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Abstract — This paper descr ibes a complete framework for 

generation of compact analog circuit macromodels which 
significantly reduce the model complexity while still 
captur ing the dominant linear and nonlinear response of the 
circuit. The technique is applicable to a broad class of 
circuits that exhibit weakly nonlinear behavior  such as 
mixers, RF power amplifiers and switched-capacitor circuits. 
The Volterra-based circuit models are first character ized 
using a combination of SPICE simulation and efficient 
numer ical fitting techniques. The complexity of the extracted 
circuit models is fur ther reduced by model order reduction 
techniques while maintaining a high degree of accuracy. The 
efficacy of our macromodeling methodology is ver ified by 
compar ison with  SPICE simulations. The efficiency of our  
macromodels makes them suitable for  whole-system 
ver ification and high-level design analysis. 
 

1. INTRODUCTION 
Verifying a complete analog system via transistor-level 

simulation is an extremely difficult process and can often 
become infeasible due to the limitation of simulation 
capacity. A similar difficulty is encountered when high-
level design analysis is performed for the whole system. 
For these reasons, compact macromodels of analog blocks 
are desired which can be substituted in place of the actual 
transistor-level netlist to speedup the simulation without 
sacrificing any of the required accuracy.  

The NORM algorithm that was recently proposed in [1] 
utilizes the Volterra-Series to represent nonlinear transfer 
functions and employs projection-based techniques to 
significantly reduce the size of the nonlinear system 
equations, thereby generating compact representations for 
analog and RF circuits. This algorithm can be applied to 
time-invariant as well as time-varying weakly nonlinear 
circuits. Some extensions have been described in [7][8].To 
generate analog macromodels that can be used in 
commercial simulation environments, the circuits under 
consideration must be characterized and then modeled 
based on industry-standard device models in these 
environments.   

In this paper, we develop a complete methodology 
which extends the NORM algorithm to generate nonlinear 
reduced-order macromodels directly from transistor-level 
netlists. The reduced nonlinear macromodels will capture 
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the nonlinear characteristics of corresponding circuit 
blocks, such as IIP3, THD and gain compression, in a 
compact form while maintaining an accuracy comparable 
to commercial simulators such as SpectreRF and HSPICE. 
The purpose of developing compact nonlinear analog 
macromodels is two-fold. Firstly, macromodels can 
facilitate efficient system-level design exploration by 
allowing designers to effectively “re-use”  the 
macromodels from their previous designs to predict the 
system-level behavior. High-level decisions and tradeoff 
analyses can be made efficiently by evaluating system 
specifications through the use of a library of “ reduced-
order”  macromodels corresponding to a variety of circuit 
topologies and configurations. Secondly, compact 
component macromodels also facilitate the whole-system 
verification which is otherwise intractable.   

 

2. BACKGROUND  
Volterra Series provides an elegant way to characterize 

weakly nonlinear systems in terms of nonlinear transfer 
functions. For a circuit with input )(tu the response )(tx  

can be expressed as the sum of responses at different 
orders: 
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where, )(txn is the nth order response. More generally, 
we can use Volterra Kernels to capture both nonlinearities 
and dynamics by convolution [3]:  
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where, ),..,( 1 nnh ττ is the nth order Volterra kernel. The 

frequency domain transform of the nth order Volterra 
kernel denoted by ),..,( 1 nn ssH is generally referred to as 

the nth order nonlinear transfer function. These nonlinear 
transfer functions are independent of the input and fully 
describe the weakly nonlinear behavior of the circuit. In 
order to the Volterra nonlinear transfer function for a 
SIMO weakly nonlinear system we can consider its 
standard MNA formulation: 
 



)()(),())((())(( txdtytbutxq
dt

d
txf T==+     (3) 

For a circuit with a time-invariant operating condition 
given by 0xx = , the first order linear transfer function is 

given by: 
bsHsCG =+ )()( 111                       (4)                              

The symmetrized second order nonlinear transfer function 
is determined by [1]: 

)()(.][),(][ 21112221211 sHsHCsGssHCsG ⊗+−=+ �� ,          (5) 

where 21 sss +=�  and for equation (4) and (5): 
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When a nonlinear circuit has a large input excitation, 
however, it causes the operating points of the active 
devices to change with time. For example, for a mixer 
circuit, the operating condition with respect to RF signal is 
determined by a large LO signal rather than a fixed 
operating point. This requires the analysis of a small-
signal excitation over a large periodic operating condition. 
Therefore, we can apply a time-varying formulation of the 
Volterra transfer functions ),.....,,( 21 nn ssstH which 
can be formulated similar to the time-invariant case [6][7] 
[8]. 

Volterra based nonlinear descriptions, however, often 
increase dramatically with problem size, thereby making 
them ineffective when used directly. Therefore, we instead 
apply the projection based nonlinear reduced order method 
(NORM) proposed in [1] to reduce the model size. The 
algorithm computes a projection matrix by explicitly 
considering moment-matching of nonlinear transfer 
functions. For example, if we expand the first-order 
transfer function )(1 sH  at the origin: 

                  �
∞

=

=
0

,11 )(
k

k
k MssH ,                                   (6) 

where kM ,1  is a kth order moment for the first-order 

transfer function. Now, expanding the second–order 

nonlinear transfer function ),( 212 ssH at the origin (0,0): 
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where, lkM ,,2  is a kth order moment of the second-order 

transfer function. The actual expression for lkM ,,2  can be 

obtained by first substituting (6) into (5) and expanding 

w.r.t 21 sss +=� . This procedure can be also applied to 

obtain the moments of the third order transfer functions. In 
NORM, a projection matrix is built such that the reduced 

order model will match certain number of transfer 
function moments. It has also been demonstrated that 
multi-point expansion based approach produces much 
more compact models than the single-point expansion.  

3. OVERALL MACROMODELING FLOW  
We outline the complete flow for the generation of 

reduced-order models from transistor-level netlists in    
Fig. 1. First, we simulate the transistor-level netlist in a 
commercial simulator such as SPICE to determine a 
proper operating condition for the circuit. In the case of a 
time-invariant circuit, a fixed DC operating point will be 
computed. Otherwise, a large-signal time-varying 
operating point will be computed for a time-varying 
circuit such as a mixer. We model the nonlinearities for 
each transistor in the circuit as a third-order polynomial. 
We simulate each transistor in the circuit multiple times, 
varying the bias-voltage for its terminals to generate 
accurate data-points for fitting the polynomial. We then 
construct the full Volterra-based model of the circuit and 
generate the reduced-order model of the circuit using 
NORM[1]. 
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Figure. 1. Extraction of reduced-order  model 

4. EXTRACTION OF VOLTERRA 
PARAMETERS 
The nonlinear modeling techniques outlined in Section 2 
depend on extracting the parameters of the Volterra model 
accurately. In Volterra series, a nonlinearity is represented 
as a power series expansion around a bias point. To 
illustrate, let us consider a nonlinear device 

characteristic )(xf  expanded about a bias point x0: 
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where, 
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Many different small-signal models for MOS transistors 
exist, and most sophisticated models include substrate 
coupling effects and transcapacitances[2][4]. Spice models 
like BSIM3 not only represent physical effects but also 
include many numerical parameters which further increase 
the complexity of the model equations. It is infeasible to 
find the coefficients of the equation given in (8) by finding 
the higher-order derivatives from the model equations in 
BSIM3 and other models. Instead, we employ least-mean-
square error (LMSE) fitting techniques to find the 
coefficients [2]. 

We will show how the nonlinear parameters for the 
drain current of a MOS transistor are extracted. We model 

the drain current dsI  as a third-degree polynomial with 

respect to the drain, source and gate voltages. For 
simplicity, we have used the body terminal as the 
reference voltage although other possibilities can be easily 
accommodated. The equation includes individual voltage 
terms as well as cross-terms. Compared to ordinary hand-
analysis equations we model not only the first-order 
nonlinearities but also the second and third-order 
nonlinearities as small-signal quantities around the bias 
point: 

..0 +++++= sddsggssdddsds vvgvgvgvgII         (9) 
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where, 

0dsI  =  bias current value at operating point 

xv   =  small-signal voltage at terminal x = { d,g,s}  

xg   =  first-order coefficient for voltage at terminal x 

xyg   =  second-order coefficient for cross-product of 

                  voltages at terminals x and y 

xyzg  =  third-order coefficient for cross-product of 

                   voltages at terminals x, y and z 
 
Therefore, there are 3 first-order terms, 6 second-order 
terms and 10 third-order terms in the equation. 

It is not possible to get the second and third-order terms 
directly from transistor-level simulation so we have 
formulated an efficient way to get these terms and model 
the nonlinearity accurately. We extract the first-order 
model parameters from Hspice simulation[5]. For a time-
invariant circuit, we perform a DC operating point 
analysis to obtain the bias current value and the first-order 
coefficients. For a time-varying circuit, we perform a 
single-tone transient analysis for a sufficient settling time 
and then sample a single time-period of the settled 
response to obtain time-varying operating points for the 

circuit. We then perform a DC operating-point analysis at 
each of these points to get the first order coefficients 

sd gg ,  and gg . We can express these coefficients in 

terms of the more commonly used small-signal 
coefficients dsm GG , and mbsG : 

dsdmg GgGg == , and  )( mbsmdss GGGg ++−= (11) 

 For both the time-invariant and time-varying cases, the 
bias voltages for each transistor are perturbed by small-
amounts to obtain data-points for fitting the second and 
third-order coefficients in the appropriate fitting range 
represented by the bounding box shown in Fig. 2. The 

figure shows the drain current as a function of dsv and 

gsv . It is possible to measure the current dsI  by 

perturbing the dsv and gsv slightly around each bias-point 

to obtain many different points. From (9): 
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where, the subscript i denotes the i-th data-point and 
)( 0dsdsi II − is called the “residue” . To solve the 

coefficients of the RHS in equation (10) we write the 
powers and cross-terms of sgd vandvv , for n sampling 

points into matrix Y, the corresponding coefficients into 
the vector p  and the residue )( 0dsds II −  into matrix R: 
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We have to fit the coefficients of (10) such that the error 
for each of the n data-points around the operating point is 
minimized. The aggregate error for the ith data-point is 
denoted by iε . We have to minimize the error 

T
ne ]......[ 21 εεε= : 

                                     eRYp =−                              (12) 

The LMSE algorithm estimates p  by minimizing the sum 

of squared errors: 

  )()( RYpRYpeeF TT −−==                    (13) 

This leads to the optimal solution: 

            )(.)( 1 RYYYp TT −=                       (14)   

In order to guarantee a good fit for the nonlinearities we 
ensure that the fitting range for the data is correct [2] (Fig. 
2). The range must be large enough to fit the nonlinearities 



accurately but it should not attempt to cover the effects 
outside the signal-swing range. For example, if the gate of 
a transistor has an expected signal swing of ±10mV, the 
fitting range for gv of this transistor should be limited by 

the signal swing.  It is also imperative to select enough 
data-points to fit the nonlinear parameters accurately. 

 

 
Figure. 2. Effective fitting range for  Volter ra 
parameters 
 

In some cases, the fitted results might still cause large 
relative errors for certain points in the data. The fit may be 
improved by using a weighted-least squares method 
instead of the conventional method. In this case, it is 
important to select individual weights for each equation: 
 

.....)( 0 ++++=− isididsisisididdsdsii wvvgwvgwvgIIw  (15) 

such that the effective residue )( 0dsdsii IIw − for each 

data-point is in the same range. This weighting scheme 
gives each individual data-point the same importance as 
far as the fitting process is concerned. This aids in 
reducing the error for each point and gives a better fit for 
the entire range of data-points. First, we can perform a 
LMSE fit on the data to get an initial estimate of the points 

where the error iε  may be large. We select the 

appropriate weight iw  for each data-point and scale the 

residue accordingly.  After performing the weighted least-

squares fit using (16) and (17) we can look at the error iε  

again and modify the weights if we are still not satisfied 
with the results. This is done for a few iterations till we 
can no longer improve the results. For the weighted least-
squares method we introduce another matrix W , which is 
the diagonal matrix of the individual weights. We have to 
minimize the weighted least squares error function: 

              )()( RYpWRYpF T −−=               (16) 

where Y,p and R have been defined earlier. This can be 
solved to get the nonlinear parameters in (9): 

            )(.)( 1 WRYWYYp TT −=                      (17) 

4. RESULTS 
The methodology presented in the previous sections has 

been demonstrated on a double-balanced mixer and an 
opamp. The macromodels generated using this approach 
are compared with detailed transistor-level simulation of 
the circuits with HSPICE.  

 
4.1 A Double-Balanced Mixer  

 
 
 
 

 
 
 
 
 
 
 

 
Figure. 3. A Double-Balanced M ixer  

 
A double-balanced mixer (Fig. 3) is modeled as a time-

varying weakly nonlinear system with respect to the RF 
input. The LO frequency is set at 1Ghz, and we calculate 
the time-varying operating point of the circuit by setting 
the RF input voltage to zero and using transient analysis in 
HSPICE to sample a single time-period of the settled 
response. The third order nonlinearities are modeled 
around this time-varying operating point using numerical 
fitting techniques outlined in Section 4. The fitted second 
and third order coefficents are used to generate a Volterra-
based full model for the circuit.  
 

A single-tone RF input is used to verify the model 
results with the transient simulation results. The third-
order harmonic of the RF input frequency down-converted 
with respect to the LO frequency is compared between the 
model and the simulation results. The second order 
nonlinearities should ideally be zero except for numerical 
noise, by design. We performed transient analysis for the 
circuit in Hspice followed by an accurate Fourier 
Transform of the output time-domain waveform to verify 
the results. The RF input frequency is varied from 
300Mhz to 1200Mhz. The maximum error in the full 
model as compared to Hspice simulation for the first-order 
results is less than 2% for all frequencies. The maximum 
error in the third-order results is less than 10% for third-
order for all frequencies. The results in Fig. 4 have been 
normalized with respect to the RF input amplitude.  
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Figure. 4. Third-order  harmonic (down-converted)    
for  different input frequencies 

 
Once we have the Volterra Series based full model, it is 
possible to measure the third-order response at more 
useful harmonics also. For example, Fig. 5 shows the plot 
for the third-order transfer function )2,2,2,( 3213 fjfjfjtH πππ  

where, MhzffMhz 1200,300 21 ≤≤  and Mhzf 9003 −= . 

The full model has 1350 time-sampled circuit unknowns 
which is reduced to approximately 14 circuit variables 
using the NORM method, while still capturing the 
dominant response of the circuit. The relative modeling 
error between the full and reduced-order model for the 
first-order results is less than 0.01%. Fig. 6 shows that the 
relative percentage error between the full-model and 
reduced-order model for the third-order results is less than 
6% for all cases. 
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Figure. 5. Third-order  transfer  function for  mixer (full) 
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Figure. 6. Relative modeling er ror  for  third-order  
transfer  function 
 
4.2 An Operational Amplifier  

 

 
Figure. 7. A two-stage opamp 
 

A two-stage Operational Amplifier topology is shown in 
Fig. 7. The closed-loop AC response of this circuit is 
shown in Fig. 8. Using the extraction method described in 
Section 4, it is possible to match the AC (first order 
response) of the circuit accurately to about 99-100% 
compared with Hspice simulation. For this circuit, second 
order nonlinearities are more important than the third-
order nonlinearities since they are much higher in 
magnitude. The opamp is modeled as a time-invariant sys-
tem and is linearized at the DC bias point to fit the second 
and third order coefficients for each transistor in the 
circuit.  

The second-order distortion for a single-tone input is 
shown in Fig. 9. We compared the Hspice simulation 
results for input frequencies ranging from 1Mhz to 
100Mhz with our model results. The relative error 
between the full-model and the simulation results is less 
than 10% for all input frequencies. The number of state-
variables for the circuit reduced from 22 in the full-model 
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to about 5 in the reduced order model. The comparison of 
the full and reduced order model results shows that there 
is less than 0.01% error for both first and second-order 
responses.  
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Figure. 8. Closed-loop AC response of the opamp 
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Figure. 9. Second order  distor tion as a function of 
frequency 
 
 
5. CONCLUSIONS 
 

In this paper, we have presented a methodology for 
generating analog circuit macromodels from the transistor-
level netlists. This methodology can be applied to a broad 
range of time-invariant and time-varying weakly nonlinear 
circuits. The macromodels generated using this 
methodology are characterized using efficient numerical 
fitting of simulation data and model order reduction 
techniques Our experimental results have shown that the 
macromodels offer significant decrease in model size with 
comparable accuracy to full transistor- level simulation in 
Hspice. We would like to further explore the possibility of 

adopting these compact macromodels in behavioral 
languages such as Verilog-A. 
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