometric effects of large deflec-
tions and nonlinear stiffening or softening from axial stress. 
The NODAS electrostatic gap model is augmented with a 
physics-based contact model (needed to simulate an RF 
switch) in Section II. The distributed modeling challenge is 
addressed by developing by decomposing (discretizing) the 
beam and gap representing the RF MEMS device in the rest 
of the paper. Canonical MEMS modeling problems of the 
cantilever (Section III) and fixed-fixed (Section IV) beams 
that dominate RF MEMS designs are then discussed. The 
cantilever beam problem tests the large geometric deflection 
accuracy in the nonlinear beam model. The fixed-fixed beam 
problems test the accuracy in handling large axial stress. A 
fixed-guided-end canonical problem is developed in Section 



IV to model the residual stress in the beams arising from the 
thin-film manufacturing processes. Though these RF MEMS 
devices use electrostatic actuation, both pure mechanical 
actuation and electrostatic actuation are explored in order to 
demonstrate the accuracy of the NODAS beam and gap 
models separately. For verification, all NODAS simulation 
results are compared with analytic equations and FEMLAB 
[14] in each section.

II. Electrostatic Gap Contact Model
When a voltage is applied between two electrodes, the elec-
trostatic force between them pulls them together. In the case 
of an RF switch, one of the electrodes is anchored to the sub-
strate, while the other electrode is the moving beam. The 
restoring force of the beam, arising from the beam’s stiff-
ness, resists the electrostatic force. When the voltage is 
increased, a point is reached where the electrostatic force 
equals the spring restoring force of the beam. If this point,
known as pull-in voltage, is passed, the beam will snap to the 
substrate.

To ensure that the moveable electrode does not travel beyond 
the anchored electrode, the gap contact model applies a stiff 
restoring spring contact force to oppose the electrostatic 
force when the electrodes come in contact. Our previous 
model for this contact force was a process dependent linear 
spring model [16]. 
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Figure 2: (a) Contact and electrostatic force plotted against dy, the gap 
between the two electrodes, (b) modified contact force equation to ensure 
first quadrant solution.
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Fig. 2a shows the load line plot for the 1/
g2 relationship of the electrostatic force plotted against the 
restoring linear spring force of the contact model. The elec-
trostatic force is a family of curves which increases as the 
voltage is increased. A mathematical artifact of this inverse 
square relationship is that there may be multiple solutions. 
Two physical solutions (one stable, and one unstable) are 
present in the first quadrant as well as one stable non-physi-

cal solution occurs in the second quadrant (filled black cir-
cles in the figure) for low voltages. When the voltage is 
increased, the only remaining stable solution is in the non-
physical second quadrant (black square in the figure). 

To remedy the non-physical solution, the gap contact model 
must guarantee that a stable first quadrant solution exists 
when in contact. To ensure this, the current contact model 
(described in Fig. 2b) limits the applied electrostatic force 
using a process specific electric field breakdown parameter, 
Emax. This is used to compute Fe,max, the maximum electro-
static force per unit length defined as: Fe,max= -0.5*ε0*thick-
ness*Emax

2, where ε0 is the permittivity of free space. The 
contact force is a straight line from (gmin, Fe,max) to (gcontact, 
0), where gmin is a user-specified minimum allowed gap and 
gcontact is the point when the beams first come into contact.
At dy gcontact≥  (dy is the dynamic gap between the elec-
trodes), the contact force is 0. When dy gcontact< , the lin-
ear contact force model becomes active (second if/else block 
in Fig. 3b). Additionally, the electrostatic force per unit 
length, Felec, is constrained to be less than Fe,max (first if/else 
block in Fig. 3b). As seen in Fig. 2b, by constraining 
Felec Fe max,≥ and by requiring that the contact force model 
pass through the point (gmin, Fe,max), the non-physical sec-
ond quadrant solution cannot occur. Fig. 3a shows a sche-
matic of two beams with the variables mentioned in Fig. 3b.

Equation 1 is the lumping integral for node a, the left node of 
beam 1 (Fig. 3a). f11(x) is the beam basis function used to 
lump the force to node a. Fl is the electric field per unit 
length, which will be either Fe,max or Felec. A rotated parallel 
plate model, with an angle θ0 with respect to the local frame, 
is assumed for the calculation of the electrostatic forces and 
the lumping integral is performed in this rotated frame. Fig. 
4 shows the Verilog-A code for the eight force and moment 
lumping equations. A rotation matrix is applied to the calcu-
lated lumped forces in the rotated frame of reference to 
translate them into forces in the local frame of reference: 
Fb1y, Fa1y, Fa2y, Fb2y.

Fa1l f11 x( ) Fl xd⋅ ⋅
ov
2

------–

ov
2

------

∫= (1)

Fig. 5a shows a test case used to verify the gap contact 
model. A rigid electrode connected to an ideal spring with 
K=0.68 N/m, is constrained to only move in the y direction. 
A piece-wise linear voltage source which sweeps from 0 V 
to 100 V and back to 0 V was used. Fig. 5b shows the y dis-
placement of the movable electrode plotted against applied 
voltage. When the moveable electrode traverses 1/3 of the 
gap, it snaps to the anchor. Note that a hysteresis exists such 



Figure 3: (b) Verilog-A code for the contact model.

// The parallel plate force in the overlap region
// rotated by angle theta0.  The force is constant through this region
// force per unit length
Felec = -0.5*`eps0*thickness*v_squared/
  pow((cos(theta0)*(y1average-y2average)),2);

// Maximum electric field, based on the electric field breakdown
// force per unit length
FeMax =  -0.5*`eps0*thickness*pow(elec_breakdown,2);

// if the electric force per unit length 
// is greater than the max electric force, set the force/l to FeMax
if (abs(Felec) > abs(FeMax)) begin
  Fl = FeMax;
end
else begin
  Fl = Felec;
end

// slope of the contact force
// must multiply by ov because FeMax is the force per unit length
slope = -(FeMax*ov)/(gmin - gcontact);

// the contact force
if (dy<gcontact) begin
  // contact force
  Fy_contact = slope*(dy-gcontact);
end
else begin
  // there is a normal gap, no contact
  Fy_contact = 0;
end

Felec is the electric field per unit length. FeMax is the maximum elec-
tric field per unit length. eps0 is the permittivity of free space. thick-
ness is the thickness of the beam. v_squared is the applied voltage 
squared. theta0 is the rotation angle of the parallel plate. 
elec_breakdown is a process parameter which sets the maximum elec-
tric field. The default is 100 V/µm. Fl is a variable used to store Felec
or FeMax, depending on which one is smaller. Fl is used in the inte-
grand of the lumping integral. gmin is the minimum gap allowed. 
gcontact is the point when the beams first come in contact. dy is the 
dynamic gap. Fy_contact is the equation of the contact force model. 
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Figure 3: (a) The rotated parallel plate approximation showing some 
variables used in the Verilog-A code. 
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// The following 8 equations are lumped forces and moments
// we must rotated the force Fl to the y direction in the local frame
Fa1_l = -Fl*(2*L1-ov)*pow(ov,3)/(2*pow(L1,3));
Ma1_l = -Fl*(4*L1-3*ov)*pow(ov,3)/(12*pow(L1,2));
Fb1_l = -Fl*(ov-pow(ov,3)/pow(L1,2)+pow(ov,4)/(2*pow(L1,3)));
Mb1_l = -Fl*(-pow(ov,2)*(6*pow(L1,2)-8*L1*ov+3*pow(ov,2))/
12*pow(L1,2));
Fa2_l = Fl*(ov-pow(ov,3)/pow(L2,2)+pow(ov,4)/(2*pow(L2,3)));
Ma2_l = Fl*(-pow(ov,2)*(6*pow(L2,2)-8*L2*ov+3*pow(ov,2))/
(12*pow(L2,2)));
Fb2_l = Fl*(2*L2-ov)*pow(ov,3)/(2*pow(L2,3));
Mb2_l = Fl*(4*L2-3*ov)*pow(ov,3)/(12*pow(L2,2));

// Rotate the forces back into the local frame 
Fa1y = sin(theta0)*0+cos(theta0)*Fa1l; 
Fb1y = sin(theta0)*Fxdl+cos(theta0)*Fb1l; 
Fa2y = sin(theta0)*(-Fxdl)+cos(theta0)*Fa2l; 
Fb2y = sin(theta0)*0+cos(theta0)*Fb2l;

Figure 4: Verilog-A code showing one of eight force and moment 
lumping equations. theta0 is the angle that the rotated parallel plate 
gap model makes with the local frame, L1 is the length of the top 
beam, L2 is the length of the bottom beam, ov is the dynamic overlap. 
Fl was defined in Fig. 3, and is either Fe,max or Felec. 

Figure 5: DC sweep simulation showing snap-in characteristics and 
hysteresis. (a) Snap-in test case, l=20µm, w=t=2µm, E=170GPa, 
ρ=2330 kg/m3, K=0.68 N/m, (b) DC sweep from 0V-100V and from 
100V-0V showing the y displacement of the movable electrode.
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that even when decreasing the voltage past the original pull-
in voltage, the electrodes remain in contact.

III. Cantilever Beam
The cantilever beam is a basic MEMS structure where one 
end of the beam is fixed and the other end is unconstrained. 
Fig. 6. illustrates two loading cases: a uniformly distributed 
load, q, in the y direction (Fig. 6a) and spatially varying load, 
qe(x), from electrostatic force with gap voltage, V (Fig. 6b). 

All simulations are performed with beams 100 µm long, 
2 µm wide, and 2 µm thick. The Young’s modulus was set to 
170 GPa and the density was set to 2330 kg/m3, representa-
tive of a polysilicon MEMS process. NODAS simulations 
used 2, 4, 8, 16 and 32 beam elements. Fig. 6c shows a canti-
lever beam split into 4 segments. Fig. 7 shows the mode 
shapes of the cantilever beam with 0 V, 40 V, and 80 V 
applied between the electrodes. At 40 V, the cantilever beam 
has not snapped in yet. The 80 V plot shows the snapped in 
cantilever beam. Note that for this simulation, the NODAS 
linear beam was used because the gap model cannot cur-
rently handle large geometric deflections in the y direction, 
which will cause a potentially large x deflection.



Figure 6: Canonical beam problems. (a) cantilever, uniform distrib-
uted load, (b) cantilever, electrostatic actuation, (c) fixed-fixed beam, 
uniform distributed load, (d) fixed-fixed beam, electrostatic actuation, 
(e) guided-end beam, uniform distributed load with axial force, Fx, (f) 
a cantilever beam split into 4 segments. 
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Figure 7: Cantilever beam mode shapes. The y displacement is shown 
with 0V, 40V and 80V applied between the two electrodes. 32 beam 
segments used. w=t=2µm, L=100µm, E=170GPa, ρ=2330 kg/m3. 
NODAS linear beam used. 
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Simulations for electrostatic actuation with 10 V across the 
gap are compared against FEMLAB, a finite-element pack-
age. The results are presented in Fig. 8
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Figure 8: y displacement of a cantilever beam with electrostatic actua-
tion at 10 V. NODAS vs. FEMLAB. %Difference = 100*(1 - yNODAS/
yFEMLAB). 2, 4, 8, 16, and 32 beam elements plotted. w=t=2µm, 
L=100µm, E=170GPa, ρ=2330 kg/m3.

2 beam elements

4 beam elements

8, 16, 32 beam elements

 as a percentage dif-
ference in the y displacement versus the x position along the 
beam. Using only two beam elements results in a 13% differ-
ence between NODAS and FEMLAB. In order to get an idea 
of where the error might be coming from, a pure mechanical 
simulation with a uniform distributed load is considered in 
Fig. 9
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Figure 9: y displacement of a cantilever beam with a 50nN distributed 
load. NODAS vs. FEMLAB. %Difference = 100*(1 - yNODAS/
yFEMLAB). 2, 4, 8, 16, and 32 beam segments plotted. w=t=2µm, 
l=100µm, E=170GPa, ρ=2330 kg/m3.
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. This simulation results in a significant, but smaller, 
8% difference between NODAS and FEMLAB.

Two conclusions can be made. First, when a distributed 
force, such as an electrostatic force, is applied at discrete 
points along the beam, some information is lost on how the 
real forces act on the beam. However, the composibility of 
the NODAS models can be used to improve the accuracy of 
the results. As shown, when 8 or more beam elements are 

used, the difference between NODAS and FEMLAB drops 
below 1% in both the pure mechanical and electrostatic sim-
ulations. In the case of the pure mechanical simulation, the 
difference is even less. When using 8 beam elements, the 
error is below 0.5% and when using 32 beam elements, the 
difference is below 0.06%. By using more beam elements, 
distributed force can be more accurately modeled.

Second, the current implementation of the gap model intro-
duces additional error into the solution. It assumes that the 
beam electrodes are parallel plates defined by straight plane 
electrodes between the segment’s nodes (Fig. 3a). It is obvi-
ous that if only two gap elements are used, there would be a 
significant error since two straight beam electrode segments 
were created. However, due to the composability of the 
NODAS gap element, more gaps and beams can be added to 
increase the accuracy. The parallel plate approximation is 
still used, but each parallel plate is smaller, and if enough 



gap elements are included, the electrostatic forces can be 
accurately modeled. In the 32 beam/gap element simulation, 
the difference between NODAS and FEMLAB results range 
between 1.17% near the fixed end of the beam to 0.83% near 
the free end of the beam. Placing 32 gap and beam elements 
is cumbersome, and if more accuracy is needed, even more 
beam elements can be placed.

IV. Fixed-Fixed Beam
The fixed-fixed beam (Fig. 6d and e) is a topology which 
MEMS designers use to build high resonant frequency struc-
tures. As the name implies, both ends of the beams are fixed, 
thus constraining the ends of the beams to zero displacement 
and zero angle. Two loading cases of the fixed-fixed beam 
will be considered: a uniformly distributed load q, in the y
direction (Fig. 6d), and a spatially varying load, qe(x), from 
electrostatic force with gap voltage, V (Fig. 6e). 

DC simulation results of the fixed-fixed beam with a 50 nN 
uniformly distributed load are compared to the analytic solu-
tion, without including shearing forces, match with 8 digit 
precision at all nodes along the beam length. However, when 
the results are compared to FEMLAB (Fig. 10)
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Figure 10: y displacement of a fixed-fixed beam with a 50nN uniform 
distributed load. NODAS vs. FEMLAB. %Difference = 100*(1 - 
yNODAS/yFEMLAB). 2, 4, 8, 16, and 32 beam segments plotted. 
w=t=2µm, l=100µm, E=170GPa, ρ=2330 kg/m3.
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, the differ-
ence between the NODAS simulation and FEMLAB is 
greater. The difference is not due to convergence of the finite 
element analysis as refining the mesh did not alter the results 
of the FEMLAB simulation. Enabling the NODAS shear 
model reduces the difference between NODAS and FEM-
LAB at the ends of the beams to less than 1%. Fig. 11
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Figure 11: y displacement of a fixed-fixed beam with electrostatic 
actuation. NODAS vs. FEMLAB. V1 - V2 = 10V. %Difference = 
100*(1 - yNODAS/yFEMLAB). 2, 4, 8, 16, and 32 beam segments 
plotted. w=t=2µm, l=100µm, E=170GPa, ρ=2330 kg/m3.

 shows 
the comparison of NODAS with FEMLAB for an electro-
statically actuated fixed-fixed beam. The accuracy is similar 
to the uniform distributed load case, implying that the accu-
racy may not be limited by the electrostatic force model.

Fig. 12 shows
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Figure 12: Fixed-fixed beam mode shapes. The y displacement is 
shown with 0V, 140V and 320V applied between the two electrodes. 
32 beam segments used. w=t=2µm, L=100µm, E=170GPa, ρ=2330 
kg/m3. NODAS nonlinear beam used.
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 the mode shape of the fixed-fixed beam with 
electrostatic actuation for three voltages: 320 V, 140 V, and 

0 V. The simulator was not able to converge at the snap-in 
point. As mentioned previously, the large geometric defec-
tions, which occur in the fixed-fixed beams, is not handled in 
the current gap model, but will be addressed in the next ver-
sion of the model. 

Microfabrication of fixed-fixed beams with thin-film materi-
als lead to residual axial stress, which alters the characteris-
tics of the beam. The fixed-guided topology can be used to 
simulate these stress effects. Fig. 6f shows a picture of a 
fixed-guided-end beam. As the name implies, one end of the 
beam is fixed but the other end is allowed to move only in 
the x direction. The analytic solution and the NODAS simu-
lation agree within 0.0015%.

V. Conclusion
The design of RF integrated circuits incorporating MEMS 
devices such as cantilever switches and fixed-fixed beam 
resonator filters requires the ability to simulate the mechani-
cal, electrostatic, and contact physical behavior with transis-
tor electronics. A physical contact force model is combined 



with the existing NODAS nonlinear electrostatic gap model 
and the NODAS nonlinear beam model. Cantilever, fixed-
fixed, and fixed-guided-end simulation models of the RF 
switches and filters are developed in NODAS. The simula-
tion models include various levels of schematic discretiza-
tion. Results from NODAS simulation are compared with 
analytic equations and FEMLAB simulation to evaluate 
composability and accuracy. These results demonstrate the 
applicability of using network simulation to represent struc-
tures with simple AHDL-based physics models for the simu-
lation of MEMS involving distributed physical systems 
dominant in RF MEMS applications.
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