A Statistical Perspective on Nonlinear Model Reduction

Joel Phillips, Cadence Berkeley Labs

Thanks to: Rutenbar et al @ CMU
Automated Analog Modeling

- Goal: Automatic algorithm that compresses transistor-level circuit descriptions into macromodels
Main Points

• Fundamental problem: prevent explosion of complexity due to dimensionality

• Statistically motivated thinking can be very powerful
 - Provides a (quantifiable) way to describe complexity
 - Nice way of formulating reasoning based on prior knowledge
 • Connection to regression-type methods (regularization to prevent over-fitting)

• (But most everything can be done from a deterministic viewpoint)
Dimensionality

• Linear systems

\[\frac{dx}{dt} = Ax \]

\(O(n^2) \) coefficients

• Nonlinear systems

\[\frac{dx}{dt} = f(x) \]

?????? coefficients

- “Nonlinear” model reduction is “non” – takes us into ill-described/unrestricted/undefined world. Need new ways of thinking about this
Linear System Feature Space

- Linear systems, one dimension: one coefficient
 \[f(x) = ax \]

- Linear systems, N dimensions: N coefficients
 \[f(x) = Ax = \begin{bmatrix} a_1 & x_1 \\ a_2 & x_2 \\ \vdots \end{bmatrix} \]
Nonlinear System Feature Space

- Nonlinear systems, one dimension: \(m > 1 \) coefficients?

\[
f(x) = ax + a_2 x^2 + a_3 x^3 + \cdots
\]

- Nonlinear systems, \(N \) dimensions

\[
f(x) = a_{11} x_1 + a_{22} x_2 + \cdots a_{11} x_1^2 + a_{21} x_1 x_2 + a_{31} x_1 x_3 + \cdots
\]

\[
+ a_{111} x_1^3 + a_{112} x_1^2 x_2 + a_{123} x_1 x_2 x_3 + \cdots
\]

- \(N \) coefficients?
- \(N^m \) coefficients?
Recall: Volterra like methods

\[
\frac{dz}{dt} = \hat{A}_{(1)} z^{(1)} + \hat{A}_{(2)} z^{(2)} + \hat{A}_{(3)} z^{(3)} + \ldots + Bu
\]

\[
\hat{A}_{(1)} = V^T A_{(1)} V, \quad \hat{A}_{(2)} = V^T A_{(2)} (V \otimes V),
\]

\[
\hat{A}_{(3)} = V^T A_{(3)} (V \otimes V \otimes V), \quad \text{etc.}
\]

• Problem: Tensors of \(O(m) \) contain \(O(q^m) \) elements in a q-state model

• Is this the right way to measure “complexity”?
Odd Observation #1: Coefficient Explosion

- Model system: thirty node circuit with two-terminal nonlinearities ("nonlinear delay line")

- Consider approximating each nonlinearity with order-10 polynomial
 - → 300 coefficients to describe

- After "reduction" to 5 state variables (6X reduction in state space size)
 - → 50 million coefficients to describe in tensor product form
 - → 5000 coefficients to describe in non-redundant form

- Oops!
Odd Observation #2: Trajectory Methods

- Why does this work (at all)? Any hope it will work in general?
So how hard, really?

- Goal: quantitatively describe amount of “redundancy” in a nonlinear model

\[\frac{dx}{dt} = f(x) + Bu \quad \Rightarrow \quad \frac{dz}{dt} = \hat{f}(z) + \hat{B}u(t) \]

- When is reduction possible?
 - Only in special cases? Which cases?
 - What information is needed for “good” reduction?

- What is the trade-off between model size and error?
Information Theory

• Consider a random variable X with probability density $p(x)$

• Entropy:
 \[H(X) = -E_p \{ \log p \} = \sum p \log p \]

• Interpretation
 - Given a sequence $X_1 \ X_2 \ X_3 \ldots$
 - Lower bound of average symbol length of code for sequence
Shannon Coding

- Basic idea – assign codelengths proportional to
 - High probability symbols get short codes
 - Low probability symbols use longer codes

\[l(x) \sim \log \frac{1}{p(x)} \]

- Asymptotically achieves optimal code length (~entropy)

\[E_p \{L(X)\} = \sum p(x)l(x) = \sum p(x)\log \frac{1}{p(x)} < H(X) + 1 \]

<table>
<thead>
<tr>
<th>p(x)</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>1/4</td>
<td>10</td>
</tr>
<tr>
<td>1/8</td>
<td>110</td>
</tr>
<tr>
<td>1/8</td>
<td>111</td>
</tr>
</tbody>
</table>
Example: A Box of Integers

• Simple Probabilistic Model: Box emits a number “between one and ten”

• Over all boxes there is a box with maximal entropy → uniform probability distribution
 - Entropy $H(M1) = \log 10$
 - In the worse case a code can be constructed with average symbol length $\log 10$

$3,1,6,9,2,4,\ldots$
Prior Knowledge

• Conditional entropy
 - $H(X|Y) = E\{ \log p(X|Y) \}$

• Conditioning decreases entropy
 - $H(X|Y) \leq H(X)$
 • Equality only if X, Y independent (Y is non-informative wrt X)

• Prior knowledge makes representation easier
Box Example, Continued

- Simple Probabilistic Model: Box emits a number “between one and ten”

- Over all boxes with specified mean there is a box with maximal entropy
 - Entropy $H(M2) < \log 10$

- Additional conditions – e.g. prior knowledge – lowers the entropy \rightarrow easier to represent \leftrightarrow shorter code

$1,1,1,2,1,1,2,2,1,1,1,2,\ldots$
Box Example, Continued
What (pray tell) has this to do with dynamic systems modeling?
Complexity of Model Reduction

• Recall: model reduction challenge

\[
\frac{dx}{dt} = f(x) + Bu
\]

\[
\frac{dz}{dt} = \hat{f}(z) + \hat{B} \ u(t)
\]

• Q1: Complexity of representing state.
 - How much “information” is present in the state space?
 - Relates to construction of z

• Q2: Complexity of vector field f(x)
 - How much “information” is present in the state \(\rightarrow \) derivative (feature-space) mapping?
 - Relates to construction of f(z)
Compacting the State Space

• Not all portions of the state space are accessed with high probability → compact representation exists
Example: Statistical Perspective on TBR

• Consider

\[\frac{dx}{dt} = Ax + Bu \quad y = Cx \]

• Define operator \(L: u \rightarrow x(0) \) maps past inputs to state

• TBR: \(L_2 \) optimal approximation of \(L \)
Statistical Perspective on TBR, contd

• Grammian: eigenvectors give principle components of L

$$X_c = LL^H = \int_{-\infty}^{0} e^{At} BB^T e^{A^T t} dt$$

• Statistical interpretation
 - Unit power, white spectrum Gaussian process \Rightarrow covariance matrix of zero-mean Gaussian process
Statistical Perspective on TBR, contd

- Eigenvalues of Grammian
 - = singular values of operator L
 - = variances of N-dimensional Gaussian process

- Entropy = sum of log of singular values

- Small SVs ↔ easy to approximate ↔ low entropy

- Lower entropy means:
 - For a given model order, lower error
 - For a given error, a lower model order is needed
Statistical Perspective on TBR, contd

• Input Restriction: What is the impact on entropy given that the circuit is only driven at certain selected points?

\[H_1 < H_2 < H_4 \]

• The fewer the inputs, the lower the entropy → the easier to approximate with low order models
 - Quantifiable
 - Agrees with our intuition
 - Statistical & classical interpretation agree
Statistical Perspective on TBR, contd

![Graph showing error vs. inputs for fixed size model]
What can we say about nonlinear modeling?
The Charge/Current Functions

• Recall: the nonlinear functions may “live” in exponentially large spaces
 - BUT – it may be that much of the space may be accessible only with low probability → May be enough to utilize some subset of the possible functions

• Why would this occur? How can it be exploited?

\[f(x) = a_1 x_1 + a_2 x_2 + \cdots + a_{11} x_1^2 + a_{21} x_1 x_2 + a_{31} x_1 x_3 + \cdots + a_{111} x_1^3 + a_{112} x_1^2 x_2 + a_{123} x_1 x_2 x_3 + \cdots \]

\[\hat{f}(x) = a_r (x_2 + x_1 x_2 x_3) \]
Need an Implicit Representation!

• Need the ability to work in an exponentially large space – but only use function components specifically needed in the problem at hand (“Pay as you go”)

• Example: Kernel Hilbert Spaces (Informal Description)
 - Idea: Use a “kernel” $K(x,y)$ as a function space generator

$$f(x) = \sum_k c_k K(x_k, x)$$

- Each x_k selects some “particular” basis function $K(x_k, x)$
- Space of all $K(x_k, x)$ is the RKHS
RKHS Example: “Diode Line”

- Space of all order 10 polynomials is of dimension 30^{10}
- Polynomial kernel
 - $K(x,y) = (1 + \langle x, y \rangle)^d$
 - Only need $M=300 \ x_k$ ("support vectors") to describe the line ($30 \times 10 = 300$)
 - Number does not grow with projection to reduced model
The more prior knowledge, the better

- Continuing diode example.....now drive at one end with ensemble of waveforms, do SVD in feature space:

 - Flat distribution, full circuit
 - Flat distribution, reduced space
 - Structured distribution, full space
 - Structured distribution, + trajectory information
Interpreting Classical Volterra Techniques

\[
\frac{dz}{dt} = \hat{A}_{(1)} z^{(1)} + \hat{A}_{(2)} z^{(2)} + \hat{A}_{(3)} z^{(3)} + \ldots + Bu
\]

\[
\hat{A}_{(1)} = V^T A_{(1)} V, \quad \hat{A}_{(2)} = V^T A_{(2)} (V \otimes V), \quad \hat{A}_{(3)} = V^T A_{(3)} (V \otimes V \otimes V), \quad \text{etc.}
\]

- Explicit enumeration of basis functions
 - “Equal cost” associated with each basis function
 - Each is equally important
- Interpretation: no prior knowledge → flat statistical distribution → maximally sized model
 - Problem with Volterra is mechanical, not intrinsic
Explicit Techniques Are Bad?

- Once N^m functions are written down, the game is over.

- Moment matching is probably not a good metric in higher dimensions.
Is Everything Reducible?

• Information that can reduce “circuit entropy”
 - Device properties (2 vs. 3 vs. 4 –terminal, IV curve shapes)
 - Constraints due to connectivity
 • E.g.: voltage decreases along line when driven at one end
 - Reduced set of inputs
 - Finite bandwidth inputs

• Always occurs in practical circuits

• Implies: Models are always reducible (in some sense) without loss of accuracy
Trajectories, Sensitivity, Generalization

• Conjecture: Exploiting low entropy state & feature spaces
 - Small entropy \iff small “volume”
 - Not sensitive to samples \implies have covered dominant portion of volume
 - Implies good generalization error
 • Methods should work well for all other inputs in the probability class
• Not due to piecewise nature of representation
Summary: Case for Statistical Thinking

- Quantifiable way to describe “compressibility” of analog circuit models
- Quantifiable way of determining amount of “compressibility” introduced by structure, restrictive assumptions, restrictive inputs.
 - Connection to “regression” viewpoint
 - Structural information introduces extremely strong constraints into the circuit modeling problem…“black-box” techniques do not work nearly as well!
 - “Overfitting” tamed by regularization – circuit’s own internal behavior/structure is the best regularizer