High Frequency Lumped Element Models for Substrate Noise Coupling

Cheng-gang Xu, Terri Fiez and Karti Mayaram

School of EECS
Oregon State University
Corvallis, OR 97331
Outline

• Introduction
• Numerical methods
• Frequency dependence of substrate parasitics
• Equivalent circuit models for substrate coupling
• Conclusions
Substrate Noise Coupling From Digital to Analog

- Circuit isolation is a key problem for SoC’s
 - Increasing integration of analog and digital circuits
 - Increasing operating frequency
Two Contacts and a Generic Lumped Model

- For frequencies < 1 GHz admittances are modeled as resistors
- For high frequencies dielectric behavior of substrate must be included
 - Capacitors included in equivalent circuit model
Numerical Methods for Admittance Extraction

- Volume element methods are versatile but expensive
- Boundary element method is computationally efficient
Substrate Coupling Roadmap

1. Characterize Substrate Profile
2. Pre-Layout Substrate Coupling Simulation
3. Low & High Frequency Substrate Model
4. Analog & Mixed-Signal Design
5. Digital Design
6. Layout & Strategies for Reduced Substrate Noise Coupling
7. Extract Layout & Simulate Substrate Coupling
8. Measurement Results/Test Chip
Previous High Frequency Analysis

- High frequency coupling behavior and models
 - Capacitive behavior [R. Gharpurey, 1997]
 - Inductive behavior [H. Li, et. al, 2002]
 - Equivalent circuit models [H. Lan, 2003]

![Diagram of Model I and Model II](image-url)
High Frequency Numerical Simulator

- EPIC - a Green’s function based solver for Extraction of Parasitics for IC’s
 - Multilayered approximation of substrate doping profile
 - Each layer is characterized by a complex conductivity \(\sigma_c = \sigma + j\omega\epsilon \)
 - Numerically stable implementation
Lightly And Heavily Doped Substrates

- **Lightly doped substrate**
 - P-type, $0.1 \Omega \cdot \text{cm}$, $1 \mu \text{m}$
 - P-type, $20 \Omega \cdot \text{cm}$, 400 μm

- **Heavily doped substrate**
 - P-type, $1 \Omega \cdot \text{cm}$, $1 \mu \text{m}$
 - P-type, $15 \Omega \cdot \text{cm}$, $10 \mu \text{m}$
 - P$^+$ type, $1 \text{m}\Omega \cdot \text{cm}$, 300 μm

- Layered approximation for the doping profile
Self admittance behaves capacitively
Coupling between larger contacts more frequency sensitive
Conductance nearly constant for frequencies < 5GHz
Susceptance increases linearly for frequencies < 5GHz
Self Admittance Models

- **Model 0 through Model II are existing models**
- **Model III proposed new model**

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Model 0</th>
<th>Model I</th>
<th>Model II</th>
<th>Model III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable frequency range</td>
<td>$f < 1 \text{ GHz}$</td>
<td>$1 \text{ G} < f < 5 \text{ G}$</td>
<td>$5 \text{ G} < f < 10 \text{ G}$</td>
<td>$f > 5 \text{ GHz}$</td>
</tr>
<tr>
<td>Comments</td>
<td>Simplest low frequency model</td>
<td>Cannot model the frequency dependence of G</td>
<td>Models the frequency dependence of G and B</td>
<td>Similar to Model II but with better agreement with simulations</td>
</tr>
</tbody>
</table>

The diagrams represent the circuits for each model, where G and C denote conductance and capacitance, respectively.
• Conductance and susceptance in Model II do not fit data simultaneously
Frequency Dependence of Mutual Admittance (Y=G+jB)

- Susceptance may be capacitive and/or inductive
- Mutual conductance less frequency sensitive than self conductance
- Conductance decreases with frequency in this case but increases in other cases
Mutual Admittance Models

Circuits and Frequency Ranges

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Model 0</th>
<th>Model I</th>
<th>Model II</th>
<th>Model III</th>
<th>Model IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[G]</td>
<td>[G_1]</td>
<td>[G_1]</td>
<td>[G_2, G_1]</td>
<td>[L, G_2, G_1]</td>
</tr>
<tr>
<td>Suitable frequency range</td>
<td>(f < 1 \text{GHz})</td>
<td>(1 \text{ GHz} < f < 5 \text{ G})</td>
<td>(5 \text{ GHz} < f < 10 \text{ G})</td>
<td>(f > 5 \text{ GHz})</td>
<td>(f > 1 \text{GHz})</td>
</tr>
<tr>
<td>Comments</td>
<td>Simplest low frequency model</td>
<td>Cannot model the frequency dependence of G. Capacitive coupling only</td>
<td>Models the frequency dependence of G and B. Capacitive susceptance</td>
<td>Similar to Model II but with better agreement with simulations</td>
<td>Suitable for both capacitive and inductive coupling. Very good agreement with simulations</td>
</tr>
</tbody>
</table>

Notes
- Model 0 through Model III are existing models
- Model IV proposed new model
New Mutual Admittance Model and Simulations Comparison

Existing models cannot be used if inductive behavior occurs
Conclusions

- Suitable frequency ranges for models have been identified
- Frequency dependence of self admittance differs from that of mutual admittance
- Proposed new self coupling and mutual coupling models
 - Better accuracy and larger suitable frequency range than that of existing models
 - Good agreement with numerical simulation results
- **Next step:** Extend results to develop scalable high frequency substrate coupling model