Behavioral Modeling in Industrial IC Design (Experiences and Observations) Ira Miller ¹Ana Ferreira-Noullet

(¹Freescale Semiconductor)

Topics of the Presentation

- Mixed Signal Systems on a Chip
- ✓ MSSoC Business
- Intellectual Property
- ✓ Top Level Simulation
- ✓ Specifications
- ✓ Sharing IP Issues
- Analog Behavioral Models
- Analog IP Examples

Topics of the Presentation

- Analog Modeling Languages
- Mixed Signal Design Flow
- Analog Modeling Development
- Levels of Abstraction
- Feature Requests
- ✓ Training
- ✓ Test Benches
- ✓ Closing Comments

Mixed Signal Systems on a Chip

- The cost, time to market, and expertise required to develop a Mixed Signal Systems on a Chip (MSSoC) is increasing with each new application
- <u>Specifications</u> are becoming difficult to establish without some degree of Top Level simulation
- ✓ <u>Re-spins</u> are often necessary

✓ FAB capacity abuse ...

MSSoC Business

- As complexity increases, MSSoC business will be limited to a few participants, who can afford the development costs
- Intellectual Propriety (IP) development and sharing will allow smaller businesses to partner and share costs
- And ... sharing will automatically enable a new form of second source capability

Intellectual Property

 IP that will be exchanged between different entities:
 Inter-Company Groups
 Company to company
 Company to third party vendor

Intellectual Property

 \checkmark ... must be reliable ✓ Good documentation ✓ Well characterization Well thought out naming conventions Good revision control ✓ Efficient search engine Keep data base to a minimum

Top Level Simulation

 Top level simulation will be a necessity for large analog mixed signals systems

 The era of Analog Behavioral Modeling is rapidly approaching

Specifications

- Sharing product development will require well defined "frozen" specifications
- Early top level simulation will be required to define the specification
- A well thought out strategy will be required to achieve a "specification traceable to silicon"

IP Sharing Issues

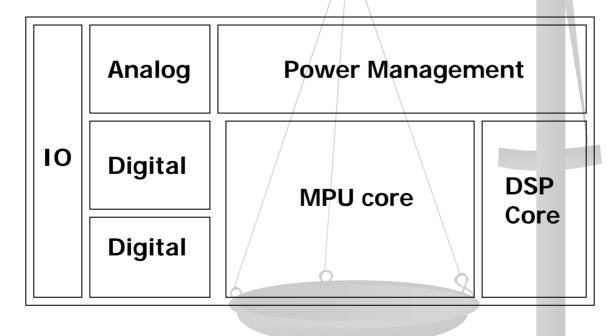
- IP format is critical. Several things can effect the format:
 - ✓ Design tools
 - Cost of development
 - Process technology
 - Engineering resource availability
 - Analog Modeling experience
 - Other historical items

Analog Model IP

- ✓ Still difficult to reuse
- How to keep a database to a minimum number of accurate reliable models
- No consistent cataloging methodology can pose a problem
 - Naming conventions not well thought out
 - Revision controls vary
 - ✓Major change✓Minor change

Analog Blocks

✓ Have different architectures due to:

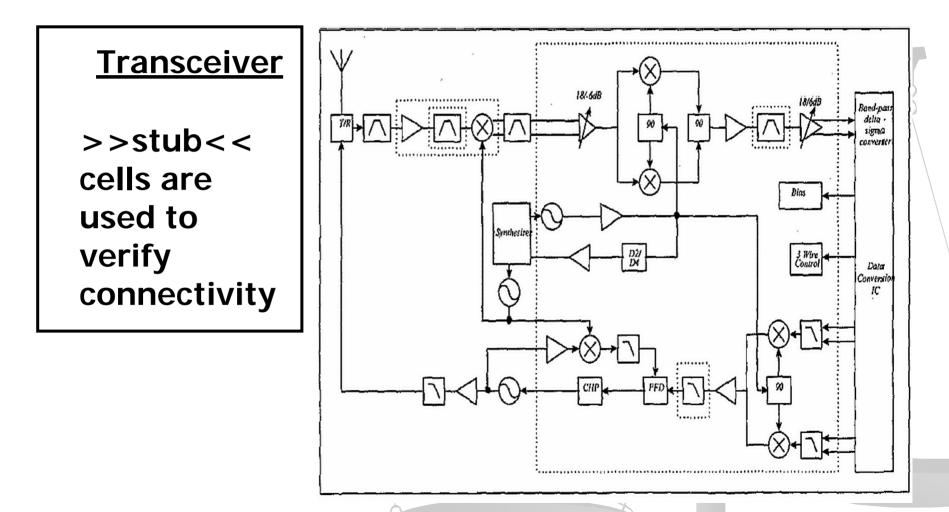

- ✓ Design tools
- ✓ Cost
- ✓ Process
- ✓ Resources
- Expertise and other historical reasons
- IP from different sources usually do not interface well to each other

Mixed Signal ICs

✓Big D – little a ✓Big A – little d ✓Multi-mixed signal processing

Big D - little a

- The digital blocks have a good tool support
- Analog blocks have a mix of immature tool support


<u>Big A – little d</u>

- Power management
 - ✓ Digital control logic
 - Verilog related (mature tools)
 - Analog signal processing
 - Frequency Analysis
 - Multiple supplies
 - Various levels of abstraction
 - Various interconnect modules
 - Parameter modified models
 - More pin dependent
 - Custom simulation tools

Big A – little d (Spice spoken here)

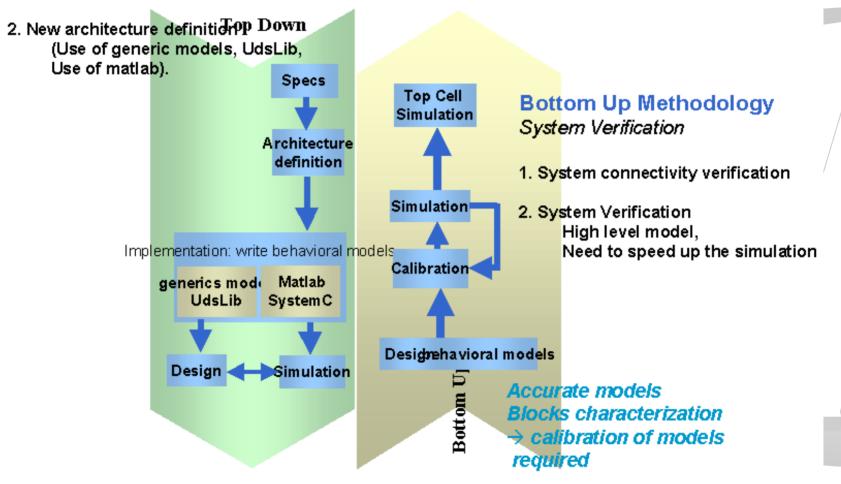
- Bandgap references LDO regulators Switching regulators Specialized tools exist ✓ Some digital Control and power up logic Audio signal processing
- ✓ Data conversion

Multi-mixed Signal Processing

Analog Simulation Tools

- ✓ Spice
 - ✓ Dominate simulator
- ✓ MathLab
 - System design & post processing data
- ✓ Saber & Eldo are still in use
- ✓ VHDL-AMS
- ✓ Verilog-A
- ✓ Verilog-AMS

supported by the big 3


Mixed Signal Design Flow

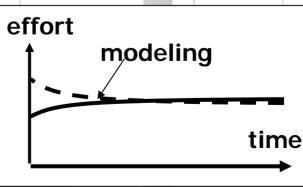
Top Down Methodology

(power management example)

System implementation

1. System Validation

Mixed Signal Design Flow Tool Set Example


Vendor	Cadence	Mentor	Synopsys
Behavioral Language based	Verilog-AMS	VHDL-AMS Verilog-AMS	VHDL-AMS Verilog-AMS
AMS Simulator Tool	AMS-Designer	ADV-AMS	Discovery-AMS
Suported Description levels	Verilog-D Verilog-A Verilog-AMS Transistor level Gate level	Verilog-D Verilog-A Verilog-AMS Transistor level Gate level	Verilog-D Verilog-A Verilog-AMS Transistor level Gate level
FAST-SPICE Tool	ULTRASIM	МАСН-ТА	NANOSIM
AMS+Fast Spice Solution	AMS-ULTRA	ADV-AMS	Discovery-AMS

Analog Modeling Development

- ✓ AM is related to what is affordable
- Larger companies are forming centralized model development

✓ Smaller companies are left out

 AM is a function of available tool sets, time and engineering resources to take on the burden of development and characterization
 Image: Construction of the set of the set

Analog Models & Verification

What defines the accuracy of a model?

- ✓ Level 0
- ✓ Level 1
- ✓ Level 2
- ✓ Level n

- <<stub>>
-
<block dependent/basic>

higher complexity>

Is some form of a standard for level definition a next step?

Levels of Abstraction

- Stub cells and basic generic cells
 - Used for connectivity verification
 - Full chip verification
 - Test development (results to MatLab)
- ✓ More advanced generic cells
 - Functional verification
 - ✓ Full chip verification
 - ✓ Test development
- Detailed cells used sparely with generic
 - Block verification and characterization
 - ✓ Traceability to silicon
 - Functional model parameters that are related to process parameters

Analog Modeling Methodology

- The methodology should be well thought out and consistent with reuse as a prime goal
- A part of the methodology should include the ability to adopt to new modeling techniques and tool evolution

Analog Behavioral Models

- Development tools are appearing
- Quite a lot of activity in the past couple of years
- But ... ad hoc modeling techniques ... and no clear methodology exists for the development of Analog IP
 - Would a standard help or will the tools drive consistency?

Analog Model Test Benches

- Test benches should be included with all analog behavioral models, allowing automated simulation and automated results presentation in a consistent repeatable format
- Be able to make speed & accuracy tradeoffs to accommodate System evaluation, Circuit analysis, Final Test Development, Applications, and failure analysis

Feature Requests

- Tools to automatically generate Analog Models from schematic descriptions
- Hooks to the models for simulation speed and accuracy tradeoff selection
- Full test development potential
- Technology transfer capability
- Better parameterization features to allow traceability to silicon

<u>Analog Behavioral Modeling</u> (Training)

- ✓ Tool vendor courses are available
 - But they are costly and take the analog designer off the project
- University courses are emerging
 - But they do not train the seasoned analog designer
- Internet classrooms are emerging
 - But a simulator to support that environment is not readily available.

Analog Behavioral Modeling (Training Wish List)

A low cost generic AMS "trainer" simulator
 Plenty of examples that are available for the simulator

Ability to do real analog blocks

<u>Analog Behavioral Modeling</u> (Training Observation)

- The Analog Behavioral Modeling expert should have training in:
 - ✓ Programming
 - ✓ Verilog
 - ✓ Spice
 - Analog circuit design
 - ✓ Device physics

Documentation

- Documentation to clearly define the IP
- Results that show model performance results

Is Analog Modeling being used?

Response to the question mixed
 Some cannot do without it
 Some do not believe in it

Comments - pros

- Full chip interconnect has been achieved
 Several errors found
- Power on reset functionality has been verified
- Simulation time has been reduced
- ✓ Reuse has included analog models
- Tools are becoming more reliable
- Modeling is moving to centralized organizations

Comments - cons

- Has taken longer to evolve than initially expected
- Limited training tools have appeared
- Hard to allocate engineering resources to developing and verifying models
- Some have refused to adopt it at all
 - Want full transistor simulation before level sign off
 - Claim the pay back for the investment is not enough