Modeling Nonlinear Communication ICs Using a Multivariate Formulation

Peng Li and Larry Pileggi

Department of Electrical and Computer Engineering Carnegie Mellon University

Notivation

Macromodeling is a key for whole-system verification and system-level exploration

Carnegie Mellon Center for Silicon System Implementation

Notivation

- □ Nonlinear distortion is NOT negligible for analog & RF
 - > Dynamic range, interference immunity, SNDR, THD, IM3 ...
- Detailed transistor-level nonlinear analyses can lead to lengthy simulation time
 - Distortion effects must be characterized on a block/subsystem basis and reflected accurately and efficiently at system-level
- A systematic *nonlinear* macromodeling strategy is required usually a very hard problem!

Outline

- Motivation
- Prior work
- Multivariate formulation
- Model order reduction
- Results
- Conclusions

Prior Work

Black-box based approaches

- Neural nets, data mining, describing functions, support vector machines etc.
 - [Liu et al DAC02] [Root et al DAC03][Bernardinis DAC03]
- Can use measurement data

□ White-box/equation based approaches

- Based an explicit description of the nonlinear systems
 - Nonlinear ODEs:
 - Diecewise-linear, Volterra, piecewise-polynomial representations
- Resolve to model order reduction (MOR) or pruning for model generation

Prior Work

Samples of recent equation-based works

- Volterra & symbolic model generation
 - ✤ [Wambacq et al Kluwer98, DATE00]
- Volterra & model order reduction
 - [Roychowdhury TCAS99], [Phillips CICC00, DAC00]
 [Li/Pileggi DAC03], [Li et al, ICCAD03]
- Piecewise-linear & model order reduction
 - ✤ [Rewienski et al ICCAD01], [Vasilyev et al DAC03]
- Piecewise-polynomial (Volterra) & model order reduction

 (Dong/Roychowdhury DAC03]

Volterra Series

A commonly used system description for weakly nonlinear systems

$$x(t) = \sum_{n=1}^{\infty} x_n(t)$$
$$x_n(t) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} h_n(\tau_1, \cdots, \tau_n) u(t - \tau_1) \cdots u(t - \tau_n) d\tau_1 \cdots d\tau_n$$

input

$$Ae^{j\omega_{0}t} \qquad H_{1}(\omega) \qquad AH_{1}(\omega_{0})e^{j\omega_{0}t}$$

$$A_{a}e^{j\omega_{a}t} \qquad H_{2}(\omega_{1},\omega_{2}) \qquad A_{a}A_{b}H_{2}(\omega_{a},\omega_{b})e^{j(\omega_{a}+\omega_{b})t}$$
output

$$A_{a}e^{j\omega_{a}t} \qquad H_{3}(\omega_{1},\omega_{2},\omega_{3}) \qquad A_{a}A_{b}A_{c}H_{3}(\omega_{a},\omega_{b},\omega_{c})e^{j(\omega_{a}+\omega_{b}+\omega_{c})t}$$

$$\vdots$$

Carnegie Mellon Center for Silicon System Implementation

Time-Varying Volterra Series

- Need to perform weakly nonlinear distortion analysis over a varying operating condition for time-varying systems
- Prior works have focused on nonlinear model order reduction based periodically time-varying Volterra series
 - > E.g. mixers and SC circuits

Carnegie Mellon Center for Silicon System Implementation

Proposed Work

Multi-rate time variations are commonly present in communication ICs

Introduced by multiple LO's, sampling clocks of switched-capacitor channel select filters etc.

□ Weakly nonlinear distortions are coupled with multi-rate time variations

Problem Formulation

- **Based upon a quasi-periodically varying operating point**
- Using quasi-periodic nonlinear transfer functions for modeling weakly distortions due to the small input of interest

$$i(t) = a_{1,t}v(t) + a_{2,t}v^{2}(t) + a_{3,t}v^{3}(t)$$

Quasi-periodic time-varying op

Carnegie Mellon Center for Silicon System Implementation

Quasi-periodic nonlinear transfer functions:

 $H_1(t,\omega)$ $H_2(t,\omega_1,\omega_2)$

 $H_3(t,\omega_1,\omega_2,\omega_3)$

Proposed Work

Multi-rate RF/analog blocks should be modeled compactly for whole system simulation

Divide-and-conquer

partition a multi-rate subsystem into chucks and model each chuck as periodically-varying (associated with a single LO/clock)

Direct approach

- > Treat the multi-rate RF/analog block more generally as *quasi-periodic*
- > Cons: Larger problem size
- Benefits
 - Allow a full consideration of interactions between different stages
 - Parasitic coupling, leakage
 - Potential increase of modeling efficiency a single piece model for the complete multi-rate subsystem

Our Approach

- Previous works have focused on reduced-order modeling of periodically time-varying weakly nonlinear circuits (e.g. mixer)
 - > Using a Volterra description
- We need to consider more general quasi-periodically time-varying systems to accommodate multi-rates

Problem Formulation

- Model the weakly nonlinear distortions under a multi-rate varying operating condition
- Need to formulate proper quasi-periodic boundary conditions for nonlinear transfer functions
 - Formulating matrix-form system description for reduced-order modeling
- Can use a boundary condition formulation very similar to that used in steady-state analyses
 - > Delay operator [Kundert et al JSCC89] [Feng et al DAC99]
 - MPDE approach [Roychowdhury TCAS01]

Multivariate Formulation

- □ Introduce one time-variable for each large time-variation
- Can simply a enforce periodic boundary condition for each time-variable
 Birate case

$$\begin{array}{c} G_{1}(t) \ G_{2}(t) \\ C_{1}(t) \ C_{2}(t) \\ H_{1}(t, \omega) \\ H_{2}(t, \omega_{1}, \omega_{2}) \\ G_{1}(t)H_{1}(t) + \frac{d}{dt}(C_{1}(t)H_{1}(t, s)) \\ + sC_{1}(t)H_{1}(t, s) = b \end{array} \begin{array}{c} X(t) = \hat{X}(t, t) \\ X(t) = \hat{X}(t, t) \\ \hat{X}(t) = \hat{X}(t, t) \\ \hat{H}_{1}(t_{1}, t_{2}) \ \hat{G}_{2}(t_{1}, t_{2}) \\ \hat{H}_{1}(t_{1}, t_{2}, \omega) \\ \hat{H}_{2}(t_{1}, t_{2}, \omega_{1}, \omega_{2}) \\ \hat{G}_{1}(t)\hat{H}_{1}(t_{1}, t_{2}) + \frac{\partial}{\partial t_{1}}(\hat{C}_{1}(t_{1}, t_{2})\hat{H}_{1}(t_{1}, t_{2}, s)) + \\ \frac{\partial}{\partial t_{2}}(\hat{C}_{1}(t_{1}, t_{2})\hat{H}_{1}(t_{1}, t_{2}, s)) + s\hat{C}_{1}(t_{1}, t_{2})\hat{H}_{1}(t_{1}, t_{2}, s) = b \end{array}$$

Biperiodic:

$$\hat{X}(t_1 + T_1, t_2 + T_2) = \hat{X}(t_1, t_2)$$

Carnegie Mellon Center for Silicon System Implementation

Quasi-periodic

Multivariate Formulation

- Use finite-difference discretizations lead to a set of linear algebraic equations for transfer functions
- **Birate case**
 - > Discretize the PDEs (in terms of Volterra) on a 2D grid
 - Substitute in biperiodic boundary conditions

Model Order Reduction

- Discretized multivariate transfer functions can be reduced by recently developed nonlinear model order reduction algorithm NORM [DAC 03]
 - Nonlinear transfer function moments are matched by projection-based nonlinear Padé approximations

 But for high-Q circuits, a full projection approach becomes ineffective for modeling high-order distortions [Li et al, ICCAD03]

- > Many projection vectors are needed for modeling the full frequency range
- Large model size

Carnegie Mellon Center for Silicon System Implementation

Reduced Hybrid Model

 Low-order responses are projected onto the reduced coordinates and then mapped back.

High-order response is evaluated in the original coordinates based on sparsified matrices and the propagation through reduced adjoint network.

□ A heterodyne receiver

- > flo1 = 880MHz, flo2 = 70MHz
- Quasi-periodic operating condition is computed by 2-tone steady-state analysis
- The system is modeled using multivariate Volterra series using 40,000 unknowns
- The extracted full model is then reduced by a combination of projection-based reductions

Model structure

First and second order nonlinear responses

 Approximated using a nonlinear reduced model of size 36 produced by multi-point NORM

> Third order response

 Approximated using the above model and a reduced adjoint model of size 20

Achieved 13x runtime speedup using the reduced order model

Further model simplification is possible via a pruning processing in the original system coordinates

Carnegie Mellon Center for Silicon System Implementation

One harmonic of the 1st order transfer function at the output

Specifying the linear conversion gain

Carnegie Mellon Center for Silicon System Implementation

- One harmonic of the time-varying third order nonlinear transfer function at the output
 - > Specifying the amount of IM3 translated to the base band

Conclusions

- A nonlinear model generation approach is presented for modeling multirate nonlinear communication ICs
- Nonlinear distortion effects are characterized using a multivariate formulation of Volterra nonlinear transfer functions
- Compact circuit models are generated via a combination of projection-based reductions for achieving improved efficiency at high-level system simulation

