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Motlvarzion
0 Macromodeling is a key for whole-system verification and
system-level exploration

Specification
3
System-level design

{ top-down:
N system design
AMS/RF

bottom-up:
verification

Nonidealities
?2?

Circuit-level
(component) design
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Validation
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Mloztivarelon

0 Nonlinear distortion is NOT negligible for analog & RF
» Dynamic range, interference immunity, SNDR, THD, IM3 ...

0 Detailed transistor-level nonlinear analyses can lead to lengthy
simulation time

> Distortion effects must be characterized on a block/subsystem basis and
reflected accurately and efficiently at system-level

0 A systematic nonlinear macromodeling strategy is required — usually a
very hard problem!
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Oureline

0 Motivation

Q Prior work

0 Multivariate formulation
0 Model order reduction
0 Results

0 Conclusions
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Prior YJorx
0 Black-box based approaches

> Neural nets, data mining, describing functions, support vector

machines etc.
[Liu et al DAC02] [Root et al DACO03][Bernardinis DAC03]

» Can use measurement data

0 White-box/equation based approaches
> Based an explicit description of the nonlinear systems

% Nonlinear ODEs:

O piecewise-linear, Volterra, piecewise-polynomial representations
> Resolve to model order reduction (MOR) or pruning for model

generation




Prior Wori

&%\ 0 Samples of recent equation-based works

> Volterra & symbolic model generation
« [Wambacq et al Kluwer98, DATEQOQ]

> Volterra & model order reduction

« [Roychowdhury TCAS99], [Phillips CICCO0, DAC00]
[Li/Pileggi DACO3], [Li et al, ICCADO3]

> Piecewise-linear & model order reduction
« [Rewienski et al ICCADOQ1], [Vasilyev et al DACO3]

> Piecewise-polynomial (Volterra) & model order reduction
< [Dong/Roychowdhury DACO3]
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0 A commonly used system description for weakly nonlinear
systems

input

©(1)= 2 x,(1)

x,(t) = _["'Ihn(fla"‘arn)u(t_71)“'u(t_z'n)dz'l"'dT
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Tirne=-Yarying Yolierra Series

A 0 Need to perform weakly nonlinear distortion analysis over a
i varying operating condition for time-varying systems

Z2\ 0 Prior works have focused on nonlinear model order
reduction based periodically time-varying Volterra series
> E.g. mixers and SC circuits

H,(t,0,0,,0,) = ZH3,k(a)1,a)2,a)3)ejkw°t
;

Distorted responses shifted

i(1)=a, N(f) +a2’tV2 (t) +a3,tV3 (t) by multiples of LO/carrier
T T frequency
} i1t .
R, .
Periodic Op T " A T A f} éww




Proposead] Worx

0 Multi-rate time variations are commonly present in communication ICs

> Introduced by multiple LO’s, sampling clocks of switched-capacitor
channel select filters etc.

0 Weakly nonlinear distortions are coupled with multi-rate time variations

DSP

& |

G
<
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Proolern Formulaiion
0 Based upon a quasi-periodically varying operating point

0 Using quasi-periodic nonlinear transfer functions for modeling weakly

distortions due to the small input of interest
<«— First order

G,(H, (1) +%(Cl ()H,(,5))+sC () H,(t,5) = b
[Gl(l‘)+(S1+S2)C1(l‘)]H2(t,S1,S2)+%[C1(t)H2(t, 5,,8,)] € Second order

Quasi-periodic nonlinear
transfer functions:

[G, (1) + (s, +S2)C2(t)][H1(t,S1)®H1(t,S2)]—%[Cz(t)[Hl(t,Sl)®H1(X,S2)]

i(t) = a, v(t)+a,, v’ (1) +a;, v (1)
4
H, (t,0)
H2 (t, a)l ” a)2)
. H(t,0,0,,o
3( 12772 3)3-;;»““%‘;2-—24‘
...... PCSSid

Quasi-periodic time-varying op




Proposead] Worx

0 Multi-rate RF/analog blocks should be modeled compactly for whole
system simulation

0 Divide-and-conquer

» partition a multi-rate subsystem into chucks and model each chuck as
periodically-varying (associated with a single LO/clock)

0 Direct approach
» Treat the multi-rate RF/analog block more generally as quasi-periodic
» Cons: Larger problem size
> Benefits

« Allow a full consideration of interactions between different stages
o Parasitic coupling, leakage

« Potential increase of modeling efficiency — a single piece model for the
complete multi-rate subsystem




Our ADOrozcs

0 Previous works have focused on reduced-order modeling of periodically
time-varying weakly nonlinear circuits (e.g. mixer)
» Using a Volterra description

0 We need to consider more general quasi-periodically time-varying
systems to accommodate multi-rates

DSP

X=AX+4,(X®F)+-- ‘
Macromodel

I L

Co-Simulate With Digital
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Proolerm rorrmulzaizion

& 0O Model the weakly nonlinear distortions under a multi-rate
¥ varying operating condition

0 Need to formulate proper quasi-periodic boundary
conditions for nonlinear transfer functions

» Formulating matrix-form system description for reduced-order
modeling

a Can use a boundary condition formulation very similar to
that used in steady-state analyses
> Delay operator [Kundert et al JSCC89] [Feng et al DAC99]
> MPDE approach [Roychowdhury TCAS01]




Mlulelvarizaire Formmulziclon

0 Introduce one time-variable for each large time-variation
0 Can simply a enforce periodic boundary condition for each time-variable
0 Birate case

Gl(t) Gz(t) G (tlat ) G (tl,t )

Cl(t) Cz(t) C(tlat ) C (l‘l,l‘ )

H, (t,) X (6)=X(,1) H,(t,,t,,0)

HZ(tﬂa)laa)z) Hz(tlatzaa)]aa)z)
d GO (1) + - (Gt ) (1 13, 5) +
Gl(t)Hl(t)+E(C1(t)H1(t>S)) o,
+SC1(f)H1(t,S):b g(él(tl’tz)l:ll(tvtzas))+Sél(t19t2)]:11(t1atzas):b
Quasi-periodic Biperiodic:

X(t,+T,t, +T,) = X (t,,1,)




Mlulelvarizaire Formmulziclon

0 Use finite-difference discretizations lead to a set of linear algebraic

equations for transfer functions
> Discretize the PDEs (in terms of Volterra) on a 2D grid

N, points

0 Birate case
> Substitute in biperiodic boundary conditions
A (\ = [J,+sC]H (s)=D
t, o
[J,+ (s, +5,)C 1H,(s,,5,) =
N, N B —[J, + (s, +5,)C, ]H
points Periodic
boundary . .
U | : :
— —
» Periodic
t, boundary J—



Mocda]l Order Reduction

0 Discretized multivariate transfer functions can be reduced by recently
developed nonlinear model order reduction algorithm NORM [DAC 03]

> Nonlinear transfer function moments are matched by projection-based
nonlinear Padé approximations

T / Decomposition Projection

: ==V "'’ Nonlinear Reduced ﬁm
Raliia ¥ A 5 Order Model

Moment Directions Kl‘leV subspaces

0 But for high-Q circuits, a full projection approach becomes ineffective for
modeling high-order distortions [Li et al, ICCAD03]

» Many projection vectors are needed for modeling the full frequency range
» Large model size




\ Y0 Low-order responses are

i projected onto the reduced
coordinates and then mapped
back.

/J0 High-order response is
evaluated in the original
coordinates based on sparsified
matrices and the propagation
through reduced adjoint
network.

Recuced rlyorid Modzl

Linear Network

¥

G,,.C G,,Cs,

3p>

Lmear Network
(G,..C.,)

(Pruning followed by proj.)
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0O A heterodyne receiver
flo1 = 880MHz, flo2 = 70MHz

Quasi-periodic operating condition is computed by 2-tone
steady-state analysis

» The system is modeled using multivariate Volterra series using
40,000 unknowns

» The extracted full model is then reduced by a combination of
projection-based reductions

YV Vv

~ vl
\i/_ LNA Mixer IF AMP @ ==
DB B> iy
X
LO1 N
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odel structure

» First and second order nonlinear responses

<« Approximated using a nonlinear reduced model of size 36
produced by multi-point NORM

> Third order response

<« Approximated using the above model and a reduced adjoint
model of size 20

0 Achieved 13x runtime speedup using the reduced
order model

» Further model simplification is possible via a pruning
processing in the original system coordinates




0 One harmonic of the 15t order transfer function at the output
> Specifying the linear conversion gain

10° ¢

[
<DI

Normalized H1
'_\
o

—— Full Model
* Reduced Model

9.2

9.3

9.4 95 9.6
Frequency (Hz)

9.7

9.8

9.9

x 10

8



Rasuls

a One harmonic of the time-varying third order nonlinear transfer
function at the output

> Specifying the amount of IM3 translated to the base band

10 A A
P 4 * n = A
10" ’ o ’
A
A
10_2 p N X
o X
%) I P 4 o & N A
-3 N N <&
o 810 ) ¥ v v " y a
X N A o
= R . <
£ 10 * f1=910M (Redu) €10 ¥ 1=955M (Redu) X
= 4 f1=915M (Redu) o A f1=961M (Redu)
< o 4 f1=921M (Redu) z . 4 f1=967M (Redu) 5
10 % f1=927M (Redu) 10 . / % f1=972M (Redu)
+  f1=932M (Redu) " + f1=978M (Redu) > T
[ ¢ 1=938M (Redu) i o f1=984M (Redu) s
10°% x  f1=944M (Redu) 107° x f1=990M (Redu)
] v f1=950M (Redu) Full Model X
— Full Model
- _
10 1 1 1 1 1 1 1 | 10 7 ) ) ) ) ) ) ) )
9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 i-g 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9
f2 (Hz) x 10 f2 (Hz) X 10°




Conclusions

% O A nonlinear model generation approach is presented for
modeling multirate nonlinear communication ICs

0 Nonlinear distortion effects are characterized using a
multivariate formulation of Volterra nonlinear transfer
functions

0 Compact circuit models are generated via a combination of
projection-based reductions for achieving improved
efficiency at high-level system simulation



