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ABSTRACT 

This paper illustrates the automatic generation of a complex 
semiconductor device model (BSIMSOI [1]) into the 
Spectre simulator [2] from a higher-level representation 
using Paragon‡. Paragon [3] is used to capture the 
conceptual level description of the model and generate 
Verilog-AMS code. This code is used for quick turn-around 
model validation and subsequently  used by the ADMS 
model compiler [6] to generate C code for implementation 
through Spectre’s compact model interface (CMI). 

1. INTRODUCTION 
The most significant building block to successful analog 
and mixed-signal integrated circuit (IC) design is the 
availability of high quality semiconductor device models 
that have been characterized to the IC process. At present, 
BSIM3 remains the standard device model available from 
the majority of semiconductor foundries, while BSIM4 is 
now beginning to take hold [4]. Semiconductor device 
modeling takes an enormous amount of time and resource at 
present. This is primarily due to a lack of modeling tools to 
facilitate the research, implementation and characterization 
of these complex models, in addition to the cumbersome 
and error-prone nature of implementation of such models 
directly in SPICE-like simulators. Without advanced 
modeling tools the ability to compile other types of models, 
such as behavioral models of circuits, into many advanced 
simulators is effectively disabled. 

The objective of this paper is to illustrate the 
usefulness of an advanced modeling scheme for compact 
models, based upon a well defined, scalable, comprehensive 
and extensible metafile for representing compact models 
[5], and an advanced model compiler (ADMS) and 
modeling tool (Paragon). The methodology presented is 
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used to generate an industry standard model, the BSIM3-
SOI model (version 2.2) [1].  The format utilized provides a 
neutral interface between hardware description languages 
(HDLs), compilers and modeling tools, and simulators 
within the complete modeling methodology. 

The concept and benefit of a compact model compiler 
based on standard high-level behavioral languages has been 
described by a number of investigators [7-9]. However, a 
major obstacle for model compilers is the generated code 
efficiency, which has been reported to be 100 to 1000 times 
slower than hand-developed code. Recent work 
demonstrated by researchers at the University of 
Washington indicates that this deficiency can be overcome 
[10]. With some compilation optimization technologies 
developed specifically for compact model compilers, it has 
been shown that even BSIM models, implemented in 
VHDL-AMS, can be created with performance comparable 
to human optimized SPICE simulator code. Such results 
serve to validate the promise of maintainable and efficient 
compact models from high-level languages. 

This paper illustrates the usefulness and extensibility of 
the high-level representation by using Paragon to generate 
Verilog-AMS [11-12] code for the ADMS model compiler 
for the BSIMSOI model. Utilizing Verilog-AMS and 
ADMS allows validation not only of the compiled compact 
model with original SPICE code (as implemented in 
Spectre), but also allows validation of the intermediate 
Verilog-AMS code, as both formats are supported by the 
Spectre simulator. 

2. MODEL COMPILATION 
Model compilation is the process of automatically 
generating compact semiconductor device models in C/C++ 
for SPICE-like simulators from a higher-level abstract 
representation of the model. The overall model creation 
process is illustrated in Fig 1. The higher-level 
representation of the model is captured by Paragon and 
various model compilers like ADMS and MCAST work on 
this higher-level representation of the model to generate 
SPICE code for the target simulator. The biggest challenge 
has been developing model compilers capable of generating 
compact low level C/C++ code comparable in speeds to the 
hand-generated models. MCAST has developed industry-



grade device models comparable in simulation speeds to the 
hand-written models. Paragon is capable of generating low-
level C/C++ code for the fREEDA [17] simulator. ADMS 
is a freely available model compiler available through the 
open-source community and it supports popular simulators 
such as Spectre, ADS, McSPICE, and NanoSim. ADMS 
uses a Verilog-AMS description of the model as input and 
generates C/C++ code for these target simulators. Paragon 
can automatically generate Verilog-AMS code from a 
higher-level description of the model, which can then be fed 
into ADMS to generate C/C++ models for all the simulators 
supported by ADMS. The advantages of using a model 
compiler to develop these models over hand-written models 
are the following: 

1. The model development time is dramatically 
reduced as the model developer does not need to manually 
write low level C/C++ code.  

2. The generated model is easier to maintain and 
reuse as the modeler does not have to read and modify the 
low level C/C++ code. 

3. The same abstract representation of the model can 
be used by a model compiler to generate low level C/C++ 
code for different simulators. 
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Fig. 1.  Methods of model creation utilizing XML 
schema and advanced compilation tools.   

3. MODELING METHODLOGY 
The overall modeling methodology used in this paper is 
best summarized by Fig. 2. Starting with BSIMSOI model 
documentation and source code [1], the model was 
implemented utilizing the graphical editors of the Paragon 
modeling tool. The result of this model editing is the XML 
Abstract Model Representation. From this model 
description, Verilog-AMS code, suitable as an input to the 

ADMS model compiler was generated. This intermediate 
Verilog-AMS code was validated in the Spectre simulator 
before CMI code for Spectre was created utilizing the 
ADMS tool. 
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Fig. 2.  Automatic generation of native Spectre models 
using Paragon and ADMS. 

3.1 Abstract Model Representation 
The abstract model format is designed to capture all of 

the information necessary to create a semiconductor device 
model, with the emphasis being on the data specific to the 
model and not a specific simulator. The schema removes 
the simulator dependence from device models, facilitates 
rapid adoption, and supports enhancements through the use 
of XML [18]. The use of XML enables the description of 
model information in a simple and flexible structured text 
format, which lends itself to standardization and open 
sourcing.  It is easily interchanged and adopted, as many 
standard technologies exist for its manipulation and 
creation, including XSLT transformations, which are used 
by Paragon for such tasks as code generation [19].   

The model expressions and equations are expressed in 
MathML [20], which is an XML standard for describing 
mathematical notation. Each model document has an 
interface and a body. The model interface consists of the 
model name, connection points and parameters. The body 
contains the model topology and equations. The topology 
consists of branches and instances of other models. The 
branches are in turn defined by their ‘through’ and ‘across’ 
variables and MathML mathematical expressions involving 
these variables. The topology and these mathematical 

 



expressions collectively define the model behavior. The 
specifics of the format, including the Document Type 
Definition (DTD) are published in [5]. 

 

 
 

Fig. 3.  Screenshot of Paragon showing the creation of the 
BSIMSOI MOSFET model. 
 

3.2 Paragon Modeling Tool: BSIMSOI Model 
A tool that can directly operate upon the XML-format 

model, Paragon, was utilized to create the BSIMSOI model 
from documentation. Using Paragon, a user has the ability 
to enter the large-signal model topology and graphically 
define branch-based behavior. Through and across 
quantities and the associated expressions are easily defined 
for each branch. Generic model expressions are defined in 
an expression editing tool, which uses the general language 
of math, rather than any specific HDL, to define the model 
equations. Model interface objects, such as parameters and 
connections points, are defined in a simple form which also 
permits the user to add their default values and appropriate 
ranges of validity and comments, all of which are 
propagated to the abstract format and any generated code.  
In addition, Paragon provides methods not only for the 
generation of multiple languages (Verilog-A, VHDL-AMS 
[21-22], MAST [15], fREEDA [17] and VTB [23]) but also 
for model debugging and analysis, such as time-variance 
determination and other sanity checks (Fig. 4). 

The large-signal topology of the BSIMSOI model that 
was implemented in Paragon is shown in Fig. 3. Creating 
the model interface was the first step in the process of 
creating the model in Paragon. The model interface 
consisting of model name (BSIMSOI), external connection 
points (drain, gate, source, substrate, and body) and all the 
process and instance parameters were captured in Paragon. 
The BSIMSOI model consists of 4 fixed and 3 optional 

nodes. This makes the total number of connection points 
vary from four to seven. Paragon does not currently support 
modeling of dynamically varying topologies or optional 
connection points; hence BSIMSOI was modeled with 6 
fixed nodes. Along with the five external connection points, 
an internal body node was also modeled as shown in the 
model topology in Fig. 3. The only node that was neglected 
was the thermal junction node required for a self-heating 
version of the BSIMSOI model. Finally, the behavior of the 
model was entered by defining all the branch relationships 
[1]. 
 

 
 

Fig. 4.  A screen-shot of model-profiler window inside 
Paragon environment showing dependencies of all the 
BSIMSOI model variables. 
 

The usefulness of a high-level tool such as Paragon is 
illustrated through the example of this BSIMSOI model, as 
illustrated in Fig. 3. The model’s interface, topology and 
expressions are easily browsed and modified, allowing 
another developer to quickly identify and modify specific 
facets of the model. The validity and sanity of all the model 
parameters and expressions can be done before actually 
generating the Verilog-AMS code. Fig. 4 shows a screen-
shot of the model-profiler tool in Paragon. All the model 
parameters, constants and variables are analyzed and listed 
in tabular form. The modeler can verify their validity before 
proceeding ahead with automatic code-generation.  
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Fig. 5.  Large-signal topology of the BSIMSOI, version 2.2 
MOSFET model. 

 

3.3 ADMS 
The final step in the model creation process is to generate 
the low level C code for the Spectre circuit simulator. 
Paragon was used to first generate the Verilog-AMS code 
for BSIMSOI model. The generated Verilog-AMS code 
was validated in Spectre for correctness. ADMS was then 
used to implement this model directly in Spectre using the 
CMI toolkit. ADMS takes Verilog-AMS as input and 
generates compact C/C++ model for the target simulator. A 
major advantage of the ADMS approach is that it allows 
Verilog-AMS simulators to be used to check the validity of 
a compact model prior to implementation into simulators. 
This significantly helps model development, as all 
simulation capabilities, including DC, AC, noise, transient, 
etc., are directly available for the Verilog-AMS code.  

The Verilog-AMS language has some restrictions that 
prevent it from creating a model which can provide all the 
information needed by a tool like ADMS to generate C 
code for SPICE-like circuit simulator [7]. For instance, 
Verilog-AMS does not distinguish between model 
parameter and instance parameters. It is possible to “pass” 

all this information to ADMS without breaking the Verilog-
AMS validity of the model description [7]. This is achieved 
by defining macros in the Verilog-AMS code that are set to 
void in Verilog-AMS mode. Verilog-AMS simulators do 
not see the extra information and parse the model 
description correctly. On the other hand ADMS parses the 
extra-information correctly and is able to generate a 
compact C model for the target simulator. Paragon-
generated Verilog-AMS code of BSIMSOI model was 
manually appended with these macros before feeding it to 
ADMS. 

ADMS has been designed to make the implementation 
of compact models simple, efficient and robust. It supports 
C code generation for the Application Programming 
Interface (API) of various simulators including Spectre [2], 
Mica [24], HSIM [25] and zSpice [26]. The specification 
for code-generation for various simulators is written in 
XML, which can be developed and supported by simulator 
vendors without recompiling ADMS source code. This also 
simplifies adding the API specification of other new 
simulators to ADMS in the future. 

 

 

Fig. 6.  Ids-Vds curve for generated and compiled 
BSIMSOI, version 2.2 MOSFET model. 

 

ADMS was used to generate a compact C model of 
BSIMSOI in Spectre from modified Verilog-AMS code 
generated by Paragon. An XML file for the Spectre 
interface and CMI toolkit was used in generating and 
compiling this model into Spectre. This XML file and the 
CMI toolkit are developed and maintained by Cadence 
[27]. This XML file is used by ADMS to build the CMI 
source code of the BSIMSOI model from its Verilog-AMS 
description. 

The generated BSIMSOI model was simulated in 
Spectre and its results were compared with the built-in 
BSIMSOI model in Spectre for speed and accuracy. The 
automatically generated C code performed accurately and 
simulated in about the same time as the native Spectre 



model. Implementation and validation using Paragon took 
less than two weeks, which is significantly less than the 
time it takes to implement a new model of BSIM3 
complexity in a SPICE-like simulator such as Spectre.   

4. FUTURE WORK 
Future work involves developing more synergy between 
Paragon and ADMS to further facilitate the ease of 
generating complex SPICE models for various circuit 
simulators. Work is in progress to make ADMS directly 
generate SPICE models from the XML schema instead of 
using a Verilog-AMS description of the model. Also, in   
future work code-generation capabilities of Paragon will be 
enhanced to generate Verilog-AMS descriptions of models 
that will have all the additional information that AMDS 
needs to generate compact models without manually 
defining any macros in the Verilog-AMS code. 

5.  CONCLUSIONS 
The modeling methodology described in this paper enables 
the user to quickly and correctly create complex new 
models with relative ease for various SPICE-like circuit 
simulators. Once the model has been entered, tested and 
validated in Paragon, ADMS can be used in conjunction 
with Paragon to generate compact C code for any new 
circuit simulator in the future. The generated C code from 
ADMS is only slightly slower than hand-written code, but 
with further optimization this will be overcome. Also, there 
is an enormous decrease in the model development time. 
The model development time is significantly reduced 
because the model developer does not have to deal with the 
low level C code for each circuit simulator. The time 
required to validate and test a new model is also 
significantly reduced because the model developer can 
carry out the model debugging process at a higher level. 
The model can be analyzed and debugged in the Paragon 
environment and the generated Verilog-AMS code can be 
tested thoroughly before the creation of the C code for 
implementing the model in a target simulator. By debugging 
the model at a level higher than C code, more bugs are 
filtered out before they reach the low level C code. This 
greatly increases the efficiency of the model debugging 
process because the model developer does not have to carry 
out C code debugging of his model for each circuit 
simulator in which he intends to implement the model. The 
higher-level XML description of the model is easy to 
maintain, reuse and update and this leads to an increased 
efficiency in the overall model creation process. 
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