
Mixed-Signal Simulation by way of the Simbus Backplane∗

Dale E. Martin and Philip A. Wilsey
Clifton Labs, Cincinnati, OH

dmartin@cliftonlabs.com

Robert J. Hoekstra, Eric R. Keiter,
Scott A. Hutchinson, and Thomas V. Russo
Sandia National Labs, Albuquerque, NM

Abstract

1 Introduction

Electronic circuit simulation has emerged as a technology
of fundamental importance to electrical engineers. Simu-
lations can have relevance throughout the entire life-cycle
of an electronic system, providing a mechanism for ex-
ploring the design space early in a system’s life and en-
abling the exploration of “what if” scenarios after systems
have been deployed.

As computer technology has advanced the size and
scope of systems that researchers have attempted to simu-
late has grown. Typically the modeling needs for com-
plex systems have been adequately satisfied using dis-
crete event-driven simulation models. However, in many
cases an interest in more detailed modeling and simulation
analysis activities is satisfied only by the use of continu-
ous system models (commonly expressed with ordinary
or partial differential equations).

In addition many systems being produced today have
elements that span multiple design domains. For example,
mobile phones contain digital circuitry, analog cicuitry,
and software, all of which must function properly for the
phone to work correctly. Designing such systems can be a
challenge as the tools available for simulation often focus
on only one of the domains of interest.

Consequently, an important optimization technique is
to build mixed-domainsimulation models of the system
where portions of the system are represented using mod-
els from different domains; for example some pieces may
be represented using discrete event models and other por-
tions are represented with a continuous model. This can
reduce the total simulation runtime cost while preserving
the detailed analysis results for those regions of a system
model where they are necessary.

This paper will discuss a simulation backplane called

∗This work was supported by Sandia National Laboratories, Albu-
querque, NM under Contract Number 29727 .The authors thank them
for their support.

“Simbus”, which allows analog and digital simulators
to be connected and utilized together to perform mixed-
signal simulation. Our approach allows elements of the
each domain to be expressed in their native format, sim-
ulate on their native simulators, and be coupled into an
aggregate mixed-signal simulation. Currently supported
simulators include the Savant VHDL simulator [6] and
Sandia National Lab’s Xyce [3] simulator — a SPICE-
like circuit simulator. Simbus is available under the open
source LGPL license with source code freely available.

Section 2 will describe in more detail the background
of Simbus and why it is applicable. Section 3 presents
Simbus’ design in more detail. Section 4 discusses our ex-
periences with Simbus and the current state of the project.
Section 5 discusses the generality of Simbus; that is can
it be applied to other simulators or problem domains?
Lastly, Section 6 draws come conclusions on our work.

2 Background

As previously described, the design and implementation
of mixed-signal designs can be very challenging. Con-
sider simulation of a mobile phone; the analog electronics
must be simulated independently from the digital elec-
tronics, and the software tested in some other fashion.
This is suboptimal for a variety of reasons, but perhaps
the most important is that design problems often occur at
the domain boundaries and independent simulations will
not always expose them.

One alternative is that designers can move to the do-
main that is the “least common denominator”, in our ex-
ample, this might mean simulating everything in the ana-
log domain on some SPICE-like simulator. This is in-
efficient at best; the phone’s embedded microcontroller
will be simulated at the transistor level even if a behav-
ioral simulation would have been sufficient. In general
this approach will use far more computational resources
than necessary.

Another issue with this approach is that one must be
able to describe the digital circuits in terms of SPICE



netlists. This often is cumbersome at best. Digital design
is often done in languages like VHDL [1] or Verilog [5]
which do not easily convert to netlists without completion
of synthesis and/or layout, which happens very late in the
design cycle.

Sandia National Labs has interest in efficient simula-
tion of circuits at all levels of abstraction. In supporting
their simulation efforts, personnel at Sandia have devel-
oped a variety of internal tools in addition to using com-
mercial tools. One such team at Sandia has been work-
ing on a SPICE-like simulator called “Xyce” for some
time. They have several goals: (i) allow parallel simu-
lation of SPICE-compatible models on platforms ranging
from clusters of PCs to supercomputer class machines, (ii)
use novel numeric techniques to achieve greater accuracy
and more efficient simulation than SPICE, and (iii) allow
development of advanced capabilities beyond what tradi-
tional SPICE provides, such as analysis of thermal effects,
aging, radiation, and so on.

Clifton Labs has been working on a project implement-
ing an LGPL parallel VHDL simulator for some time.
This system is composed of several components:Savant
is the VHDL analysis front-end and code generator;tyvis
implements a VHDL simulation runtime support environ-
ment; andWARPED which is a parallel discrete event sim-
ulator. When used together, these systems can be used to
execute VHDL in parallel. For the sake of simplicity, in
this paper we will refer to this system asSavant.

Sandia personnel were interested in combining Savant
and Xyce into a system that would allow efficient parallel
execution of mixed signal designs. In our initial discus-
sions into how to best provide mixed-signal simulation
we talked with users about migrating their mixed-signal
designs to VHDL-AMS [4] and supporting execution of
VHDL-AMS designs using a Savant/Xyce hybrid. They
had several concerns with this approach. Chief among
these concerns were: (i) there was a feeling that the adop-
tion of VHDL-AMS has been relatively slow and there-
fore that commercial tool support was limited; and (ii)
Sandia strongly desired to preserve the considerable in-
vestment in time and money that they had extended in
validating their SPICE models. They felt that they wanted
to be able to use the intellectual property of their SPICE
models with as few modifications as possible.

In summary, the goals of the system to be developed
were:

Support mixed-signal simulation:Enabling this func-
tionality was the primary goal in developing the sys-
tem.

Leverage parallel infrastructure:Since Sandia has a
large investment in parallel computational platforms,

Figure 1: Domain conversion from analog to digital
through an ADC device.

this was a secondary goal.
Use existing models:Given the large investment that

Sandia has in models, the ability to use them rela-
tively unmodified was considered important.

Leverage existing software:Software development is
expensive in both terms of time and manpower re-
quired, so utilizing existing software where possible
was considered an important goal. An additional el-
ement of the this goal is that we did not want to pre-
clude the use of commercial software with the back-
plane.

Keeping these goals in mind, section 3 will describe Sim-
bus in more detail.

3 The Simbus Backplane

In designing the Simbus Backplane, one of the first ques-
tions that arose was how the analog and digital simulators
will interact with each other. To answer this question we
looked to real mixed-signal systems and see how they in-
teract across domains. Typical interactions occur through
analog to digital (A/D) or digital to analog (D/A) convert-
ers, or through other circuitry that is acting as one of these
devices.

Figures 1, 2, and 3 show representative examples of
each of these types of converters. Figure 1 illustrates a
conversion from the analog to digital domains using an
ADC device. The analog signal varies in the continu-
ous time domain, but the digital domain only sees up-
dates whensample is asserted, limiting information flow
across the domains. (The ADC device in this example is
set up in a self-clocking mode, hence the connection from
CLKRto CLK).



Figure 2: Domain conversion from digital to analog
through a DAC device.

Figure 3: Domain conversion from analog to digital
through a n-channel mosfet acting as a switch.

In Figure 2, we show a digital to analog conversion us-
ing a DAC device. The particular DAC device shown in
this figure continuously generates analog outputs as the
digital inputs vary — other devices often have clock in-
puts used to latch in the digital data and assert the new
analog output. The amplifier serves to convert the current
output into a voltage output with enough current driving
capability to allow easy connection to other circuitry.

Finally, Figure 3 depicts domain conversion from ana-
log to digital using an n-channel MOSFET acting as a
switch. This case presents a more interesting domain con-
version, because it represents a case where the analog do-
main can “push” a value into the digital domain with no
request flowing from the digital domain. As the input to
the FET varies, it will convert the analog signal into a dig-
ital one or zero.

B
ac

kp
la

ne
G

lu
e

Digital
Part

(7
 d

ow
nt

o 
0)

bi
t_

ve
ct

or

Part
Analog

Figure 5:Modeled D/A converter.

Extending this methodology to our simulation system
was a natural fit; explicit devices would be utilized to
allow interactions across the boundaries. An illustration
of the organization of a SAVANT/Xyce simulation run-
ning on the Simbus backplane can be seen in Figure 4.
In this figure we see that all system interaction occurs
through domain conversion devices, specifically A/D and
D/A devices. Each system operates in its “normal” mode,
but with connections to the backplane through additional
models representing A/D and D/A devices.

Each modeled converter requires three elements: (i) the
analog representation, (ii) the digital representation, and
(iii) the backplane glue. Figure 5 illustrates a modeled
D/A converter. Note that the analog part contains ele-
ments of a physical device including the notion of a volt-
age source and output impedance; these elements are re-
quired by the continuous simulator to accurately simulate
the device, as the driving capability and output impedance
will define its interaction with the rest of the model. The
digital part of the model simply defines the VHDL inter-
face into the model; in this D/A converter the VHDL en-
tity description might look like the following:

entity DAC is
generic (device_name : string;

width : natural );
port

(input: bit_vector(width-1 downto 0))
end DAC;

The last part of the model is the part we have referred
to as the “backplane glue”. This part of the model is re-
sponsible for transporting events coming from the digital
simulator to the analog part of the model, which then con-
verts the events into voltage/time tuples for the voltage
source, which acts much like a piecewise linear source in
a traditional SPICE simulation. The linkage between the
digital part of the device and the analog part of the device
occurs by the device naming; the netlist and the VHDL
the domain converters must have matching names.

Both the analog and digital simulators are free to define
a variety of models for domain crossing devices. These



Simbus Backplane

VHDL
Process

Spice
Model

VHDL
ProcessA/D VHDL

Process

VHDL
Process

VHDL
ProcessA/D

Spice
Model

VHDL
ProcessD/A

Spice
Model

D/A VHDL
Process

Spice
Model

Spice
Model

Spice
Model

Spice
Model

Spice
Model

VHDL
Process

VHDL
Process

VHDL
Process

VHDL
Process

VHDL
Process

Digital DomainAnalog Domain

Figure 4:The organization of a Simbus simulation.

models can be simple like that shown in figure 5, or could
be more complex and representative of a specific device
used in a real design, with varying output impedance and
non-linear conversion times.

At the most basic level the backplane exchanges quan-
tity/time tuples and bitvector/time tuples and does not
concern itself with the semantics of the values being
passed. Simbus defines an interface for domain crossing
devices which the models implement. When the simula-
tors start up these devices register with the backplane and
it connects the pieces of the device together.

3.1 Startup and Signal Interconnect

While we have access to the source code for both Xyce
and Savant, we were concerned about designing a back-
plane that required extensive modification to the simula-
tors that would interact with it — and this would violate
one of the goals we had determined for the system. There-
fore the design had to allow for the possibility of interact-
ing with simulators for which we did not have the source
code and that we could not link against. In order to meet
these criteria we devised the following design:

Simulator startup uses the factory pattern: The factory
pattern [2] is a widely used design pattern for allow-
ing construction of objects through an abstracted in-
terface. This allows the backplane to make calls to a
known factory interface rather than calling construc-
tors directly.

Runtime linkage of factory classes: The backplane is
not compiled or linked against the simulator fac-
tory classes; instead, these factories are dynamically
loaded at runtime when the backplane starts up. This
is achieved through the shared library loading mech-
anism found on modern operating systems.

Deferred configuration of simulators: The backplane
configuration is read through a file. The file contains
configuration information for the simulators as well.
This is achieved by defining a structure to the con-
figuration file but not defining the semantics within
the simulator-specific sections. The backplane
passes the simulator’s configuration to the simulator
at startup, and the simulator itself handles its own
configuration.

This architecture allows for a large degree of flexibil-
ity, and even the possibility to connect to commer-
cial/proprietary simulators as is discussed in section 5.

3.2 Simulator Scheduling

Scheduling is another area of interest in a simulation back-
plane such as Simbus. The current implementation of
Simbus does “ping pong” scheduling, where control is
passed from simulator to simulator for specific timeslices.
Our original implementation used a fixed timeslice chosen
as the minimum propagation delay across the backplane.
This approach can be very expensive in terms of simu-
lation performance, in particular if any devices such as



those found in figure 3 are employed in a simulation. In
this case the time slice could be as small as the switching
time of a single transistor.

The second scheduling algorithm that has been imple-
mented still uses a “ping pong” approach but is capable
of expanding the timeslices for which we can schedule.
This is achieved by querying the discrete event simulators
for their next activation time. The simulator that is fur-
thest behind is scheduled for the duration between “now”
and the next scheduled activation time; if the executing
simulator generates an event for the backplane it relin-
quishes control to the backplane which does a new time
step calculation. This imposes a limit on the backplane
that at most one continuous simulator may be connected
at a time, although this limitation can be largely mitigated
by combining multiple netlists into one.

Ultimately one would like to allow all simulators to ex-
ecute concurrently to achieve maximum performance on
parallel platforms, however causality issues can make this
problematic. We have plans to look into this possibility
in the future as both Xyce and Savant have rollback capa-
bilities and could potentially recover from causality vio-
lations using rollback.

Each scheduling approach has impact on performance
and implications with regards to the APIs of the connected
simulators. This is an area which will continue to be stud-
ied.

4 Experiences

The initial implementation of Simbus is realized in 4200
lines of C++ code1 including the interfaces for Savant and
Xyce. The system has been developed in a GNU/Linux
environment and a port to FreeBSD is underway.

Initially we used hand-rolled analog models for testing
purposes while developing the Savant interfaces. Our ini-
tial examples model communication from from the analog
simulator to the Savant simulation, from the Savant sim-
ulation to the analog simulator, and finally in round-trip
fashion.

After developing these examples we were able to hand
them off to developers at Sandia who developed the Xyce
interfaces. In the example circuits they replaced our hand-
rolled analog simulators with real netlists executing on
Xyce, and this system is currently operational. Our cur-
rent work is to expand the systems we are modeling be-
yond small examples to real, relevant circuits.

Our experiences with the system so far have been en-
couraging and given us confidence that the approach will

1generated using ’SLOCCount’ by David A. Wheeler

work and that it will scale. As we work with larger de-
signs we will be able to carefully study performance, in-
cluding scheduling, communication overhead, and other
issues that become apparent.

5 The Generality of Simbus

While the immediate goal of Simbus was to bring together
Xyce and Savant to enable mixed-signal simulation, our
intention has been to allow other tools to be connected
to Simbus as well. As was mentioned previously, Sim-
bus’ API design utilizes thin interfaces defined in terms
of pure virtual classes. This precisely defines the func-
tionality that Simbus requires to interact with a simulator.
Also, using the dynamic linking of shared libraries means
that Simbus can operate with simulators that it has not
been linked against directly. We chose the LGPL licens-
ing specifically to allow integration of proprietary systems
with Simbus.

One of the first commercial tools that we have exam-
ined in terms of integration is Mentor Graphics’ Mod-
elSim VHDL simulator. ModelSim is very popular in
the EDA marketplace so it is of a high degree of inter-
est. Some versions ModelSim provide a VHDL “Foreign
Language Interface” (or VHDL-FLI). Our initial investi-
gations into the VHDL-FLI lead us to believe it would
be possible to integrate ModelSim with Simbus and use it
as a digital simulator in a mixed-signal simulation. The
VHDL-FLI clearly has the capabilities to read and write
signals that would be required; the issue that requires fur-
ther study is if the API provides the necessary functional-
ity required for efficient scheduling.

Another area of interest is integrating with an open
source analog simulator such as SPICE 3. A variety of is-
sues keep Xyce from being released under an open source
license and without an analog simulator Simbus’ useful-
ness is limited to couple together multiple digital simula-
tors.

6 Conclusions

A significant amount of progress has been made towards
the goal of enabling parallel mixed-signal simulation us-
ing Savant and Xyce. The capability has been demon-
strated and large strides have been made in demonstrating
the applicibility of the of the system to real problems.

Future work will focus on the following issues:

Performance: As experience is gained with larger mod-
els, performance will become a key area of investi-
gation. Scheduling will continue to be of interest,



along with reduction of communication and other
overheads. The ultimate level of performance would
be for the aggregate system to be bound by the per-
formance of the slowest simulator (which could vary
on a model-by-model basis.) This would imply zero
overhead which is unrealistic, but a benchmark to
bear in mind.

Integration with Additional Simulators: As was men-
tioned in section 5 integration with additional sim-
ulators is of interest. We would like to see integra-
tion with both proprietary and open source simula-
tors. In addition to ModelSim and SPICE 3 which
were mentioned previously, we can envision integra-
tion with Icarus Verilog, the irsim switch-level sim-
ulator, bindings for various programming languages
beyond C/C++ like Java and perl, and a variety of
commercial tools.

Investigation into User-Interface Designs: The current
inputs into a mixed-signal simulation using Simbus
are a VHDL model, a netlist, a Simbus configuration
file, and any inputs supported by Savant and Xyce.
The current outputs are those that are possible using
Xyce and Savant — text file output.

Today’s engineers are accustomed to using
schematic capture programs for input, and waveform
viewers for output. How to achieve these capabilities
“cleanly” in a backplane system is an interesting
question and one that warrants investigation. The
popularity of open source may be of benefit here
as several excellent programs such as “gschem”and
“gtkwave” might be candidates for integration in
some form.

Simbus has demonstrated the feasibility of the backplane
approach for integrating Xyce and Savant, and we are con-
fident that it has application to other tools as well. By re-
leasing Simbus as free software, we hope to make a contri-
bution that can be used to solve a variety of real problems
faced by today’s electrical engineers.

References

[1] A SHENDEN, P. The Designers Guide to VHDL. Mor-
gan Kaufmann Publishers, Inc, San Mateo, CA, 1996.

[2] GAMMA , E., HELM , R., JOHNSON, R., AND VLIS-
SIDES, J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Profes-
sional Computing Series, Reading, MA, 1994.

[3] HUTCHINSON, S. A., KEITER, E. R., HOEKSTRA,
R. J., WATERS, L. J., RUSSO, T. V., RANKIN , E. L.,
AND WIX , S. D. Xyce parallel electronic simulator.
Sand Report SAND2002–3790, Sandia National Lab-
oratories, Nov. 2002.

[4] IEEE Standard VHDL Analog and Mixed-Signal Ex-
tensions. New York, NY, 1999.

[5] THOMAS, D. E., AND MOORBY, P. R. The Verilog
Hardware Description Language. Kluwer Academic
Publishers, Boston, MA, 1991.

[6] W ILSEY, P. A., MARTIN , D. E., AND SUBRAMANI ,
K. SAVANT/TyVIS/WARPED: Components for the
analysis and simulation of VHDL. InVHDL Users’
Group Spring 1998 Conference(Mar. 1998), pp. 195–
201.


