Issues in MEMS Macromodeling

Gary K. Fedder Department of Electrical and Computer Engineering and The Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213-3890 fedder@ece.cmu.edu

fedder@ece.cmu.edu http://www.ece.cmu.edu/~mems

> Embedded Tutorial BMAS Workshop October 8, 2003

Μ

F

М

S

Issues in MEMS Macromodeling

- Processes and Applications
- Design Views
- Natures and Disciplines
- Hierarchy
- Interoperability
- Beam Element Example
- Filter Example
- Language Extension

Sampling of MEMS Processes

Bulk Silicon Micromachining

Dry and wet etched silicon microstructures

Deep RIE (Lucas Novasensor)

Dissolved wafer (Najafi, et al.)

Kovacs, Proc. of IEEE, 98

Selvakumar, et al., JMM 3/01

Sampling of MEMS Processes

Surface Micromachining Thin film microstructures

Multi-level polysilicon (Howe, *et al.*)

Fedderet al., IEEE JMEMS 95

CMOS MEMS (Fedder, *et al.*)

Lakdawala, et al, JSSC 3/02

Sampling of MEMS Processes

Micromolding

Thin film microstrutcures

Shaped within micromachined mold

HARPSS (Ayazi, Najafi)

IEEE JMEMS 9/00

HEXSIL (Keller, e*t al.*)

Madou, Fundamentals of Microfabrication, CRC Press

Why so many kinds of processes?

Functionality

- Special sensing or actuation properties
- Meet performance specifications
- Need nm, µm or mm size
- Enable packaging
- Reliability
 - Environmentally (shock, temperature) tolerant
 - No fracturing, sticking, deformation during lifetime

Cost reduction

Improved manufacturing yield

Selected MEMS Applications

- Sensors of numerous modalities
- Accelerometers and gyroscopes
- Pressure sensors
- RF switches, passives, resonant filters
- Read-write heads, AFM/STM probes
- Optical switches, displays
- (Ink) jet heads
- Biochemical labs-on-chip

Texas Instruments Digital Micromirror Device

Analog Devices Inc. Gyroscope

Motorola Tire Pressure Monitor

- Sensors of numerous modalities
- Accelerometers and gyroscopes
- Pressure sensors
- RF switches, passives, resonant filters
- Read-write heads, AFM/STM probes
- Optical switches, displays
- (Ink) jet heads
- Biochemical labs-on-chip

mechanical

thermal

optical

fluidic

chemical

biological

- Sensors of numerous modalities
- Accelerometers and gyroscopes
- Pressure sensors
- RF switches, passives, resonant filters
- Read-write heads, AFM/STM probes
- Optical switches, displays
- (Ink) jet heads
- Biochemical labs-on-chip

mechanical

thermal

optical

fluidic

chemical

biological

Sensors of numerous modalities electrical Accelerometers and gyroscopes mechanical **Pressure sensors RF** switches, passives, resonant filters thermal **Read-write heads, AFM/STM probes** optical **Optical switches, displays** fluidic (Ink) jet heads **Biochemical labs-on-chip** chemical

> biological magnetic

Sensors of the sen	f numerous	modalities
---	------------	------------

- Accelerometers and gyroscopes
- Pressure sensors
- RF switches, passives, resonant filters
- Read-write heads, AFM/STM probes
- Optical switches, displays
- (Ink) jet heads
 - Biochemical labs-on-chip

electrical

mechanical

thermal

optical

fluidic

chemical

biological

- Sensors of numerous modalities
- Accelerometers and gyroscopes
- Pressure sensors
- RF switches, passives, resonant filters
- Read-write heads, AFM/STM probes
- Optical switches, displays
- (Ink) jet heads
- Biochemical labs-on-chip

electrical

mechanical

thermal

optical

fluidic

chemical

biological

Sensors of numerous modalities	electrical
Accelerometers and gyroscopes	Electrical
Pressure sensors	mechanical
RF switches, passives, resonant filters	thermal
Read-write heads, AFM/STM probes	
Optical switches, displays	optical
(Ink) jet heads	fluidic
Biochemical labs-on-chip	chemical
	biological
	biological

Sensors of numerous modalities	electrical
Accelerometers and gyroscopes	
Pressure sensors	mechanical
RF switches, passives, resonant filters	thermal
Read-write heads, AFM/STM probes	ontical
Optical switches, displays	optical
(Ink) jet heads	fluidic
Biochemical labs-on-chip	chemical
	biological
	magnetic

Issues in MEMS Macromodeling

- Processes and Applications
- Design Views
- Natures and Disciplines
- Hierarchy
- Interoperability
- Beam Element Example
- Filter Example
- Language Extension

MEMS Design Representations

Views:

- Solid Model
- Mesh
- Layout
- A-HDL Model
- Schematic

```
module beam (phim, phip, vm, vp, xm,
xp, ym, yp);
....
analog begin
r = poly1 rho * (1/w);
ms = `poly1 den*w*l*poly1 t;
ii = poly1 t*(w*w*w)/12;
I(vp, vm) <+ V(vp, vm)/r;
F(xm) <+ -Fxdm*cos dc + Fydm*sin dc;</pre>
F(ym) <+ -Fydm*cos dc - Fxdm*sin dc;</pre>
F(xp) <+ -Fxdp*cos dc + Fydp*sin dc;</pre>
F(yp) <+ -Fydp*cos dc - Fxdp*sin dc;</pre>
Tau(phim) <+ -Tq m;
Tau(phip) <+ -Tq p;</pre>
end
endmodule
```


Geometry
 Mesh: Continuum Simulation
 Solid Model: Visualization
 Example Tools
 HKS's ABAQUS
 ANSYS
 Coventor's ANALYZER
 CFDRC's CFD-ACE

- Note: holes are removed in solid model
- Simulation speed improved

Geometry
 Mesh: Continuum Simulation
 Solid Model: Visualization
 Example Tools
 HKS's ABAQUS
 ANSYS
 Coventor's ANALYZER
 CFDRC's CFD-ACE

- Note: holes are removed in solid model
- Simulation speed improved

Layout

Manufacturing blueprint
 Not intrinsically simulatable
 Layout → 3D view tools
 CFDRC's MICROMESH
 Coventor's DESIGNER
 MEMSCAP's XPLORER

Behavioral Model – Symbol and Code

- Imported from network theory and macro-scale electromechanics
- Lumped parameter models
- Ordinary differentialalgebraic equations

Hand coded
 No AHDL automated coding tools for MEMS - yet


```
module resonator(vin);
...
parameter real K = 1 ;
parameter real B = 1e-7 ;
...
analog begin
Pos(Vtop) <+ ddt(Pos(top));
Pos(Atop) <+ ddt(Pos(Vtop));
Fe = (V(vin)*V(vin))*area*`eps0/2.0/
    ((z0-Pos(top))*(z0-Pos(top)));
F(top) <+ Fe -
    (K*Pos(top) + ms*Pos(Atop) +
B*Pos(Vtop));
end
```

endmodule

MEMS Design Flow

- Schematic composition of behavioral models
- Tools:
 - Coventor's ARCHITECT
 - MEMSCAP's MEMSPro
 - UC Berkeley's SUGAR
 - Carnegie Mellon's NODAS
- Components:
 - Mechanical
 - Electromechanical
 - Fluidic (ARCHITECT)

Issues in MEMS Macromodeling

- Processes and Applications
- Design Views
- Natures and Disciplines
- Hierarchy
- Interoperability
- Beam Element Example
- Filter Example
- Language Extension

Choice of Mechanical Discipline

- Flow = Force in all cases
- Choice #1
 - Potential = Velocity
 - Potential × Flow = Velocity × Force = Power
 - Displacement must be extracted
- Choice #2

 $x = \int_{0}^{t} v_{x} dt$

- Potential = Position
- Potential × Flow = Position × Force is not meaningful
- Choice #3
 - Potential = Displacement
 - Potential × Flow = Displacement × Force = Energy

- Positions are non-zero at rest (i.e., layout)
- Displacements can be smaller than 10⁻⁶ × position
- Unnecessary offset may lead to numerical error

Inertial and Chip Frames of Reference

- Accelerometer example
- Position in chip frame is large relative to displacement
- Position in inertial frame becomes extremely large!

Displacement, Chip Frame of Reference

MEMS Translational Discipline

Current kinematic conservative discipline

Across: Position

Through: Force

New

kinematic_translational conservative discipline:

Across: Displacement

Through: Force

nature Displacement units = "m"; access = Disp; ddt_nature = Velocity; abstol = 1e-12; endnature

nature Force units = "N"; access = F; abstol = 1e-12; endnature

discipline kinematic_translational potential Displacement; flow Force; enddiscipline

MEMS Rotational Discipline

- Current rotational conservative discipline
 - Across: Angle
 - Through: Angular_Force

New

kinematic_rotational conservative discipline:

Across: Angular_Displacement

Through: Angular_Force nature Angular Displacement units = "rad"; access = Phi;ddt nature = Angular Velocity; abstol = 1e-7;endnature nature Angular Force units = "N-m"; access = Tau; abstol = 1e-16;endnature discipline kinematic rotational potential Angular Displacement; flow Angular Force; enddiscipline

velocity and *angular_velocity* signal-flow disciplines
 Needed to store kinematic states

```
nature Velocity
  units = m/s;
  access = Vel;
  ddt nature = Acceleration;
  idt nature = Displacement;
  abstol = 1e-9;
endnature
discipline velocity
  potential Velocity;
enddiscipline
```

```
nature Angular Velocity
  units = "rad/s";
  access = Omega;
  ddt nature =
  Angular_Acceleration;
  idt nature = Angular Velocity;
  abstol = 1.0;
endnature
discipline angular_velocity
  potential Angular Velocity;
enddiscipline
```

My rule of thumb:

Estimate "typical" forces and displacements

Set abstol at least to 10⁻³ × <typical value>

Comb Drive Force Estimate

- **Number of comb fingers =** N = 6
- Finger thickness = h_o = 2 µm
- Finger gap = g_o = 2 µm
- Voltage across fingers = V = 10 V

Cantilever Displacement Estimate

Apply comb force, F = 5.3 nN
 Young's modulus, E = 165 GPa

Cantilever Angular Displacement Estimate

 $\theta(L) = 0.12 \text{ mrad}$

abstol ≈ 0.1 µrad

Apply comb force, F = 5.3 nN
 Young's modulus, E = 165 GPa

Resonator Velocity Estimate

Crab-Leg Angular Force (Moment) Estimate

Angular Velocity Estimate

MEMS Abstol – Summary of Examples

Much lower than in macro-scale mechanics (Except angular velocity)

Nature	Abstol
Force	10 ⁻¹² N
Displacement	10 ⁻¹² m
Velocity	10 ⁻⁶ m/s
Angular_Force	10 ⁻¹⁶ N-m
Angular_Displacement	10 ⁻⁷ rad
Angular_Velocity	10 ⁰ rad/s

Issues in MEMS Macromodeling

- Processes and Applications
- Design Views
- Natures and Disciplines
- Hierarchy
- Interoperability
- Beam Element Example
- Filter Example
- Language Extension

MEMS Design Hierarchy

MEMS Behavioral Model Hierarchy

Ref: G.K. Fedder & Q. Jing, IEEE TCASII, Oct. 1999

■ 1-D, 1 DOF

- Simplest to macromodel
- mass-spring-damper system
- Semi-analytic 2-D or 3-D
 - Assume lumped masses
 - **3 DOF (2-D) or 6 DOF (3-D) per mass**
- Lowest N modes
 - Extracted from numerical analysis
 - True modal decomposition requires self-consistent electromechanical simulation
- DOF through structural modeling

Choice of DOFs is dependent on

- stimulus location
- stimulus frequency

comb fingers

can resonate!

Recommendation in MEMS community:

Always model to the lowest level possible (i.e. tolerable)

Example folded-flexure resonator:

Selected MEMS Flexures

Fixed-fixed flexure

- stiff in y
- nonlinear stiffening

Crab-leg flexure

- less stiff in y
- more linear

- Folded flexure
 - more linear
 - area efficient

X

- Serpentine flexure
 - set stiffness in x, y
 - linear

1-D Crab-Leg Resonator

Equation of motion:

$$F_{ext} = m\ddot{y} + B\dot{y} + ky$$

$$m \approx \rho h \left(L_p^2 + 4wL_a \right) \qquad B = \frac{\mu_{air}L_p^2}{d_{eff}} \qquad k = Eh \left(\frac{w}{L_b} \right)^3 \frac{\left(4L_b + L_a\right)}{\left(L_b + L_a\right)}$$

1-D Parameterized Behavioral Model

```
module crableg1D (dy);
inout dy;
kinematic_translational dy;
velocity vy;
parameter real La = 1e-5;
parameter real Lb = 1e-4;
real density = 2330, E = 165e9, viscosity = 1.79e-5, deff = 2e-6;
real h = 2e-6, w = 2e-6, Lp = 1e5;
                                       \int m \approx \rho h \left( L_p^2 + 4 w L_a \right) B = \frac{\mu_{air} L_p^2}{d_{eff}}
real m, b, k;
analog begin
   m = density*h*(Lp^2+4*w*La);
  b = viscosity*Lp^2/deff;

k = E*h*(w/Lb)^3*(4*Lb+La)/(Lb+La); k = Eh\left(\frac{w}{l_{L}}\right)^3 \frac{(4L_b + L_a)}{(l_{L} + l_{L})}
   Vel(vy) <+ ddt(Disp(dy));
   F(dy) \le m^*ddt(Vel(vy)) + b^*Vel(vy) + k^*Disp(dy);
   end
                                                       F_{ext} = m\ddot{y} + B\dot{y} + ky
endmodule
```

1-D Parameterized Behavioral Model

```
module crableg1D (dy);
inout dy;
kinematic_translational dy;
velocity vy;
parameter real La = 1e-5;
parameter real Lb = 1e-4;
real density = 2330, E = 165e9, viscosity = 1.79e-5, deff = 2e-6;
real h = 2e-6, w = 2e-6, Lp = 1e5;
real m, b, k;
analog begin
  m = density^{h^{(Lp^2+4^{w^{La}})};}
  b = viscosity*Lp^2/deff;
                                              velocity state needed
  k = E^{h^{(w/Lb)^{3^{(4^{Lb+La)}(Lb+La)}}}
  Vel(vy) <+ ddt(Disp(dy));
  F(dy) \le m^*ddt(Vel(vy)) + b^*Vel(vy) + k^*Disp(dy);
  end
                              acceleration state unnecessary
endmodule
```

Functional-Level 2-D Models

Divide into smaller functional units
 Easier to analytically model each unit
 Greater DOFs

Chip and Local Frames of Reference

Functional Level 2-D Schematic

Functional Level 2-D Schematic

Can build any combination of crab-leg and plate

2-D Parameterized Behavioral Crab-Leg Model

```
module crableg_spring2D (dxa, dya, phi_za, dxb, dyb, phi_zb);
inout dxa, dya, phi_za, dxb, dyb, phi_zb;
kinematic_translational dxa, dya, dxb, dyb;
kinematic_rotational phi_za, phi_zb;
```

```
parameter real alpha = 0.;
parameter real beta = 0.;
                               Convert to
parameter real gamma = 0.;
                               radians
parameter real La = 1e-5;
parameter real Lb = 1e-4;
analog begin
cos_a = cos(alpha*'M_PI/180.);
cos_b = cos(beta*'M_PI/180.);
cos_g = cos(gamma*'M_PI/180.);
```

Transform displacements from chip frame to local frame

dx_l = cos_b*cos_g*(Disp(dxb)-Disp(dxa)) + cos_b*sin_g*(Disp(dyb)-Disp(dya)); dy_l = -cos_a*sin_g*(Disp(dxb)-Disp(dxa)) + cos_a*cos_g*(Disp(dyb)-Disp(dya)); dphi = Phi(phi zb) - Phi(phi za);

2-D Parameterized Behavioral Crab-Leg Model

//Calculate spring forces and moments

Fkx_I = 3/(La+Lb)*((4*La+Lb)/La^3*dx_I-3/La/Lb*dy_I-(2*La+Lb)/La^2*dphi); Fky_I = 3/(La+Lb)*(-3/La/Lb*dx_I+(La+4*Lb)Lb^3*dy_I+3/b*dphi); Mkz_b = 1/(La+Lb)*(-3*(2*La+Lb)/La^2*dx_I+3/Lb*dy_I+(4*La+3*Lb)/La*dphi);

```
Fx_bl = Fmx_bl+Fbx_bl+Fkx_l; // Fm are inertial forces
Fy_bl = Fmy_bl+Fby_bl+Fky_l; // Fb are damping forces
Fx_al = Fmx_al+Fbx_al-Fkx_l;
Fy_al = Fmy_al+Fby_al-Fky_l; // Transform forces
```

```
F(dxb) <+ cos_b*cos_g*Fx_bl - cos_a*sin_g*Fy_bl;
F(dyb) <+ cos_b*sin_g*Fx_bl + cos_a*cos_g*Fy_bl;
F(dxa) <+ cos_b*cos_g*Fx_al - cos_a*sin_g*Fy_al;
F(dya) <+ cos_b*sin_g*Fx_al + cos_a*cos_g*Fy_al;
Tau(phi_zb) <+ Mm_b + Mb_b + Mkz_b;
Tau(phi_za) <+ Mm_a + Mb_a - Mkz_b - La*Fkx_l - Lb*Fky_l;
end
endmodule</pre>
```

Circuit representations of suspended MEMS can be partitioned into four basic lumped-parameter elements: plates, beams, gaps, and anchors

Multi-Level Design Reuse

Elements (symbols and models) can be reused in new designs

Low-level elements are:

Anchor

Beam

Plate

Gap

Comb

Layout Generation

 Automated layout is hierarchically p-cell (parameterize d cell) driven directly from elements

Issues in MEMS Macromodeling

- Processes and Applications
- Design Views
- Natures and Disciplines
- Hierarchy
- Interoperability
- Beam Element Example
- Filter Example
- Language Extension

Port Interoperability

- Essential for composition
 - Atomic-level, functional-level schematic components
- Three items must match at ports for meaningful interconnection:
- 1. Disciplines must match
 - choose displacements, forces
- 2. Reference frames must match
 - choose chip frame of reference
- Associated reference directions must match
 ?

Associated Reference Directions

Electrical:

- positive valued potential → positive voltage
- What is convention for mechanical disciplines?
 - choice is arbitrary, but
 - interpretation can be frustrating

CMU Mechanical Nodal Conventions

- Across variables (x, y, θ_z)
 - Positive valued displacements are in positive axial direction
 - Positive valued angles are counterclockwise around axis
- Through variables (Fx, Fy, Mz)
 - Positive force flowing into node acts in positive axial direction
 - Positive moment flowing into node acts counterclockwise around axis

Beam in Tension

Beam in Compression

 $F_{x,a}$ is negative; $F_{x,b}$ is positive

 $F_{x,a}$ and $F_{x,b}$ are positive x_a and x_b are positive

Rotated Beam

 y_a is negative; y_b is positive and both θ_a and θ_b are positive

Pure Bending

Issues in MEMS Macromodeling

- Processes and Applications
- Design Views
- Natures and Disciplines
- Hierarchy
- Interoperability
- Beam Element Example
- Filter Example
- Language Extension

Individual pins

Bus terminals

Linear Beam Model

Nonlinear Beam Effect I: Large Geometric Deflection

- Example: Cantilever beam
- Beam foreshortening, x and y are coupled
- Force projection into axial stress
- Not symmetric formulation

$$y(x) = f_1(x)y_a + f_2(x)\phi_a + f_3(x)y_b + f_4(x)\phi_b$$

f_i (*x*): cubic shape functions for small displacements

Coordinate Transformation

Chip frame: specifies layout position

- Local frame: specific to each element
- Displaced frame: shape functions are applied

Nonlinear Beam Effect II: Large Axial Stress Stiffening

- Example: Fixed-fixed beam
- Nonlinearity starts at small displacement
- Effective beam length, L'
- Axial force, N

y-displacement

Axial force

- Use small angle shape function
- Refer to displaced frame
- Integrate shape to find displaced length

$$y(x) = f_1(x)y_a + f_2(x)\phi_a + f_3(x)y_b + f_4(x)\phi_b$$

$$L' = \int ds = \int_{x_a}^{L+x_b-x_a} \sqrt{1 + (\frac{dy}{dx})^2} dx$$
$$\delta I - I' - I$$
Geometric Stiffness Matrix

Ref: Przemieniecki, Theory of Matrix Structural Analysis, 1968

Nonlinear Beam Code

Nonlinear Beam Model: Verification I

Nonlinear Beam Model: Verification II

Compared to ABAQUS

Issues in MEMS Macromodeling

- Processes and Applications
- Design Views
- Natures and Disciplines
- Hierarchy
- Interoperability
- Beam Element Example
- Filter Example
- Language Extension

Design Example: Third order Bandpass Filter

Topology due to Wang & Nguyen (MEMS '97)
 More complex than just a single resonator
 Multi-domain interactions
 Multiple functional devices
 Coupling is crucial to the performance

Design Example: Micromechanical Bandpass Filter

Cascade of 3 coupled microresonators output

frequency

MEMS Bandpass Filter

Bandpass Filter Verification

= Equivalent Linear SPICE Circuit V_{in} $R_{q1} \frac{M_{1}}{\eta^{2}/K_{1}} \frac{M_{1}}{\eta^{2}} \frac{M_{1}}{\beta_{1}/\eta^{2}} \frac{M_{2}}{\eta^{2}/K_{2}} \frac{M_{2}}{M_{2}/\eta^{2}} \frac{M_{2}}{\beta_{2}/\eta^{2}} \frac{M_{2}}{\eta^{2}/K_{3}} \frac{M_{3}}{M_{3}/\eta^{2}} \frac{M_{3}}{\beta_{3}/\eta^{2}} \frac{M_{4}}{\beta_{3}/\eta^{2}} \frac{M_{4}}{\beta_{3}/\eta^$

Ref: Q. Jing et al., IEEE MEMS 2000

Parasitics in CMOS MEMS

Verification by Layout Extraction

Baidya, Gupta & Mukherjee, IEEE JMEMS, Feb 2002

Verification by Layout Extraction

Baidya, Gupta & Mukherjee, IEEE JMEMS, Feb 2002

Issues in MEMS Macromodeling

- Processes and Applications
- Design Views
- Natures and Disciplines
- Hierarchy
- Interoperability
- Beam Element Example
- Filter Example
- Language Extension

Proposed Composite Discipline

```
multidiscipline mems2D
  discipline dx : kinematic translational
       potential.access = "Dx";
      flow.access = "Fx";
  enddiscipline
  discipline dy : kinematic translational
                                                   definitions
       potential.access = "Dy";
                                                   from base
      flow.access = "Fy";
                                                   discipline
  enddiscipline
  discipline phi : kinematic_rotational
  enddiscipline
endmultidiscipline
```

Proposed Composite Discipline

Composite Discipline Use

Desire equations that are concise, easy to read

- Syntax looks like standard disciplines
- Could use matrix notation...

```
inout a, b;
mems2D a, b;
...
real kxx, kyy, ktaa, ktab, ktbb, kxy, kxt, kyt;
analog begin
...
Fx(a, b) <+ kxx*Dx(a,b) + kxy*Dy(a,b) + kxt*Phi(a,b);
Fy(a, b) <+ kxy*Dx(a,b) + kyy*Dy(a,b) + kyt*Phi(a,b);
Tau(a) <+ kxt*Dx(a,b) + kyt*Dy(a,b) + ktaa*Phi(a) + ktab*Phi(b);
Tau(b) <+ kxt*Dx(a,b) + kyt*Dy(a,b) + ktab*Phi(a) + ktbb*Phi(b);</pre>
```

Conclusions

- MEMS behavioral modeling with A-HDLs is slowly being adopted
- Still far from the preferred starting point in design
- Accurate behavioral models exist for mechanics
- Near-term Work:
 - General electrostatic gap
 - Thermomechanics, electrothermal, piezo-effects
- Atomic-level models in other domains way behind
- Open standard cell library is needed
 - Need standard conventions adopted for interoperability
 - Provides templates for behavioral modeling
 - Promotes structured modeling

NSF, DARPA and Pittsburgh Digital Greenhouse

- Tamal Mukherjee
- Current and former students
 - Jan Vandemeer
 - Mike Kranz
 - Qi Jing
 - Gilbert Wong