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ABSTRACT 
This paper presents a method for fast time-domain simulation of 
analog systems with nonlinear parameters. Specifically, the paper 
focuses on Σ−∆ analog-to-digital converters (ADC). The method 
generates compiled-code simulators based on symbolic analysis. 
Code is optimized using loop invariant elimination, and constant 
folding. Circuits are described as structural macromodels. Non-
linear parameters are expressed using piecewise linear (PWL) 
models. The paper presents a technique for automatically creating 
PWL models through model extraction from trained neural 
networks (NN). As compared to existing behavioral simulation 
methods for Σ−∆ ADC, this technique is fully automated and more 
accurate. In our experiments, compiled-code simulation was about 
100x faster than Spectre (numerical) simulation.  
1. INTRODUCTION  
Systems-on-chip (SOC) are emerging as the next showstopper in 
microelectronics. In spite of their commercial promise, designing 
mixed-signal SOC continues to be a challenging and expensive 
task, which demands expertise in many orthogonal areas. Also, 
there is limited CAD support to boost design productivity. It is fair 
to say that SOC design has a bottleneck in the steps of designing 
RF and analog IP cores, as well as integrating and verifying the 
final design. Existing research (please refer to [6] for an overview) 
offers remarkable solutions to synthesis of analog circuits, like 
opamps, operational transconductors (OTA), comparators, and so 
on. The next step is to tackle synthesis of complex analog and 
mixed-signal systems, like ADC, DAC, PLL, and transceivers. For 
this endeavor, however, existing analog and mixed-signal 
simulators [5,6,10], which are the core of analog synthesis [6], are 
still too slow to be used inside the SOC synthesis loop, experience 
numerous stability problems [5], and are unable to exploit the 
specifics of circuits and systems.  

Vlach and Singhal [13] offer a comprehensive presentation of the 
fundamental simulation algorithms. For speeding-up simulation, 
behavioral models are used, so that irrelevant details are abstracted 
away. Please refer to [14] for the most recent advancements in 
behavioral modeling and simulation. Circuit models are of two 
kinds: structural (physical) and mathematical models. Structural 
models offer a qualitative insight into the circuit, but they do not 
give any quantitative perspective. Hence, for analog synthesis, 
structural models must be complemented by mathematical models, 
which express quantitative dependencies between the design 
parameters and performance attributes of a circuit. Physical 
modeling methods, in general, simplify a circuit to a reduced sub-
circuit that includes only the dominant devices. Mathematical 
modeling includes linear and non-linear regression, Volterra 
series, Pade approximations, wavelet functions, and NN [14]. The 
most important limitations of existing modeling techniques include 
difficulties in handling nonlinear parameters and large circuits. 
Also, large amounts of sampling data are needed for modeling.  

This paper presents a new approach to fast time-domain simulation 
of analog systems that contain nonlinear parameters. Without 
trading-off accuracy, the proposed technique achieves speed-ups 
of more than 100x as compared to Spectre (numerical) simulation 
by generating compiled-code simulators. Code generation relies on 
calculating symbolic expressions for the output voltages and 

currents, and the state variables of a system. Code optimization 
identifies and eliminates all loop invariants [11], and propagates 
constant sub-expressions [11] present in the simulation loop. To 
avoid the large memory requirements specific to symbolic 
analysis, the suggested method exploits regularities of a net-list 
[3]. It is known that regularities are very efficient for AC modeling 
and simulation of linear systems [3]. Code generation uses detailed 
structural macromodels for the building blocks (OTA, opamp, and 
comparator), including non-idealities, like finite gain, poles and 
zeros, CMRR, phase margin, fall and rise time, and so on. This 
paper concentrates on Σ−∆ ADC [2] simulation as a case study. 

Nonlinear parameters are described using PWL models. The paper 
presents a new algorithm for extracting PWL models from trained 
NN. NN are capable to learn any type of nonlinear mapping based 
on their well-known property of universal approximators [15]. The 
proposed method addresses the need of automatically creating 
PWL models [16]. The extraction algorithm approximates the 
sigmoidal functions of the intermediate neurons with an adaptively 
chosen number of linear segments. PWL models result for the 
nonlinear parameters through composition of the linearized 
neurons. NN training used sampled design points obtained with 
Analog Design Automation’s Creative Genius v1.5 analog circuit 
synthesis tool.  

Compared to other fast simulation methods for Σ−∆ ADC [5,10], 
our technique is fully automated, and uses detailed circuit models. 
Hence, it offers the benefit of more accurate simulation, and thus 
the advent of faster analog design closure. ADC simulation in 
[5,10] relies on behavioral models, which are known to be 
imprecise [5]. Also, the proposed simulation approach does not 
require extensive expertise in ADC, or analog circuit design. 
Finally, our simulation technique belongs to the class of compiled-
code simulators. To the best of our knowledge, this is the fist 
attempt of addressing compiled-code simulation for continuous-
time systems with non-linear parameters. Existing compiled-code 
simulators [1,8,9] are for discrete and event-driven systems.    

This paper is organized as six sections. Section 2 discusses the 
simulation methodology. Section 3 presents modeling of the ADC 
blocks. Next, system modeling is detailed, and simulation results 
are given in Section 5. Section 6 discusses our conclusions.  
2. SIMULATION METHODOLOGY 
Figure 1 presents the proposed circuit modeling method based on 
PWL models. It generates nonlinear mathematical models for the 
parameters of a structural circuit model. The method takes the 
circuit schematic as input. First, the structural macromodel of the 
circuit is retrieved from a library of manually built models. 
Section 3 details some of the models. Then, sampling data is 
collected for creating PWL performance models. Transistors in the 
circuit schematic are sized with a circuit synthesis tool, and 
simulation data on the circuit behavior is collected using transistor 
level simulation (using simulators like SPICE or Spectre). This is 
a one-time process, as simulation data is stored in a database. 
Next, post-processing links the simulation data to the parameters 
in the structural model. Section 3 details some of the equations 
used in post-processing. The last step automatically produces 
PWL models for the nonlinear parameters. Section 3.C presents 
the proposed PWL modeling method. 



 
Figure 1: Circuit modeling methodology 

Figure 2 shows the system simulation method, and the generic 
structure of cascaded Σ−∆ ADC [2]. The first step finds the 
structural regularities in the ADC architecture. Figure 5 shows the 
regularities for a 3rd order Σ−∆ ADC. Then, symbolic expressions 
are calculated for each of the found sub-structures (patterns) using 
a method that symbolically replaces time derivatives of state 
variables with their differences (based on Backward Euler 
Integration [13]). Section 4 discusses this step. The next step links 
the parameters in the symbolic expressions to the building block 
parameters. Finally, optimized code is generated for time-domain 
simulation, including code for selecting the correct linear segment 
in the PWL models.           

  
Figure 2: Σ−∆ ADC structure and system simulation method 

3. CIRCUIT MODELING 
This section presents the modeling of the building blocks in an 
ADC: OTA, opamp, and comparator circuits.  
A. OTA and opamp modeling. For OTA modeling, we started 
from the macromodel proposed by Gomez et al [7]. We extended 
the model to fully differential mode (DM) by duplicating the 
single end stage, the common mode stage, the intermediate and 
output stages, and the dominant pole stage. Figure 3 shows the 
model. 
Next step related the device parameters in the macromodel to the 
data collected through SPICE and Spectre simulation during 
analog circuit synthesis. We used the relationships proposed by 
Gomez et al [7]: (1) Vos resulted directly through SPICE/Spectre 
simulation; (2) Ccm = 1 / (4 π |Zicm(f1)|); (3) Cd= 1/(2πf1Zidm[Im]|f1) 
- Ccm; (4) Rd = Zidm[Re](Cd + Cm)2 / Cd

2; (5) C3 depends on the 
position of the first pole (given by SPICE simulation); (6) L4 
relates to the dominant zero (offered by SPICE simulation); (7) 
1/(RoCo) is the frequency of the dominant pole; (8) Ro results from 
SPICE/Spectre simulation, directly; (9) R1, R2, L1 and L2 are 
determined by common mode zeros. Currents Idm and Icm depend 
nonlinearly with voltages Vicm and Vidm. Nonlinear dependencies 
were expressed as PWL models obtained through model extraction 
from NN. The extraction method was discussed in Section 3.C.   
The opamp structural model includes three stages. (1) The input 
stage of the fully differential opamp model is the same as the input 

stage of OTA model. (2) The intermediate stage describes the two 
dominant poles in differential mode. (3) In the output stage, we 
added a dc bias voltage to the differential output voltages. The 
bias voltage is needed for transient analysis.    

 
Figure 3: OTA structural macromodel 

B. Comparator modeling: Figure 4 presents the comparator 
model. This structural model was based on the model by 
Moscovici [11]. The comparator model has the same input stage as 
the OTA and opamp models. The nonlinear Gm stage expresses 
the self-limiting behavior of the differential pair by using a 
hyperbolic tangent function. Gm is bounded to the range -Icon and 
Icon. As explained in [11], the two diodes specify a certain time for 
the slew limited mode of the circuit. The I-V characteristic of the 
diodes is expressed as PWL functions using the proposed model 
extraction technique. R3C3 and R2C2 are the two poles of the 
comparator, and R3C3 is the delay time for large input overdrive 
voltages. 
Following relationships were used to relate the macromodel 
parameters to the data collected using SPICE/Spectre simulation 
during circuit synthesis: (1) Rd, Cd, and Ccm are obtained using the 
same formulas as for the OTA and opamp input stages; (2) product 
K1 R1 was set to 1; (3) R2 C2 corresponds to the 2nd pole; (4) R3 C3 
is the 1st pole/ delay time; and (5) Vh, Vl are related to the 
minimum and maximum output voltages. 

 

Figure 4: Comparator structural macromodel 
C. PWL Modeling of Nonlinear Parameters. NN are capable to 
learn any type of nonlinear mapping based on their well-known 
property of universal approximators [15]. For system simulation, 
the implicit model embedded in an NN must be extracted as a 
symbolic relationship, so that the models of the building blocks 
can be composed together into the system model. NN cannot be 
directly composed. Most model extraction techniques were 
developed for classification, which is different from our problem 
(for a review see [17]). Recently two new techniques have been 
proposed to extract linear models for regression problems [18,19]. 
The main steps of the two extraction processes are as follows: A 2-
layer NN is first trained and pruned. In [18] the activation function 
of each hidden neuron is then approximated with a fixed set of 
PWL functions - three or five. The input space is then split into a 
set of regions for each hidden neuron, such that an input point in 
one of the regions activates one PWL function. For each non-
empty intersection of input regions - one for each hidden neuron - 
the output activation function can be expressed as a linear 
combination of the input variables. The method proposed in [19] 
differs from [18] in the way the linear models are generated, and 



how the limits of the input regions for each valid model are 
determined. None of the methods chooses a different number of 
linear segments per each hidden neuron depending on their 
activation region. As a result, the PWL approximations are coarse.  
The PWL extraction approach proposed here differs from [18,19] 
by approximating the activation function of each hidden neuron 
with a variable number of linear segments depending on the 
neuron's activation region. A clustering algorithm automatically 
detects the number of segments for each hidden neuron as well as 
its limits. This accuracy of the PWL approximation is thus 
superior to the one in [19]. 
Problem definition: The task is to approximate a nonlinear 
mapping represented by a trained feed-forward NN with a PWL 
mapping. We consider a three layer feed-forward network with N 
neurons in the input layer II, H neurons in the hidden layer HH, 
and O neurons in the output layer OO. The weight matrix between 
the input and the hidden layer is WIH = {wji, j = 1...H; i = 
1...N+1}, where wji is the weight of the connection between input 
neuron i and hidden neuron j. The input layer and the hidden layer 
are both augmented with a bias neuron with a constant output of 
one. The weight matrix between the hidden and the output layer is 
WHO = {wkj, k = 1...O; j = 1...H+1} with wkj the strength of the 
connection between output neuron k and hidden neuron j. Hidden 
neurons have a sigmoidal activation function, and the output 
neuron a linear one.  
Extraction finds a set of L linear models of the following form:  

LL = al
1 x1 + al

2 x2 + ... + al
N xN + al

N+1, 
l = 1 ... L; al

(.) ∈ ℜ, where xi is the output of a neuron in the II 
layer. The region in the input space where the l-th model is valid is 
defined by a set of linear constraints of the form:  

CCl = cm
1 x1 + cm

2 x2 +... + cm
I xN  + dm {≤; ≥} 0;  

m =1...Ml; cm
i, dm ∈ ℜ. Ml is the number of constraints for model 

l. 
Model l is active, if all constraints in CCl are satisfied for a set of 
input values x1... xI, and inactive, if at least one of the constraints 
is violated. The input space region, which satisfies a constraint set 
CCl, is called the valid region of model l.  All constraint sets CCl 
must satisfy the following two requirements: 
• Validity: The valid regions of any pair of linear models must 

not intersect in any point in the input space:  
CCp∩ CCr = ∅, for p ≠ r. 

• Minimality: The set of constraints in CCl is minimal. Thus, 
removing any constraint changes, the valid region of the 
model. 

The first step of the proposed PWL model generation technique is 
the training of a neural network (NN) using the back-propagation 
algorithm until a desired accuracy is achieved on a test data set. 
Second, a pruning method eliminates insignificant weights and/or 
hidden neurons. Third, the sigmoidal activation function of each 
hidden neuron is approximated with a PWL function with a 
variable number of segments. A clustering algorithm automatically 
determines the number of segments, its limits, and the linear 
approximation on each segment. Finally, the PWL functions of the 
hidden neurons are composed together to generate the PWL 
functions of the model output. The regions were each linear output 
model is active are found by iteratively solving a linear system of 
inequalities, and adjusting its limits. In this paper, we focused on 
clustering and PWL model extractions, as they are the more 
important components of the method. Additional details are given 
in [4]. 
Clustering Algorithm: The activation function of hidden neurons is 
the sigmoidal function φ(x)=1/(1+e-λ x), with 0 < λ ≤ 1. The 
weighted sum inputs into a hidden neuron and into an output 
neuron are respectively hj = ∑i=1

N wji xi , and hk = ∑j=1
H wkj yj. xi is 

the output of the input neuron i. The output of the hidden neuron j 
is yj=φ(hj), and that of the output neuron yk is yk = hk. 

The clustering algorithm approximates the nonlinear sigmoidal 
activation function of each hidden neuron with a group of PWL 
functions. The clustering process determines the number of linear 
regions as well as their limits. The idea is to group input points - 
sampled from the input region of interest - that correspond to the 
same slope of the activation function. The main feature of the 
clustering algorithm is the stopping criteria, which ends the 
algorithm when an optimal number of clusters are found. 
The first step consists in finding the activation values of each 
hidden neuron by using all the available input data points (xn) to 
evaluate the weighted sum hj, and the output yj of the sigmoidal 
function yj= φ(hj(xn)). Then, the output points (yj) are sorted in 
ascending order, and only distinct activation points are selected for 
clustering - Ni. The clustering algorithm is a modified 
agglomerative clustering technique [17]. First, a linear segment 
passing through each pair of consecutive output values is defined 
by computing its slope and intercept. The distance between two 
such segments is defined as the cosine of the angle between them  

dcos(cr1, cr2)= (vr1vr2
T)/(|vr1||vr2|) 

cr(.) are the indices of two segments or clusters, and vr(.) are the co-
ordinates of the vector through the two points of the initial 
clusters. 
The clustering starts with a number of clusters equal to the number 
of linear segments between consecutive output points. It then 
iteratively attempts to merge the closest pair of clusters until a 
stopping criteria is reached. The criteria to stop merging is: 

J(t) = Nc(t)/(Ni-1) + 1/Ni ∑Ni
n=1 |ylj(xn) - yj(xn)| 

Nc(t) is the number of clusters at step t, ylj(xn) is the linear output 
for input point xn, and yj(xn) is the original sigmoidal output. The 
first term of the above relation penalizes a large number of 
clusters, while the second term penalizes a large linearization 
error. At the beginning of clustering, the linearization error is zero, 
and the penalty for the number of clusters is one: J(0) = 1. As 
merging of closest clusters continues, the first term goes down, 
while the second term goes up. Therefore, at the beginning, the 
values of the criterion function J(t) decrease, while the penalty for 
a large number of clusters dominates compared to the linearization 
error. As merging progresses, the linearization error becomes more 
important in the sum, and at one point the values of J(t) go up. At 
that moment, clustering stops. The resulting number of clusters 
determines the number of linear regions for hidden neuron j. 
The linear output ylj(xn) is computed as follows. Each cluster has 
two limiting points, and a linear segment that passes through them. 
The slope (acr) and intercept (bcr) of the linear segment, which 
goes through the limits of cr-th cluster, are computed. The linear 
output of point xn - within the limits of cluster cr - is ylj(xn) = acr xn 
+ bcr. 
The closest pair of clusters at each step in the algorithm is defined 
as follows: The distance between any two adjacent clusters cr1 and 
cr2 is measured as: 

d(cr1,cr2) = max (dcos(k1, k2) + 1/(nr1+nr2) ∑ |ylj(xk) - yj(xk)|,  
{k, k1, k2 ∈ cr1  ∩ cr2} 

k(.) is the index of a segment defined at Step 0 of the algorithm, 
which is now part of either cr1 or cr2 clusters at step t.  The first 
term - the maximum cosine distance between any pairs of 
segments in the two clusters - is a measure of how closely oriented 
are the segments in the two clusters, while the second term is the 
average of the absolute linearization error that would be 
introduced by merging clusters cr1 and cr2.  The pair of clusters 
with the minimum distance d(cr1,cr2) is merged. 
After each merging the value of the criterion function J(t) is re-
evaluated, and if it is bigger than the value at the previous step J(t-
1) the algorithm stops. The results of the algorithm are: the 
number of clusters -Nc

j - for the activation function of the hidden 
neuron j, the coordinates in the input space of the upper and lower 
bounds of each cluster, and the slope and intercept of each cluster. 



The slope and intercept are obtained from the linear segment that 
goes thorough the limiting points of each cluster. The resulting 
linear segments cover all the activation values of the hidden 
neuron, and any two adjacent segments overlap only in one point. 
The end of the second step of the linear model extraction method 
consists in expressing the limits in the input space, for which each 
linear region of a hidden neuron is active. The limits are specified 
as a set of linear constraints. For example, for neuron j, linear 
region r, the set of constraints (CCjr) is: 

Cj1 = ∑i=1
N wji xi ≤  Mr , and Cj1 = ∑i=1

N wji xi ≥ mr  
x1 ≤ M1 , x1 ≥ m1 ... xN ≤ MN , xN  ≥ mN 

where mr and Mr are the minimum and maximum values of the 
linear function in region r, mi and Mi are the limits of each input 
variable as they result from the clustering process. 
Extraction of the PWL models: Once the activation function of the 
hidden neurons is approximated by a PWL mapping, the next step 
consists in finding the valid combinations of linear regions for the 
hidden neurons.  Such a combination is given by a set of indices, 
where each index is the active linear region of a hidden neuron: 

OOp={rp
1, rp

2... rp
H }, rp

j ∈ {1, 2, ... Nc(j) }, 
and p=1...Nc(1)Nc(2)... Nc(H),  

Nc(j) is the number of linear regions of hidden neuron j. Each 
combination is a region in the input space given by the intersection 
of the constraint sets CCp=CC1r,p1∩ CC2r,p2 ...∩  CCHr,pH. Valid 
combinations are those for which the set of constraint in CCp 
defines a non-empty region in the input space. 
The constraints are placed in the set CCp in an iterative process as 
follows: first, the set of constraints from the first hidden neuron 
(CC1 r,p1) is added to CCp, then each constraint from the 
subsequent sets CCj, j=2...H is checked for similarity against all 
constraints already in CCp. If a new constraint is similar to one 
already in CCp then the intersection between them is placed in 
CCp, otherwise the new constraint is added to CCp. Two inequality 
constraints are similar, if they have equal coefficients in the same 
input variables and the same inequality type. For example, x1 ≤ 
3.0, and x1 ≤ 2.0 are similar, and the intersection between them is 
x1 ≤ 2.0. In this way the number of constraints in CCp is minimal. 
Next, the sets of constraints CCp are checked for validity, and their 
limits are refined. The validity of CCp is checked by a linear 
programming solver with the first constraint chosen as objective 
function, the optimization type - minimization (for ≥) or 
maximization (for ≤), and the rest of the inequalities as constraints.  
If the linear solver returns an acceptable solution then the input 
region defined by the CCp is non-empty, and therefore the 
combination is valid. 
The goal of refining the limits of the constraints in each valid set 
CCp is to eliminate redundancy in the constraint limits.  The limits 
of each constraint in the set CCp are adjusted iteratively using the 
linear optmizer. At each step, a constraint becomes the objective 
function, and a minimization or maximization is done depending 
on the inequality type of the constraint, with the rest of the 
inequalities as constraints. The limit of the optimized constraint is 
adjusted, if the returned solution is more restrictive. The adjusting 
procedure stops when none of the constraint limits undergoes any 
changes. 
For each valid combination region defined by CCp the output of 
the NN is expressed as a linear combination in the input variables:  

yl = a1
l x1 + a2

l x2 + ... aN
l xN +aN+1

l. 
Coefficients ai

l are functions of the weights of the NN, and of the 
slopes and intercepts of the linear regions of the hidden neurons 
determined in the clustering algorithm. The set of linear models 
defined by coefficients ai

l, together with the set of constraints of 
the valid combinations CCp are the results of extraction. 
The validity requirement (that the intersection between two sets of 
constraints CCp1 and CCp2 is the empty set) is always true. The 

reason is that the set of constraints of each linear model (CCp) is 
obtained by intersecting the CCjr constraints for each hidden 
neuron. Each CCjr corresponds to a linear region of a hidden 
neuron. Any two CCjr of the same hidden neuron do not intersect 
because the Nc(j) linear regions defined by clustering do not 
overlap. Two constraint sets CCp1 and CCp2 do not intersect 
because at least one hidden neuron must be in a different region. 

 

Figure 5: Structural patterns in a 3rd order cascaded Σ−∆ ADC 
4. SYSTEM SIMULATION 
Figure 2(b) presents the methodology for compiled-code system 
simulation. Code generation is based on symbolic composition of 
the circuit macromodels depending on the structural patterns that 
link them together. The generated code describes the sequence of 
steps for calculating output, state and internal variables (i.e. 
voltages and currents) over time. For Σ−∆ ADC, the output 
voltage is computed, and used to find typical ADC performance 
figures, like SNR and DR [2]. Code is also generated to select - 
during simulation - the correct PWL region of non-linear devices.   
The first step in the methodology identifies the structural patterns 
that connect the building blocks (circuits) together. The 
partitioning-based algorithm proposed in [3] can be employed for 
this step. Figure 5 shows the structural patterns found in the 3rd 
order cascaded Σ−∆ ADC. For example, 3-Integrator Chain 
Macromodel was obtained through composition of the three 
structurally identical macromodels for the OTA active-C 
integrator. Similar structural patterns can be identified for higher 
order Σ−∆ ADC, or for ADC of different topologies.  

At the system-level, structural patterns compose two or more 
blocks having their behavior described as symbolic relationships 
between input, output, and state variables. Blocks are either basic 
blocks (OTA, opamp, and comparator circuits), or composed 
blocks, which correspond to previous composition steps (like 
integrators, ADC stages etc). Symbolic equations were formulated 
for each structural pattern by formulating Kirchhoff's laws for the 
interconnected blocks. After symbolically solving these equations, 
a set of mathematical expressions resulted for relating over time 
the unknown signals (voltages, currents, and charges) of the 
blocks to circuit parameters, and the known signals. Then, these 
expressions were encoded as C++ functions, and optimized for fast 
execution. In our experience, the most time effective optimizations 
were propagation of common expressions, and elimination of loop 
invariants [12]. The system model for simulation was obtained 
through composition of the symbolic expressions for the patterns. 

Basic blocks. We used the OTA in Figure 3 as an example for 
sketching the finding of symbolic formula that link input, output, 
and state variables of a basic block. The OTA circuit has a 4-port 
model (2 ports for across voltage Vidm and 2 ports for across 
voltage Vout) characterized by the symbolic expression: 

I = TA × V + STA, 



I = [Iip, Iin, Iop, Ion]t and V = [Vip, Vin, Vop, Von]t. Matrix TA, called 
function sub-matrix, has its symbolic entries determined by the 
values of the components in the structural circuit macromodel.  
Matrix STA, named the state sub-matrix, relates to the state 
variables and the previous state of the circuit. For OTA, we 
assumed voltages Vi and Vo as known, and currents Ii and Io as 
unknowns. The opposite reasoning would have been also correct. 
Symbols TAij and STAi were obtained by symbolically solving the 
nodal equations of the OTA structural macromodel, and replacing 
the derivates of state variables with their differences according to 
Euler Backward Integration formula [13]: δx = (x(t)-x(t-1))/h, 
where x(t) and x(t-1) are the state values at the current and 
previous time moments, and h is the discretization step.  
For example, symbol TA11 = Cc /h + Ccd /(h + Cd Rd), and TA31 = 
Cd (Vos - Vcd(t-1))/(h + Cd Rd) + Ccm (Vos - Vcm1(t-1)) / h. Note that 
the symbol TA31 depends on the circuit parameters, as well as state 
values at the previous time moment. Symbolic function and state 
sub-matrices were calculated for all building blocks, and stored in 
the circuit library.  

 

Figure 6: Composition rule for the Σ−∆ stage 
Composed blocks. Symbolic composition rules (SCR) were found 
for each structural pattern in a system. SCR relate the symbolic 
function and state sub-matrices of a composed block to those of its 
composing blocks. SCR are calculated using the definition of the 
block sub-matrices, and constraining that voltages and currents at 
the connecting links are the same. The symbolic elements of the 
composed function and state sub-matrices are found after 
eliminating the currents and voltages at the common links from the 
equation set.  
Figure 6 exemplifies the finding of the symbolic function and state 
sub-matrices for a Σ−∆ OTA Active-C Integrator Macromodel (see 
Figure 5). The stage consists of the OTA macrocell linked to the 
opamp-C macrocell through two links (Figure 6(a)). The OTA is 
modeled by the symbolic function sub-matrix TA1

4x4, and by the 
symbolic state sub-matrix STA1

4x15. There are 15 state variables in 
the OTA structural macromodel. The symbolic function sub-
matrix TA2

4x4 and the symbolic state sub-matrix STA2
4x17 describe 

the opamp-C macrocell. The opamp-C macrocell has 17 state 
variables. Figure 6(b) presents that the SCR for the stage includes 
symbolic functional sub-matrix TAc and state sub-matrix STAc. For 
example, assuming that Vi and If (DAC currents) are known, and 
that Ii and Vo are unknown, then symbol  
TAc

11 = [(TA2
22–TA1

33)(TA2
11TA1

11–TA1
14TA2

41+TA1
11TA2

44) + 
(TA2

21+TA1
34)(TA2

12TA1
11–TA1

13TA2
41+TA1

11TA2
43)+TA1

31 (TA1
13 

(TA2
11+TA1

44) - TA1
14(TA2

12+TA1
33))] / [(TA2

12 + TA1
43)(TA2

41 + 
TA1

34) - (TA2
11+TA1

33)(TA2
11+TA1

44)].  
Similar expressions describe all parameters TAc

ij and STAc
ij. 

Once the symbolic function and state sub-matrices were calculated 
for each basic and composed block, C++ code was generated. The 
code is a sequence of assignment statements for numerically 
calculating the elements in the sub-matrices. Code generation 
carefully identified any redundant sub-expressions. For example, 
for the OTA model, sub-expression h + Cd Rd was identified as 
being common to all matrix elements, including elements TA11 and 
TA31. Hence, the sub-expression was isolated as a new variable, 
and re-used in all instances. This code optimization (similar to 
constant folding in compiler theory [12]) saved significant amount 
of computations during the time-domain simulation process.  
The time-domain simulation algorithm implements a loop for the 
time range to be simulated. The time increment is h, the parameter 
also used by Backward Euler Integration formula. At each time 

instance, the algorithm calculates only a subset of all voltages and 
currents in an ADC netlist. The subset includes output signals, 
state variables, and the voltages and currents relevant to the 
nonlinear devices. The C++ code for the symbolic expressions is 
used. For nonlinear devices, the simulation algorithm must also 
identify the correct PWL region. The identification step first 
calculates the voltages and currents through the nonlinear devices 
assuming that PWL regions for the current time instance remain 
the same as those for the previous time moment. If the assumption 
is incorrect then the algorithm re-iterates the calculating of the 
voltages and currents trough the nonlinear devices by assuming 
the closest PWL regions, and so on. The iteration process stops 
when the closest feasible PWL regions were found.  
Inside the time-domain simulation loop, the elements of the 
function sub-matrices remain constant most of the time. Only the 
parameters of the state sub-matrices must be updated for each new 
time step to capture the dynamics of state variables. Function sub-
matrices change only if they include non-linear devices that 
change their current PWL region. This observation is important to 
speed-up simulation, because a large number of computations can 
be moved outside the simulation loop. This optimization process is 
similar to removing loop invariants in a compiler [12]. In our 
experience, this code optimization greatly reduced the total 
simulation time of a converter. 
5. EXPERIMENTS 
A. PWL extraction. For validation, the proposed PWL model 
extraction is applied to model the amplitude frequency response of 
an OTA [19] for different layout parasitic levels. The data was 
obtained using SPICE simulations of the analog circuit sampled in 
a large number of frequency and parasitic values. A three layer 
neural network with I=2 inputs and H=7 hidden neurons was 
trained, such that the performance on both training and testing data 
are very good. A larger number of hidden neurons did not improve 
the approximation.  The trained NN was then pruned. From the 
initial set of weights, eight weights were eliminated and one 
hidden neuron. The clustering method was applied to each hidden 
neuron.  Two of the hidden neurons have constant outputs given 
by the bias weight - the weights to the input variables were all 
pruned. The rest of the hidden neurons were clustered into 6, 9, 3, 
and 8 clusters.  

 
Figure 7: Results of the PWL model extraction method 

From a total of 1296 combinations of linear regions of the hidden 
neurons, only 136 had a non-empty solution set. For each valid 
combination, a linear model of the network output was computed. 
The result of the PWL extraction method is presented in the left 
part of Figure 7. The dotted plot represents the PWL model output, 
while the line represents the true values simulated with SPICE. 
Each curve corresponds to a different layout parasitics. It can be 
seen that the PWL approximation is very accurate. Previous 
approaches to extract linear models from trained NN [18, 19] 
(using a fixed number of segments for each hidden neuron) do not 
have the same accuracy. The right part of Figure 7 shows the 
model extraction results for the OTA Gm as a function of Vidm at 
the OTA input ports. Spectre simulation data was shown with dots, 
output of the NN with stars, and output of the PWL model with 



circles. The trained NN had 3 hidden neurons, from which one 
was eliminated after pruning. Clustering extracted 7 and 8 linear 
segments from each hidden neuron. Only 14 linear models out of a 
total of 56 had solutions. As the figure shows, the accuracy of the 
extracted PWL model is very good compared to the trained NN.  
B. Σ−∆ ADC simulation. Table 1 compares simulation time for 
Spectre simulator and the proposed symbolic method. The table 
relates the speed-up of the proposed method as a function of the 
ADC complexity (order). Results are shown for 1st to 5th order 
cascaded Σ−∆ ADC. The resulting speed-up is significant, it varies 
between 90 and 144 times. Please note that these speed-ups were 
obtained without affecting the accuracy of simulation. The same 
netlist (composed of circuit macrocells) was simulated in both 
cases. The huge speed-up is due to employing compiled-code 
simulation, and the two optimizations for the expressions of 
function and state sub-matrix elements (propagation of common 
sub-expressions, and elimination of loop invariants from the time-
domain simulation loop). The symbolic method shows a linear 
increase of the simulation time with the order, thus the number of 
state variables. This is explained by the fact that only state 
variables are recomputed inside the loop. The time complexity of 
the numerical simulator grows at a much faster rate. We expect 
that the speed up will grow with the order of the ADC.   

Table 1: Simulation time for symbolic method vs. Spectre 
Σ∆ ADC order Spectre (s) Symbolic (s) Speed-up 

1 507.1 3.5 144.88 
2 533.9 5.88 90.79 
3 852.3 8.24 103.43 
4 1284.9 10.69 120.19 
5 1752.0 12.91 135.70 

The second experiment studied the importance of circuit non-
idealities (like poles, zeros, input and output impedances etc) on 
the accuracy of ADC simulation. Figure 8 shows the signal to 
noise ratio (SNR) and dynamic range (DR) plots for the ADC. The 
maximum SNR is 64dB, and DR is 67dB. Similar values resulted 
through Spectre simulation. This motivates the correctness of the 
symbolic method. The figure also shows the importance of using 
detailed circuit models, such as models including poles and zeros, 
rather than ideal models. In the right part of Figure 8, the three 
plots with dotted lines correspond to simulations, which used 
circuit macromodels with one pole and two poles. In the first two 
cases, the system still worked as an ADC, but the SNR went down 
by about 5dB and 13dB, and the DR by about 4dB and 12dB 
respectively due to the poles. In the third case, the poles prevented 
the system from a correct functioning. This example argues that 
using detailed circuit models is compulsory. Handling various 
non-idealities is much easier using the proposed symbolic 
technique, in which system modeling is fully automated. Existing 
behavioral simulation methods for Σ−∆ ADC (like [5] and [10]) 
require extensive designer expertise to develop the models, and are 
cumbersome, if more non-ideal elements were to be considered. 
6. CONCLUSIONS 
This paper presents a novel method for fast time-domain 
simulation of analog systems with nonlinear parameters. The 
paper focuses on Σ−∆ ADC as a case study. Using compiled-code 
simulation, the proposed technique achieves speed-ups of more 
than 100x as compared to Spectre simulation. Simulation accuracy 
is not affected. Code generation relies on calculating symbolic 
expressions for the output and state variables, as well as the 
voltages and currents of nonlinear devices in a system. Code 
optimization identifies and eliminates from the simulation loop all 
loop invariants, and propagates constant sub-expressions. ADC 
simulation uses detailed structural macromodels for the building 
blocks, including non-idealities, like finite gain, poles, zeros, 
CMRR, phase margin, fall/rise time etc. Nonlinear parameters are 
expressed using PWL models extracted from trained NN. Using a 
modified clustering method, the method automatically determines 

the best number of linear regions to approximate each hidden 
neuron activation function. The adaptive clustering improves the 
accuracy of extracted PWL models over other extraction 
approaches. As compared to existing behavioral simulation 
methods for Σ−∆ ADC, this technique is fully automated and uses 
more accurate circuit models. 

    

Figure 8: SNR and DR plots for Σ∆ ADC 
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