Passivity-Based Sample Selection and Adaptive Vector Fitting Algorithm for Pole-Residue Modeling of Sparse Frequency-Domain data

D. Deschrijver, T. Dhaene University of Antwerp, Belgium • GOAL: model the spectral response of passive electrical structures, over freq. range of interest

- Samples are computational expensive (EM solver)
- Minimize number of samples, and model complexity
- Maximize accuracy
- No prior knowledge of system's dynamics

$$S(j\omega) = \sum_{n=1}^{N} \frac{c_n}{j\omega - a_n} + d + j\omega h$$

PROBLEM :

- (1) Total simulation cost can be excessive
- (2) Parameterization can be ill-conditioned
- (3) Models are often not passive

SOLUTION:

(1) Adaptive modeling techniques

- \rightarrow Adaptively select optimal sample distribution
- \rightarrow Adaptively select minimal model complexity
- (2) Robust rational fitting techniques
 - → Vector Fitting : Robust pole-residue modeling technique
 - \rightarrow Iterative least-squares approximation
- (3) Passivity detection and enforcement
 - \rightarrow Hamiltonian matrices
 - \rightarrow Passivity-based sample selection
 - \rightarrow First order matrix perturbations

1. Adaptive sampling techniques

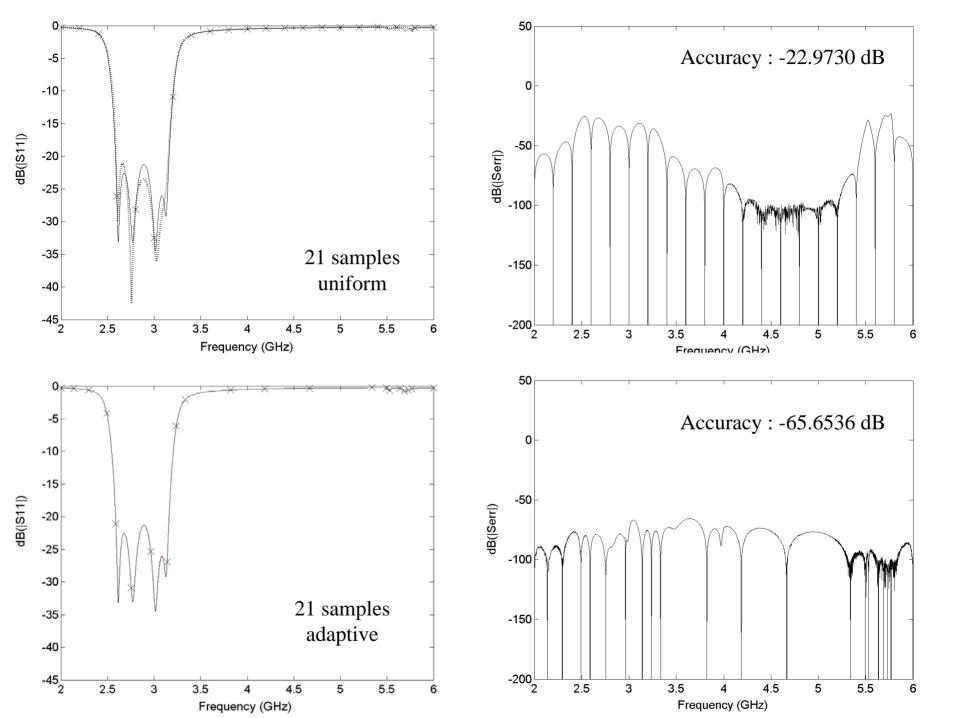
GOAL: automatic build pole/zero rational model

- Maximize model accuracy, minimize samples
- Start
 - Simulate 4 equidistant selected samples
- Adaptive modeling loop
 - Build several rational models with different complexity [N/D]
 - Check error in all sample points
 - Increase model complexity till : error < threshold (e.g. -80dB)</p>
 - Select *best* & 2nd best model
 - Difference between 2 models : estimated fitting error

1. Adaptive sampling techniques

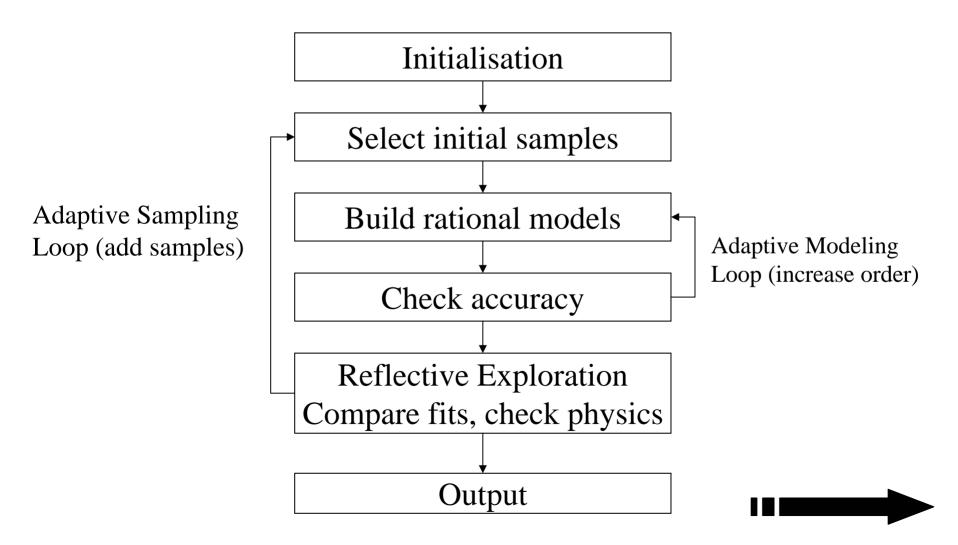
Adaptive sampling loop:

- Add sample where:
 - Mag(estimated fitting error) > magnitude-threshold (e.g. -60dB)
 - Phase(estimated fitting error) > phase-threshold (e.g. 5 deg)
 - unphysical behavior (e.g. |S| > 1)
- Extra heuristics
 - Avoid oversampling: cluster data, to avoid ringing
 - Avoid undersampling: check phase variation between samples
- Samples are selected until all criteria are satisfied



1. Adaptive sampling techniques

Flowchart :



- 2. Robust rational fitting technique (Vector Fitting)
- Spectral response : Rational pole-residue model

$$S(j\omega) = \sum_{n=1}^{N} \frac{c_n}{j\omega - a_n} + d + j\omega h$$

- Vector Fitting identifies unknown system variables
- Sanathanan-Koerner type of iteration (Iterative least squares)
- Unstable poles flipped into right half plane
- Poles and residues real or complex conjugate pairs
- \rightarrow A set of initial poles are used, and relocated to optimal location
- \rightarrow Residues are calculated to minimize the fitting error

3. Passivity considerations

Definition 1 :

System with scattering matrix $S(j\omega)$ is **passive** if transfer function is bounded real

$$I - S(j\omega^*)S(j\omega) \ge 0 \qquad \forall \omega$$

or
$$\max(\sigma(S(j\omega)) \le 1 \quad \forall \omega$$

Definition 2 :

System with scattering matrix $S(j\omega)$ is **asymptotically passive** if it is passive for $\omega \rightarrow \infty$

3. Passivity considerations

Theorem 1 :

A system with scattering matrix $S(j\omega)$ is **passive** if \Leftrightarrow H has no imaginary eigenvalues

$$H = \begin{pmatrix} A - BR^{-1}D^{T}C & -BR^{-1}B^{T} \\ C^{T}Q^{-1}C & -A^{T} + C^{T}DR^{-1}B^{T} \end{pmatrix}$$

 $Q = DD^{T}-I$ $R = D^{T}D-I$

Theorem 2 :

 \rightarrow Algebraic passivity tests

 $1 \in \sigma(S(j\omega_i)) \iff j\omega_i$ is an eigenvalue of H

3. Passivity considerations

- \rightarrow Calculate slopes of singular value curves at frequencies
- → Eigenvalue sweep provides exact boundaries of passivity violations

Select samples within regions of passivity violation $[\omega_k, \omega_{k+1}]$ where

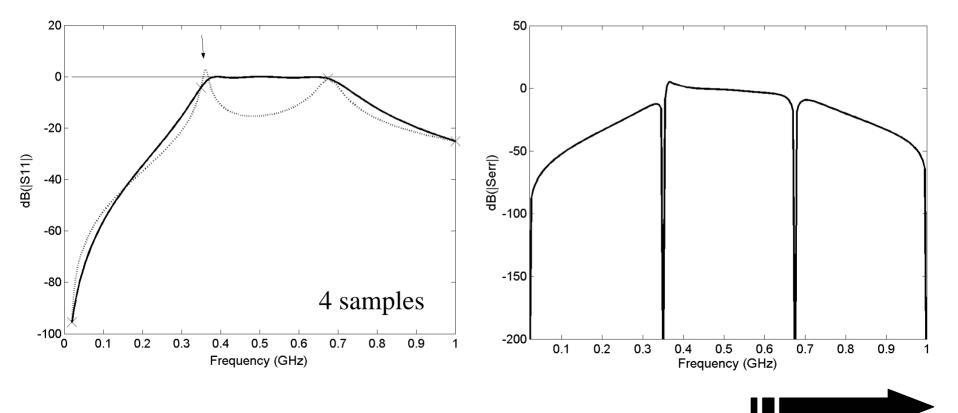
 $\max(\sigma(j\omega)) \qquad \forall \omega \in [\omega_k, \omega_{k+1}]$

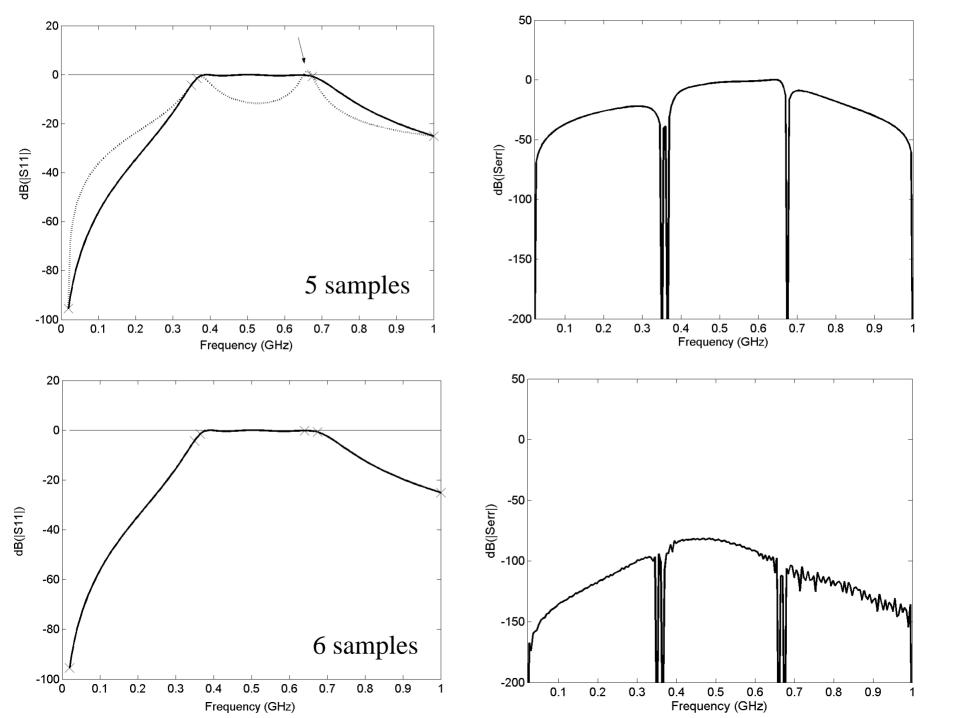
is maximal, until

 $\max(\sigma(j\omega)) < \varepsilon \qquad \forall \omega \in [\omega_0, \omega_K]$

4. Example

One-port Bandpass filter modeled over [0.02 GHz-1 GHz] Desired accuracy : $dB(|S_{ref} - S_{fit}|) < -60$





Eigenvalues Hamiltonian (4 samples) :

+0.000000000000000	-	0.35556635157541i	
-0.00000000000000	-	0.36797493144273i	
-0.00000000000000	+	0.35556635157541i	<
+0.000000000000000	+	0.36797493144273i	<
+0.00920677614147	-	0.67657524224380i	
+0.00920677614147	+	0.67657524224380i	
-0.00920677614147	—	0.67657524224380i	
-0.00920677614147	+	0.67657524224380i	

Passivity violation :

[0.35556635157541i, 0.36797493144273i]

Eigenvalues Hamiltonian (5 samples) :

+0.000000000000000	-	0.65156791824123i
-0.00000000000000	-	0.67230698556846i
-0.00000000000000	+	0.65156791824123i <
+0.000000000000000	+	0.67230698556846i <
+0.19217333633158	+	0.0000000000000000
-0.19217333633158	+	0.00000000000000000i
+0.01014688998501	-	0.37471499581693i
-0.01014688998501	-	0.37471499581693i
+0.01014688998501	+	0.37471499581693i
-0.01014688998501	+	0.37471499581693i

Passivity violation :

[0.65156791824123i , 0.67230698556846i]

Eigenvalues Hamiltonian (6 samples) :

-0.00539549345272 + 0.38963154992961i -0.00539549345272 - 0.38963154992962i +0.00539549345272 + 0.38963154992961i	+0.00539549345271	+0.0053954934527	_	0.38963154992961i
+0.00539549345272 + 0.38963154992961i	-0.00539549345272	-0.00539549345272	+	0.38963154992961i
	-0.00539549345272	-0.00539549345272	_	0.38963154992962i
	+0.00539549345272	+0.00539549345272	+	0.38963154992961i
-0.006//392820199 - 0.502924085105/41	-0.00677392820199	-0.0067739282019	—	0.50292408510574i
-0.00677392820201 + 0.50292408510575i	-0.00677392820201	-0.0067739282020	+	0.50292408510575i
+0.00677392820199 - 0.50292408510573i	+0.00677392820199	+0.0067739282019	—	0.50292408510573i
+0.00677392820201 + 0.50292408510572i	+0.00677392820201	+0.0067739282020	+	0.50292408510572i
+0.01921270798832 - 0.64595773831741i	+0.01921270798832	+0.01921270798832	—	0.64595773831741i
+0.01921270798832 + 0.64595773831741i	+0.01921270798832	+0.01921270798832	+	0.64595773831741i
-0.01921270798832 - 0.64595773831741i	-0.01921270798832	-0.01921270798832	—	0.64595773831741i
-0.01921270798832 + 0.64595773831742i	-0.01921270798832	-0.0192127079883	+	0.64595773831742i

No Passivity violation

What about unpassive behaviour due to ringing effects or outside frequency range of interest ?

→ First order perturbation eigenvalues of Hamiltonian [Grivet-Talocia, 2003]

→ Compensation of residue vector [Saraswat, Achar, Nakhla, 2003]

→ etc ...

= Post-processing techniques for SMALL passivity violations

QUESTIONS ?

