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MotivationMotivation
Macromodeling is a key for whole-system verification and 
system-level exploration
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MotivationMotivation
Nonlinear distortion is NOT negligible for analog & RF

Dynamic range, interference immunity, SNDR, THD, IM3 …

Detailed transistor-level nonlinear analyses can lead to lengthy 
simulation time

Distortion effects must be characterized on a block/subsystem basis and 
reflected accurately and efficiently at system-level

A systematic nonlinear macromodeling strategy is required – usually a 
very hard problem!
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Prior WorkPrior Work
Black-box based approaches

Neural nets, data mining, describing functions, support vector 
machines etc. 
[Liu et al DAC02] [Root et al DAC03][Bernardinis DAC03]

Can use measurement data

White-box/equation based approaches
Based an explicit description of the nonlinear systems

Nonlinear ODEs: 
piecewise-linear, Volterra, piecewise-polynomial representations

Resolve to model order reduction (MOR) or pruning for model 
generation 
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Prior WorkPrior Work

Samples of recent equation-based works
Volterra & symbolic model generation

[Wambacq et al Kluwer98, DATE00]

Volterra & model order reduction
[Roychowdhury TCAS99], [Phillips CICC00, DAC00]
[Li/Pileggi DAC03], [Li et al, ICCAD03] 

Piecewise-linear & model order reduction
[Rewienski et al ICCAD01], [Vasilyev et al DAC03]

Piecewise-polynomial (Volterra) & model order reduction
[Dong/Roychowdhury DAC03]
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Volterra SeriesVolterra Series
A commonly used system description for weakly nonlinear 
systems
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Time-Varying Volterra SeriesTime-Varying Volterra Series
Need to perform weakly nonlinear distortion analysis over a 
varying operating condition for time-varying systems

Prior works have focused on nonlinear model order 
reduction based periodically time-varying Volterra series

E.g. mixers and SC circuits
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Proposed WorkProposed Work

Multi-rate time variations are commonly present in communication ICs
Introduced by multiple LO’s, sampling clocks of switched-capacitor 
channel select filters etc.

Weakly nonlinear distortions are coupled with multi-rate time variations 
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Problem FormulationProblem Formulation
Based upon a quasi-periodically varying operating point
Using quasi-periodic nonlinear transfer functions for modeling weakly 
distortions due to the small input of interest
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Proposed WorkProposed Work
Multi-rate RF/analog blocks should be modeled compactly for whole 
system simulation

Divide-and-conquer
partition a multi-rate subsystem into chucks and model each chuck as 
periodically-varying (associated with a single LO/clock)

Direct approach
Treat the multi-rate RF/analog block more generally as quasi-periodic
Cons: Larger problem size
Benefits

Allow a full consideration of interactions  between different stages
Parasitic coupling, leakage

Potential increase of modeling efficiency – a single piece model for the 
complete multi-rate subsystem
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Our ApproachOur Approach
Previous works have focused on reduced-order modeling of periodically 
time-varying weakly nonlinear circuits (e.g. mixer)

Using a Volterra description

We need to consider more general quasi-periodically time-varying 
systems to accommodate multi-rates
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Problem FormulationProblem Formulation

Model the weakly nonlinear distortions under a multi-rate 
varying operating condition

Need to formulate proper quasi-periodic boundary 
conditions for nonlinear transfer functions

Formulating matrix-form system description for reduced-order 
modeling

Can use a boundary condition formulation very similar to 
that used in steady-state analyses

Delay operator [Kundert et al JSCC89] [Feng et al DAC99]
MPDE approach [Roychowdhury TCAS01]



Carnegie Mellon Center for Silicon System Implementation P. Li, BMAS 0314

Multivariate FormulationMultivariate Formulation
Introduce one time-variable for each large time-variation
Can simply a enforce periodic boundary condition for each time-variable
Birate case
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Multivariate FormulationMultivariate Formulation
Use finite-difference discretizations lead to a set of linear algebraic 
equations for transfer functions
Birate case

Discretize the PDEs (in terms of Volterra) on a 2D grid
Substitute in biperiodic boundary conditions
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Model Order ReductionModel Order Reduction
Discretized multivariate transfer functions can be reduced by recently 
developed nonlinear model order reduction algorithm NORM [DAC 03]

Nonlinear transfer function moments are matched by projection-based 
nonlinear Padé approximations

But for high-Q circuits, a full projection approach becomes ineffective for 
modeling high-order distortions [Li et al, ICCAD03]

Many projection vectors are needed for modeling the full frequency range
Large model size

Moment Directions Krylov subspaces

Decomposition Projection
Nonlinear Reduced

Order Model
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Reduced Hybrid ModelReduced Hybrid Model

Low-order responses are 
projected onto the reduced 
coordinates and then mapped 
back.

High-order response is 
evaluated in the original 
coordinates based on sparsified
matrices and the propagation 
through reduced adjoint
network.
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ResultsResults
A heterodyne receiver

flo1 = 880MHz, flo2 = 70MHz
Quasi-periodic operating condition is computed by 2-tone 
steady-state analysis 
The system is modeled using multivariate Volterra series using 
40,000 unknowns
The extracted full model is then reduced by a combination of 
projection-based reductions 
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ResultsResults
Model structure

First and second order nonlinear responses
Approximated using a nonlinear reduced model of size 36 
produced by multi-point NORM

Third order response
Approximated using the above model and a reduced adjoint
model of size 20

Achieved 13x runtime speedup using the reduced 
order model

Further model simplification is possible via a pruning 
processing in the original system coordinates
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ResultsResults
One harmonic of the 1st order transfer function at the output

Specifying the linear conversion gain
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ResultsResults
One harmonic of the time-varying third order nonlinear transfer 
function at the output

Specifying the amount of IM3 translated to the base band
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ConclusionsConclusions

A nonlinear model generation approach is presented for 
modeling multirate nonlinear communication ICs

Nonlinear distortion effects are characterized using a 
multivariate formulation of Volterra nonlinear transfer 
functions

Compact circuit models are generated via a combination of 
projection-based reductions for achieving improved 
efficiency at high-level system simulation


