

Standard VHDL 1076.1.1 Packages for Multiple Energy Domain Support

Peter R. Wilson & Andrew D. Brown School of Electronics and Computer Science University of Southampton, UK

Dr Peter R. Wilson – BMAS 2003 School of Electronics and Computer Science H. Alan Mantooth Department of Electrical Engineering University of Arkansas, USA

Outline Overview

- Requirements
- Multiple Domain Modeling
- Packages Overview
- Simple Example

Current Status

- Draft Standard
- IEEE Process

Examples

- Multiple Domains
- Electrical-Magnetic-Thermal
- Electro-Mechanical

Requirements: Model Authors

Interoperability

- Models must be interoperable with models written by any author
- Terminal ports and terminals must have an agreed set of natures

Infrastructure

- Mathematical Functions
 - IEEE Std 1076.2-1996
- Physical Constants
 - Fundamental Constants
 - e.g. Speed of light, Boltzmann's constant, electronic charge
 - Material Properties
 - e.g. Permittivity of Silicon

Requirements: Model Users

Model Exchange

- Interoperability
- Models must have an internationally accepted set of units
 - This has implications for connections and parameters

Simulation Accuracy

Tolerance codes to support the VHDL-AMS tolerance model

Conveniences

- Unit Symbols and names
 - E.g. (V) & Voltage
- Scale factors
 - Kilo, mega, giga etc

- **Requirements: Tool vendors**
- Interoperability
 - Agreed upon natures
- **Simulation Accuracy**
 - Support for VHDL-AMS tolerance model

Ability to write numerically robust models

 Selection of units of quantities such that unknowns have roughly the same scale

BMAS: Comment at Panel Session

One comment at the panel session (paraphrased):

 "Oh, we can do all this multi-domain modeling in the electrical domain – we don't need those other types"

Some comments on that:

- Units
 - Example: it may be that the output is a thermal pin, but is it C or K?
 - Example: Imperial or SI Hubble telescope !
- Black Box
 - What if the model is black box can you assume the units are consistent without knowledge of the model content ? I suggest not.
 - Standard units and types mean that models can be written portably whether or not they model detail is available or not.
- Tolerances
 - The multiple domain approach allows different tolerance mechanisms to be defined for different technologies potentially important for stiff systems (hydraulics ?)

BMAS: Comment at Panel Session

Some more comments...

- Checking
 - Standardised units and connections means that limited unit checking can take place within models and systems
- Interoperability
 - Enables models to delivered to the user community that can easily be used in a variety of tools
 - Ensures consistency of units and symbols across vendors
 - While not a requirement of the VHDL-AMS standard package definitions, it is helpful for the integration of other model languages (e.g. Verilog-A) in a system simulation to have a well defined standard set of interfaces.

Multiple Domain Requirements

Domain	Generic	Electrical	Mechanical Rectilinear	Mechanical Rotary	Thermal	Hydraulic
Through Variable	y(t)	Current Amps	Force N	Torque NM	Heat Flow Joules/sec	Fluid Flov M ³ /sec
Across Variable	x(t)	Voltage Volts	Velocity M/sec	Ang. Velocity Rad/sec	Temperature K	Pressure N/M ²
Dissipator	$\mathbf{x}(t) = \mathbf{k}_1 \mathbf{y}(t)$	V = I R	f = kV	T = kω	T = Qr	$P = k_1 U$
Delay	$K_2 dy(t)/dt = x(t)$	V = L dl/dt	V = kdf/dt	ω = kdT/dt	$Q = k_1 dT/dt$	U= k ₂ dP/
Accumulator	$K_3 dx(t)/dt = y(t)$	I = C dV/dt	f = m dV/dt	T = J dω/dt	T = k ₂ dQ/dt	P= k ₃ dU/
Generators	y(t) /, x(t) known	Constant through or across sources				
Power	x(t) * y(t)	V * I	F * V	Τ*ω	Q * T	P * U

Dr Peter R. Wilson – BMAS 2003

School of Electronics and Computer Science

University of Southampton, UK

Magnetics are slightly different

Unlike the Other technologies, Magnetics use the B,H or Flux,MMF *Energy* planes

- e.g. in the electrical domain, VI = Power
- To obtain the power in the magnetic domain requires

Summary of Magnetic Technology

	Definition	Equation	Device
Through Variable	Flux Tesla	Φ	
Across Variable	MMF Amperes	mmf	
Dissipator	Loss	$mmf = L * d \Phi/dt$	
Delay	Permeance	$mmf = \Phi * R$	-
Accumulator	not meaningful physically	$\Phi = C \text{ dmmf/dt}$	
Through Generator	Flux source	$\Phi = \text{const}$	Φ-
Across Generator	MMF Source	mmf = const	(F)

Dr Peter R. Wilson – BMAS 2003 School of Electronics and Computer Science

University of Southampton, UK

Fundamental Constants

Constant	Unit	Name	Default
Electron charge	С	PHYS_Q	602_176_462e-19
permittivity of vacuum	F/m	PHYS_EPS0	8.854_187_817e-12
permeability of vacuum	H/m	PHYS_MU0	4.0e-7 * MATH_PI
Boltzmann's constant	J/K	PHYS_K	1.380_6503e-23
Acceleration due to gravity	ms ⁻²	PHYS_GRAVITY	9.806_65
Conversion between Kelvin and degree Celsius	-	PHYS_CTOK	273.15
Velocity of light in a vacuum	m/s	PHYS_C	299_792_458.0
Planck's constant	-	PHYS_H	6.626_068_76e-34
Planck's constant divided by 2pi	-	PHYS_H_OVER_2_ PI	PHYS_H/MATH_2_PI

Dr Peter R. Wilson – BMAS 2003 School of Electronics and Computer Science

University of Southampton, UK

Material Constants

Constant	Unit	Name
Relative permittivity of silicon	-	PHYS_EPS_SI
Relative permittivity of silicon dioxide	-	PHYS_EPS_SIO2
Young's Modulus for silicon	Pa	PHYS_E_SI
Young's Modulus for silicon dioxide	Pa	PHYS_E_SIO2
Young's Modulus for polysilicon	Pa	PHYS_E_POLY
Poisson's Ratio for silicon	100 orientation	PHYS_NU_POLY
Density of Polysilicon	Kg/m ³	PHYS_RHO_POLY
Density of Silicon-Dioxide	Kg/m ³	PHYS_RHO_SIO2
Ambient Temperature	К	AMBIENT_TEMPERATURE
Ambient Pressure	Ра	AMBIENT_PRESSURE
Ambient Luminance		AMBIENT_LUMINANCE

Dr Peter R. Wilson – BMAS 2003 School of Electronics and Computer Science

University of Southampton, UK

J∮Ð

Domain natures

Fechnology	Through	Across
Electrical Aagnetic Thermal Translational Rotational Fluidic Radiant	current flux temperature velocity angular velocity flow rate luminous flux	voltage mmf heat flow force torque pressure luminous intensity
		•

Units and Symbols: e.g. electrical

-- attribute declarations attribute UNIT of VOLTAGE : subtype is "Volt"; attribute UNIT of CURRENT : subtype is "Ampere"; attribute UNIT of CHARGE : subtype is "Coulomb"; attribute UNIT of RESISTANCE : subtype is "Ohm"; attribute UNIT of CAPACITANCE : subtype is "Farad"; attribute UNIT of MMF : subtype is "Ampere"; attribute UNIT of FLUX : subtype is "Weber"; attribute UNIT of INDUCTANCE : subtype is "Henry"; attribute UNIT of FLUX DENSITY : subtype is "Tesla"; attribute UNIT of FIELD STRENGTH : subtype is "Amperes per meter"; : subtype is "V"; attribute SYMBOL of VOLTAGE : subtype is "A"; attribute SYMBOL of CURRENT attribute SYMBOL of CHARGE : subtype is "C"; attribute SYMBOL of RESISTANCE : subtype is "Ohm"; attribute SYMBOL of CAPACITANCE : subtype is "F"; attribute SYMBOL of MMF : subtype is "A"; attribute SYMBOL of FLUX : subtype is "W"; attribute SYMBOL of INDUCTANCE : subtype is "H"; attribute SYMBOL of FLUX DENSITY : subtype is "T"; attribute SYMBOL of FIELD STRENGTH : subtype is "A/m";

Dr Peter R. Wilson – BMAS 2003

School of Electronics and Computer Science

University of Southampton, UK

Peter R. Wilson

Tolerances: e.g. electrical

subtype declarations					
subtype	VOLTAGE	is	REAL	tolerance	"DEFAULT_VOLTAGE";
subtype	CURRENT	is	REAL	tolerance	"DEFAULT_CURRENT";
subtype	CHARGE	is	REAL	tolerance	"DEFAULT_CHARGE";
subtype	RESISTANCE	is	REAL	tolerance	"DEFAULT_RESISTANCE";
subtype	CAPACITANCE	is	REAL	tolerance	"DEFAULT_CAPACITANCE";
subtype	MMF	is	REAL	tolerance	"DEFAULT_MMF";
subtype	FLUX	is	REAL	tolerance	"DEFAULT_FLUX";
subtype	INDUCTANCE	is	REAL	tolerance	"DEFAULT_INDUCTANCE";

Electronic Systems Design Group
Simple Example: resistor

```
USE work.electrical_system.ALL;
```

ENTITY r IS GENERIC (rnom : real); PORT (TERMINAL p, m: electrical); END ENTITY r; SUBTYPE voltage is REAL; SUBTYPE current is REAL; NATURE electrical IS voltage ACROSS current THROUGH ground REFERENCE;

- IEEE Standard 1076.1.1: Background
- 1076.1.1 PAR requested in March 2002
- PAR approved in May 2002
- **Initial ad hoc formation Summer 2001**
- **Kickoff discussions FDL 2001 and BMAS 2001**
- WG meetings held at DAC 2002 (June), FDL 2002 (Sept.), DATE 2003 (March), FDL 2003 (Sep)

Peter R. Wilson

- Completed compilation of VHDL packages from WG contributors
- Have received significant review and feedback

IEEE Standard 1076.1.1: Current

- First Draft of proposed standard has had IEEE editorial review
 - response received 7th October 2003: very minor revisions

Initial Balloting Pool:

- Initial Balloting Pool List defined and email sent to proposed members
 - Please indicate as soon as possible your intention to ballot so we can finalise the balloting pool
 - If you did not get an email you were not on the draft list
- If you would like to be in the balloting pool, contact Alan Mantooth (<u>non ooth@engr.uark.edu</u>) now – he's here.
- Initial Balloting Pool has a (roughly) equal split between Industry, Academia and EDA

IEEE Standard 1076.1.1: Process

- Paperwork in progress for an e-ballot
- **IEEE review editorial tasks arising:**
 - Modifications made to proposed standard
 - Revised proposed standard will be posted on the 1076.1.1 web site
 - http://mixedsignal.eleg.uark.edu/stdpkgs.html
 - Email will be sent to the VHDL-AMS reflector
 - Final pre-ballot review period of 30 days will commence
- **Final Pre-ballot Review (October 2003)**
- E-ballot Process (November 2003-January 2004)

University of Southampton, UK

Electronic Systems Design Group

Examples: Mixed-domain modeling

Electro-Magnetic Model

- Winding Model
- Linear Core

Non-linear magnetic model

Non-linear core model – Jiles-Atherton

Thermal extensions:

Electrical-Magnetic-Thermal model

Example Transformer Structure

Electronic Systems Design Group Winding Model in VHDL-AMS Ampere's Law

$$NI = \oint H \cdot dl$$

Faraday's Law

USE work.electrical_systems.ALL; ENTITY wind IS GENERIC (r,n : real :=0.0); PORT (TERMINAL ep,em : electrical; TERMINAL mp,mm : magnetic); END ENTITY wind:

END ENTITY wind;

$$V = -N\frac{d\Phi}{dt}$$

ARCHITECTURE simple OF wind IS QUANTITY mmf ACROSS f THROUGH mp TO mm QUANTITY v ACROSS I THROUGH ep to em; QUANTITY vdrop voltage;

BEGIN

vdrop == i*r; mmf == i*n;

END ARCHITECTURE simple;

Dr Peter R. Wilson – BMAS 2003 School of Electronics and Computer Science

Linear Core model in VHDL-AMS

MMF = Reluctance * Flux Flux = Permeance * MMF Permeance = 1/Reluctance $= \mu 0*\mu r^* area/len$

USE work.electrical_systems.ALL; ENTITY core IS GENERIC (ur, len, area : real); PORT (TERMINAL p,m : magnetic); END ENTITY core;

ARCHITECTURE simple OF core IS QUANTITY

> mmf ACROSS flux THROUGH p TO m;

BEGIN

flux == (mu0 * ur * area / len) * mmf; END ARCHITECTURE simple;

Dr Peter R. Wilson – BMAS 2003 School of Electronics and Computer Science

University of Southampton, UK 💐

Simulation carried out with VeriasHDL - Avant! Peter R. Wilson

Dr Peter R. Wilson – BMAS 2003 School of Electronics and Computer Science

Differential Equation approach to modeling ferromagnetic hysteresis

Non-linear Hysteresis: Jiles Atherton

Irreversible Magnetization $\frac{dM_{irr}}{dH} = \frac{M_{an} - M}{\delta * k - (M_{an} - M)}$

Reversible Magnetization

 $M_{an} = \frac{1}{\tanh(H/a)} - \frac{a}{H}$

Electronic Systems Design Group

University of Southampton, UK

School of Electronics and Computer Science

Electronic Systems Design Group

Results obtained using Mentor Graphics' Design Station Peter R. Wilson

Non-linear Transformer: VHDL-AMS

Dr Peter R. Wilson – BMAS 2003 School of Electronics and Computer Science

University of Southampton, UK

Results obtained using Avant!'s VeriasHDL Peter R. Wilson

Extensions to include thermal effects

Thermal model of the magnetic core

Assume uniform distribution of heating in the core material

Dr Peter R. Wilson – BMAS 2003 School of Electronics and Computer Science

Thermal Capacitance Model

```
1
  use work.thermal systems.all;
2
3
  entity ctherm is
     generic (cth:real := 0.0);
4
5
     port (terminal th,tl : thermal);
6
   end entity ctherm;
7
8
   architecture simple of ctherm is
9
     quantity tc across heatfl through th to tl;
10
  begin -- simple architecture
11
     assert cth /= inf and cth /= undef
12
     report "cth specified incorrectly"
13
     severity error;
14
15
    heatfl == cth * tc'dot;
16
    end architecture simple;
```


Calculating Power and Energy

We need to find the area inside the BH curve to get the energy lost and then the power dissipated

1: Integrate H.dB

- Valid only at the completion of each cycle
- + easy to calculate

2: Use the irreversible proportion of the magnetization

- + Calculate the Power actually lost directly
- + Valid at any instant of time
- Difficult to be sure the value is really correct

Implications of dynamic model

- Power is fed into the thermal circuit from the core loss directly
- Dynamic temperature changes in the core are modeled and used to modify the model parameters
- Dynamic thermal behaviour of the core material and surface is modeled
- Thermal effects will have a profound effect on the electrical behaviour in the circuit
 - thermal demagnetization Curie Temperature

Simulations including thermal model

Simulations including thermal model

Final Temperature rise accurate to within 0.3°C

Dr Peter R. Wilson – BMAS 2003 School of Electronics and Computer Science

University of Southampton, UK

Results obtained using Avant!'s VeriasHDL Peter R. Wilson

Electro-mechanical: DC Motor

Model a simple dc motor using the standard motor equations

$$V = L\frac{di}{dt} + iR + Ke\,\omega$$

$$T = Kti - J\frac{d\omega}{dt} - D\omega$$

Notice the interaction between the electrical and rotational domains

Electro-Mechanical

```
use work.electrical systems.all;
1
  use work.mechanical systems.all;
2
3
4
   entity dc motor is
       generic (kt : real;
5
                j : real;
6
7
                r : real;
8
                ke : real;
9
                d : real;
10
                l : real);
11
      port (terminal p, m : electrical;
             terminal rotor : rotational v );
12
13 end entity dc motor;
14
15 architecture behav of dc motor is
16
       quantity w across t through rotor
17
            to rotational v ref;
18
       quantity v across i through p to m;
20 begin
21 v == l*i'DOT + i*r + ke*w;
22 t == i*kt - j*w'DOT - d*w;
23 end architecture behav;
```


Conclusions

- These packages will provide a standard, interoperable and consistent framework for VHDL-AMS modeling from the author, user and vendor perspectives.
- IEEE Std 1076.1.1 (proposed) is nearing the end of the standardization process
- **Extensive** consultation with industry, academia and EDA vendors already taken place
- **Draft stan**dard ready for comments
- E-ballot process to be undertaken soon.

