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The Past of Macromodeling…

Not without its own glories…

Not always easy to decipher

Not always easy to use…
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The Questions are Ancient, and Profound …

Archaeologists’ reconstruction
New excavation:  Temple of Ductorh

Remarkably ahead of its time…

Earliest known attempt
at 3D full-wave model equations—
sadly, incomplete

=
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The Essential Themes Recur Thru History…

“The Allegory of St. Darlington,” from Pane 37, North window, Central vault, Notre Linear 
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So Why A “Glorious Future”…?

1. Exciting new ideas
Projection-based nonlinear MOR

Volterra-based nonlinear MOR

Time and frequency modeling

Noise modeling

Symbolic modeling

Design space modeling

Data mining concepts

Synthesis applications

Etc etc etc

2. We have          no other choice
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Develop
system reqs

System design
& partition

Block level
design

Block
simulate

Cell
simulate

Circuit level
design

Cell
layout

Cell extract &
backannotate

Block & chip
layout

Fab & test

System model 
for integration

Idealized blocks/cells

Cell parasitics
for cell/block
design

Realistic cell modelsRealistic cell models

Cell parasitics
for cell models

Estimate
chip parasitics

Interconnect parasitics

Sized schematics

Redesign if system
integration fails

Redesign if cells fail
in system integration

Macro
modeling

No Choice…?    Today, Flows Look Like This

We design systems with ideal 
blocks, and simulate to verify

Take each block down to a circuit
Manually, or with emerging 
synthesis technologies

Replace ideal blocks with better 
models, integrate, and re-simulate

And, often, it doesn’t work…
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for cell/block
design

Estimate
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Realistic models
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for models

Interconnect parasitics

Sized schematics

Redesign if system
integration fails

Redesign if cells fail
in system integration

Model-Building Methods Still Weak, Limited

Models often still done by hand, 
by experts who understand the 
circuits and the system
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for cell models

Interconnect parasitics
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Redesign if fail

Redesign if fail

Model-Building Methods Still Weak, Limited

Especially problematic as we start 
to rely on macromodels for 
full-system design closure
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About This Talk…

Pieces of macromodeling puzzle
High-level taxonomy of approaches

New piece of puzzle:  data mining ideas
What they are, where they seem useful

time domainfrequency domainsymbolic modelsdata mining…

regression-based
trajectory-based

volterra kernels…
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Some Context:   My Focus is Mixed-Signal

Commercial Mixed Signal ASIC

Analog

Digital% Design Effort

Digital

Analog
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What Kind of “Macromodel” Do We Mean?

Term “macromodel” means different things to different people…

Use

Dimensionality

Style
Use: for Synthesis

Use: for Simulation/verification

Dim: Design space

Dim: 1 Ckt instance Style: Regression-based

Style: Physically-based
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Earliest Models:   Physical, for Simulation

Ex:  Boyle opamp [JSSC Dec’74]
Most of the “model” is circuit topology
Parameters easy to pick off original ckt

Use: for Synthesis
Use: for Simulation

Style: Regression-based

Style: Physically-based

Dim: Design space

Dim: 1 Ckt instance

Use

Dimensionality

Style

Use

Dimensionality

Style
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Later Models:   More Regression, for Simulation

Ex:  Nonlinear gain + poles/zeroes
Less of “model” is the topology
Parameters require optimization to fit

Use: for Synthesis
Use: for Simulation

Style: Regression-based

Style: Physically-based

Dim: Design space

Dim: 1 Ckt instance

Use

Dimensionality

Style

Use

Dimensionality

Style

A(v+, v-, Vdd, Vss…)
(1+jω1)(1+jω2)…
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Essential Problems in All Macromodeling

What do you fit to
What’s the template/structure?

Options
A simplified circuit
A “black box” curve fit
A nice mathematical form

Pole zero form H(s)
Linear ODE
Nonlinear ODE
Volterra series
…

How do you fit to it?
What’s the mathematics of “fit”?

Options
By hand (ask someone smart)
Nonlinear regression
A nice mathematical recipe

Linear:  AWE, PVL, Arnoldi, PRIMA…
Nonlinear:  Volterra, posynomial…

Special purpose  (common circuits)
Opamp, VCO, mixer, PFD-CP
…
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Today’s Spectrum of Modeling for Simulation

A(v+, v-, Vdd, Vss…) (1+jωa)(1+jωb)…
(1+jω1)(1+jω2) (1+jω3)…

Nonlinear Regression
Fitting

Transfer Function
Projection / nonlin MOR
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Today’s Spectrum of Modeling for Simulation

A(v+, v-, Vdd, Vss…)(1+jωa)(1+jωb)…
(1+jω1)(1+jω2) (1+jω3)…

Nonlinear Regression
Fitting

Transfer Function
Projection / nonlin MOR

Pro:    handling strong nonlinearities
Con:   handling dynamics, accuracy guarantees, training data
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Today’s Spectrum of Modeling for Simulation

A(v+, v-, Vdd, Vss…)(1+jωa)(1+jωb)…
(1+jω1)(1+jω2) (1+jω3)…

Nonlinear Regression
Fitting

Transfer Function
Projection / nonlin MOR

Pro:    handling dynamics, xfer functions, accuracy, less training
Con:   handling wide range of strong nonlinearities
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End-Use Diversity Complicates Problem

SignalflowSignalflow:  :  Y(sY(s)=)=H(s)X(sH(s)X(s))
Dynamics:   Dynamics:   g(xg(x) = ) = f(xf(x) +Bu) +Bu
Noise:Noise:

RegressionRegression
ProjectionProjection

NonlinNonlin MORMOR
……

AccuracyAccuracy
vsvs SpeedSpeed

TimeTime
FrequencyFrequency

Statistical (noise)Statistical (noise)
……

Domain

Simulation Style

Intent

Fitting
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…As Do User Expections

Like simulator controls, 
everybody hates having to 
“twiddle” model details

This is what every designer 
ultimately wants
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Today’s Models Don’t Always Inspire Confidence

The “model”
(Transparency 
optional)

The “fitting process”

Model structure

Fitting parameters

=
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…But, Recent Ideas Offer New Hope
…so, I’ll let other speakers cover these

SignalflowSignalflow:  :  Y(sY(s)=)=H(s)X(sH(s)X(s))
Dynamics:   Dynamics:   g(xg(x) = ) = f(xf(x) +Bu) +Bu
Noise:Noise:

RegressionRegression
ProjectionProjection

NonlinNonlin MORMOR
……

AccuracyAccuracy
vsvs SpeedSpeed

TimeTime
FrequencyFrequency

Statistical (noise)Statistical (noise)
……

Domain

Simulation Style

Intent

Fitting

© R.A. Rutenbar 2003     Slide 22

SignalflowSignalflow:  :  Y(sY(s)=)=H(s)X(sH(s)X(s))
Dynamics:   Dynamics:   g(xg(x) = ) = f(xf(x) +Bu) +Bu
Noise:Noise:
Static predictionStatic prediction

RegressionRegression
ProjectionProjection

NonlinNonlin MORMOR
……

AccuracyAccuracy
vsvs SpeedSpeed

TimeTime
FrequencyFrequency

Statistical (noise)Statistical (noise)
ExplorationExploration

Domain

Simulation Style

Intent

Fitting

…and I’ll Talk About Something Different…
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New Motivation:  Large Analog Design Spaces

Emerging commercial infrastructure makes it easy to sample 
large populations of fully qualified (simulated) circuit configs

Optimization engine: proposes circuit solution candidates
Evaluation engine: evaluates quality of each candidate 
Full SPICE evaluation: for every spec, for every candidate

Evaluation
Engine

Optimization
Engine

-
+

-
+

Unsized
fixed

topology

Sized &
biased
circuit

Circuit 
Specs

Design
Decisions
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Macromodeling in this New Context 

Use: for Synthesis
Use: for Simulation/verification

Style: Regression-based

Style: Physically-based

Dim: Design space

Dim: 1 Ckt instance

Use

Dimensionality

Style

Use

Dimensionality

Style

Modeling analog design spaces for synthesis uses
Dimensionality:  populations of circuits, high-dimensional data

Use:  early estimation of feasibility or performance trade-offs
Style:  nonlinear regression (curve-fits)
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New Opportunity:  Design Space Modeling
Can generate 1K – 100K fully-qualified (simulated) samples of 
large analog design spaces – what can we do with this data?

Each point is a
fully simulated 
circuit solution
candidate;
1k–100k circuit 
samples possible

Courtesy Neolinear, Inc.
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New Idea:  Macromodeling as Data Mining

Problem:   Can we fit these large populations in useful ways?
1K – 100K data points?  Conventional, ad hoc curve fitting not up to the task
Where do we look to do better?

Solution:  Data mining
Significant breakthroughs in last  5 years in this community 
Techniques for extracting (fitting) patterns, predictive formulas, or 
classifiers to large amounts of high-dimensional, possibly noisy, data
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Basic Problems in Nonlinear Regression 

Data selection
Where does data come from?
Focus:   simulation-based search

Model selection/fitting
What functional form to fit 
populations of high-dim ckts?
Focus: boosted regressors

Model validation
How do you tell if you “fit well”?
Focus:  rigorous model selection model

-
+

Independent 
parameters

Performance

Predictive
nonlinear
regression
model – not
a simulation
model

Design space circuit samples

?
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Aside: this is “Black Box” Modeling

We want to assume very little about base model template
Black box = from data points alone, deduce and parameterize a model that 
accurately predicts basic behavior

-
+

Device 
parameters

Circuit
Specs

-
+

Device 
parameters

Desired
Ckt Specs

-
+

Yes/No
Feasibility

Desired
Ckt Specs
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Essential Regression Problem

Very hard to find one functional form that fits everywhere
Often easy to find regressors that can fit locally, but not globally
Problem gets worse with more data, with more dimensions

regressor1
regressor2 regressor3

x

y

Could we find, then combine, a set of such regressors?
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Elegant Strategy:  Boosting [Freund, Schapire, 97]

Build a sequence of regression models, then combine them
Strategy for sequentially resampling/reweighting data, voting = boosting

From initial
training 
sample…

…fit a 
Regression

model…

1
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Ensemble Strategy:  Boosting

Build a sequence of regression models, then combine them
Strategy for sequentially resampling/reweighting data, voting = boosting

From initial
training 
sample…

…fit a 
Regression

model…

1

…from prediction
errors in this fit,

resample, reweight
training data
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Ensemble Strategy:  Boosting

Build a sequence of regression models, then combine them
Strategy for sequentially resampling/reweighting data, voting = boosting

From initial
training 
sample…

…fit a 
Regression

model…

1

…from prediction
errors in this net,

resample, reweight
training data

2

…fit another
Regression

model…

…repeat…

10

…fit a
Population of

individual 
regressors,

then combine
to determine

final prediction
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Boosting Specifics

Individual regressors
Neural networks in MATLAB.  2-hidden layers, 10 neurons/layer
Chosen for ease-of-use mainly

Boosting mechanics
Fit N networks, in stages, with resampling/reweighting [see our DAC02 paper]
Well-fit data points can vanish from the population, over iterations
Poorly fit points can replicate in the population, over iterations

To combine regressors, more data mining:  instance methods
Ask the K nearest neighbor points from training data what they think…
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Instance-Based Voting of Regressors

Suppose we set K=2 nearest neighbors  (K is arbitrary)
For any new data point, find 2 nearest training data points, and use the 
regressor that gave the most accurate prediction at that neighbor point

Sampled data pts

“true” function

1

2
?

x

y

?
New pt to 
predict K=2 nearest

training pts
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Instance-Based Voting of Regressors

Suppose we set K=2 nearest neighbors  (K is arbitrary)
For any new data point, find 2 nearest training data points, and use the 
regressor that gave the most accurate prediction at that neighbor point

y
Sampled data pts

“true” function

x

1
?y1

regressor7 
is best 
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Instance-Based Voting of Regressors

Suppose we set K=2 nearest neighbors  (K is arbitrary)
For any new data point, find 2 nearest training data points, and use the 
regressor that gave the most accurate prediction at that neighbor point

x

y
Sampled data pts

“true” function

2
?y2

Average
y1 and y2 values, 
weighted inversely 
by distance
to new point

regressor3 
is best 
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About Boosting

Independent of the regressor (curve fitting) style 
Use a neural net, a polynomial, posynomial, spline model, whatever you like

Many regressors are fit;  few are evaluated
Not uncommon in large problems to boost 100 rounds of regressors
But—our instance-based technique only evaluates the best regressor on 
each of the K neighbors nearest the evaluation point

Standard data structures to get K nearest neighbors fast
High-dimensional nearest neighbor lookup is a well studied problem
Quad trees, kd-trees, R-trees, S-trees, flat vector scans, etc
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What Overall “Boosted” Model Looks Like

Basic model setup
~10-20 boosted regressors Ri( )
Save training data points

Basic model eval
Given a new “query point” xq
Select a subset of stored data pts
Chooses which regressors to eval, 
how to combine (weighted vote)

R1 R2 R3 Rn

xq

y1 y2 y3 yn

VOTING:
combine

regressor
predictions

yfinal
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Simple RF Design Space Example

Simple RF LNA topology
5 independent variables
~2000 HSPICE-simulated designs
Use half to train boosted predictors
Use other half to test predictors
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Simple RF Design Space Results
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Example Synthesis Data Set

Industrial synthesis result
CMOS amplifier  ~50 devices
27 design inputs (independent vars)
12 outputs (performance specs)

We have…
~40,000,  27-dimensional data points

Gain: 70dB 
UGF: 460Mhz 
Power: 13.5mW 
SlewRate: 360 V/us 
SettlingTime: 4.75ns 
PhaseMargin: 60o

Offset: 2.6uV 

Courtesy Neolinear, Inc.
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Data Points from Circuit Synthesis

New problems
Synthesis visits many fully-qualified (simulated) samples of space…
…but synthesis may not sample in ways optimized for modeling
To illustrate this, we fit first and last ~20% of time-ordered synthesis samples 
here; first samples have wider variance;  last samples have less.

For modeling, want widest
distribution of samples

Synthesis focuses sampling
toward “best” ckt for target goals
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Boosted Results from Synthesis
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Boosted Results from Synthesis
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Qualitative Effects on Prediction Error

Often, better worst-case error, and better mean error 
Test1 is a single, conventional neural net regressor
K=1 to 30 show 10 boosted regressors, with up to 30 neighbors voted 
K=small  can help both max and mean;  but you can also over-boost

Test1 K=1 boosted K=5 boosted K=10 boosted K=30 boosted

-4       -2        0        2 -4       -2        0        2 -4       -2        0        2 -4       -2        0        2

50

25

0
-4       -2        0        2
Log10(%Error)

Co
un

t
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Fraction of Points Choosing Each Regressor

10 regressors boosted.

For training points, what 
fraction “believes” the ith
regressor to be best, locally?

This is an informal measure of 
the utility of boosting to adapt 
an ensemble of models

Note, not always true that 1st

regressor dominate all others

Gain(First 20%)

Power(First 20%)

UGF(First 20%)

Gain(Last 20%)

Power(Last 20%)

UGF(Last 20%)

i-th Regressor

Prob(best)
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Issue: How Much “Model” is “Enough Model”?

Can always add complexity to any 
individual regression model

Problem:   Overfitting
Easy to build more model
than the data can really support

Classical Bias-Variance Tradeoff
With more complexity…
Bias error grows: 

But variance error shrinks:  More model complexity
e.g., bigger neural net, 

more boosting cycles

More 
fitting 

error

Training error 
while fitting
(error on training data)

Testing error to fit      
ie, error on test data

( )[ ] ( )[ ][ ]2ˆ xfExfE −

( ) ( )[ ]( ) 
 −

2
xfExfE ˆˆ

( )xf̂

( )xf̂
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Solution:   Rigorous Model Selection

Generic model selection
Divide the data into training set and test set.
Increase model complexity step by step
Fit each of these models
Choose the right model based on the test error

Can be applied to our macromodeling approach
Base regressor selection: what is best single regressor ?
Boosting complexity selection: given right base regressor, 

how much boosting, etc., is best?
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Solution:   Rigorous Model Selection

Generic model selection
Divide the data into training set and test set.
Increase model complexity step by step
Fit each of these models
Choose the right model based on the test error

Can be applied to our macromodeling approach
Base regressor selection: what is best single regressor ?
Boosting complexity selection: given right base regressor, 

how much boosting, etc., is best?
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How Much Boosting & How Many Neighbors?

Experiment
Run 2-16 boost cycles, and try 1-50 nearest neighbors to vote regressors
Pick the best model we see in this set of experiments

Boost
14 cycles

K=10

K=30

Boost
8 cycles

Boost
12 cycles

Boost
10 cycles

K=50

K=5

K=1
nearest 

neighbors

Boost
16 cycles

Boost
6 cycles

Boost
4 cycles

Boost
2 cycles

Model
Selection
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Model Selection:  Center Freq Model for RF LNA 

Don’t always need a lot of boosting/neighbors 
Mean Square Error -18%;  Max error rate -21%;  Mean error rate ~same

Boost
14 cycles

K=10

K=30

Boost
8 cycles

Boost
12 cycles

Boost
10 cycles

K=50

bestK=5

K=1
nearest 

neighbors

Boost
16 cycles

Boost
6 cycles

Boost
4 cycles

Boost
2 cycles

Model
Selection

Boost ing cycle 4

0

2E+13

4E+13

6E+13

8E+13

1E+14

1.2E+14

1.4E+14

1 Nearest 5 Nearest 10 Nearest 30 Nearest 50 Nearest

10 nearest neigbors

0
2E+13
4E+13
6E+13
8E+13
1E+14
1E+14
1E+14
2E+14
2E+14
2E+14

0 5 10 15 20
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Observations

First rigorous application of data-mining in ckt modeling
We can build usefully accurate predictive models of lots of high-dim data
Boosting is an elegant, robust fitting framework for exploration here

Rigorous model selection makes models easier to use
Most users are not very familiar with regression jargon or parameters
Sensible application of selection / validation lets us auto-pick a ‘best’ model

Interesting connections to recent “simulation-directed” models
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Recall How Trajectory-Based Methods Work

Simulate training inputs
in state space
Choose center pts
on this trajectory
Build simple local 
model near each pt
projecting down to
a smaller state vec
Distance-weighted
voting to compute
predicted dynamics

!

Multiple regressors, locally weighted, with saved training data…

State space
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Summary

Macromodeling:   Future looks pretty good  (OK, glorious…)
Because we don’t have a choice, to do the systems we want to design
Because of many recent modeling innovations

Data mining:   It’s not just for dot-coms anymore
Smart ways to handle large amounts of high-dimensional data
Smart ways to build and vote and validate ensembles of regressors

Simulation-based circuit optimization infrastructure
Lots of companies making it possible to sample widely, cheaply, quickly
This will fundamentally change the way we get data to build macromodels


