







#### A Personal Perspective on Parameterized and Nonlinear MOR

#### J. White

#### Slides thanks to D. Luca, M. Reichelt, M. Rewienski, D. Vasilyev





## A Multitechnology Phase-Locked Loop



#### **Evaluating the New Technology**

- What is system performance (capture, lock, noise, etc)?
- What is the impact of modifying technology parameters?
- How tight must manufacturing tolerances be?

#### Initial Assessment

What is possible with a combination of technology?
 Will new technology improve SYSTEM performance?
 Requires a rough "optimization" step!

#### System Performance optimization

Assess intra and inter technology trade-offs .
 What is the impact of fabrication decisions?
 Automate Analysis and Synthesis/Optimization

# Manufacturability/Yield optimization Optimize design considering variations!

#### Need to Assess and Optimize System Performance

#### Hierarchical Simulation

- Encapsulate the physics.
- Automatically move between hierarchical levels.
- Approach must apply given diverse technology.

#### Hooks for Synthesis/Optimization

#### **Compute Performance Sensitivities to:**

- Fabrication decisions
- Layout modifications
- Architectural Changes.

#### Manufacturability/Yield

Optimize design considering variations!

#### **Goal: Optimize Technology for the Application**



# Need to simulate ENTIRE system with dynamically accurate models for ALL the components

Capture Simulation will require thousands of oscillator cycles

#### **Multiphysics Simulation Approach**



#### **Macromodel Generation Now Done By Hand**



#### Will Never Keep Up With Diverse Technology

#### **The Numerical Macromodeling Paradigm**

#### **Generate a Reduced-Order Model Directly from 3-D Geometry and Physics**



#### What's Needed For Numerical Macromodeling



Fast Coupled Domain 3-D Solvers
 Fluids, EM Fields, mechanics, Transport
 Must handle ENTIRE Devices!

#### 2) Model-Order Reduction

- Start with a Meshed 3-D Structure (>100,000 DOF's)
- Or Start with molecular positions
- Automatic generation of low-order model (<100 DOF's)

#### 3) Hooks for Optimization

• Model Should be parameterized

#### Where Are We Now?

#### Linear, Few Port Problem is Getting there.



Original Dynamical System - Single Input/Output

$$\frac{dx(t)}{dt} = \underbrace{A}_{NxN} x(t) + \underbrace{b}_{Nx1} \underbrace{u(t)}_{scalar} \underbrace{y(t)}_{scalar} = \underbrace{c}_{Nx1}^{T} x(t)$$

Reduced Dynamical System q << N, but I/O preserved</p>

$$\frac{dx_{r}(t)}{dt} = \underbrace{A_{r}}_{qxq} x(t) + \underbrace{b_{r}}_{qx1} \underbrace{u(t)}_{scalar} \underbrace{y_{r}(t)}_{scalar} = \underbrace{c_{r}}_{qx1}^{T} x_{r}(t)$$

#### **Projection Framework**



#### Forming the Reduced Matrix



No explicit A need, Only Matrix-vector products

For each column of  $U_q$ Multiply by *A*, then dot result with columns of  $V_q$ 

#### Use Eigenvectors

#### Use Time Series Data

**Compute** 

#### **Use the SVD to pick** q < k important vectors

$$x(t_0), x(t_1), \cdots, x(t_k)$$

#### Use Frequency Domain Data

**Compute** 

 $\Box$  Use the SVD to pick q < k important vectors

$$X(s_1), X(s_2), \cdots, X(s_k)$$

Krylov subspace Vectors

#### Use Singular Vectors of System Grammians

#### Easy to Model Even Complicated Frequency Behavior



Krylov subspace methods (red)

**Excellent** match over a narrow range of frequencies

- SVD of Hankel Operator (~TBR) (blue)
  - □ Minimizes worst case frequency domain error
  - Recently developed fast algorithms (CFADI).

Can to get most observable and most controllable modes

$$X_{c}(j\omega_{i}) = (j\omega_{i}I - A)^{-1}b, \quad i = \{1, ..., q\}$$
$$X_{o}(j\omega_{i}) = (j\omega_{i}I - A)^{-T}c, \quad i = \{1, ..., q\}$$

Harder to get the modes with the largest transfer product, if different

Happens in More Nonsymmetric problems (RLC)

□ Help to work with 2<sup>nd</sup> Order Systems?

Reduced Model Dynamical System

$$\frac{dx_r(t)}{dt} = \underbrace{A_r}_{qxq} x(t) + \underbrace{b_r}_{qx1} \underbrace{u(t)}_{scalar} \underbrace{y_r(t)}_{scalar} = \underbrace{c_r}_{qx1}^T x_r(t)$$
Reduced Model Transfer Function
$$H_r(s) = \frac{b_0^r + b_1^r s + \dots + b_{q-1}^r s^{q-1}}{1 + a_1^r s + \dots + a_q^r s^q}$$

#### Why Not Just fit the data



$$\left(1 + a_1^r s_i + \dots + a_q^r s_i^q\right) H(s_i) - \left(b_0^r + b_1^r s + \dots + b_{q-1}^r s^{q-1}\right) \approx 0$$

Key New Result – Matching Real Part (or Imaginary part) is a Convex Optimization Problem

Is Projection A Waste Of Time?

#### **Motivation Example: RF micro-inductor**



#### Model Order Reduction for LINEARLY Parameterized Systems

• Given a large parameterized linear system:



- Projection Preserves the Smoothness of the Parameter Variation!
- Will Rational Fitting?

#### **Many State Spaces per Transfer function**

**Reduced Model Transfer Function** 

1 ( )

$$\frac{dx_r(t)}{dt} = A_r x(t) + b_r u(t) \quad y_r(t) = c_r^T x_r(t)$$
$$\implies H(s) = c_r^T (sI - A_r)^{-1} b_r$$

Similarity (x = Sw) Transformed Transfer Function  $\frac{dw_r(t)}{dt} = S^{-1}A_r Sw(t) + S^{-1}b_r u(t) \quad y_r(t) = c_r^T Sw_r(t)$   $\Rightarrow H(s) = c_r^T S(sI - S^{-1}A_r S)^{-1} S^{-1}b_r = c_r^T (sI - A_r)^{-1}b_r$ 

> Many Dynamical Systems have the same transfer function, only one retains smoothness

#### **Interpolation Approaches Generalize**

$$\begin{bmatrix} s_1 E_1 + \dots + s_p E_p - I \end{bmatrix} x = bu$$
  

$$y = c^T x$$
  

$$x = -\left[I - \left(s_1 E_1 + \dots + s_p E_p\right)\right]^{-1} bu = \sum_{m=0}^{\infty} \left(s_1 E_1 + \dots + s_p E_p\right)^m b \quad u$$

It is a p-variables Taylor series expansion

$$x \in span\left\{ b, E_{1}b, E_{2}b, \cdots, E_{p}b, E_{1}^{2}b, \left(E_{1}E_{2} + E_{2}E_{1}\right)b, \cdots \right\}$$

$$\begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} U_{q} \\ \hat{x} \end{bmatrix} \begin{bmatrix} \hat{x} \\ \hat{x} \end{bmatrix}$$
Pick vectors to match points or derivatives, or both, for each parameter

- Use Eigenvectors of Many Systems
- Use Frequency Domain and Parameter Domain Data

**Compute state for lots of points** 

□ Use the SVD to pick *q* < *k* important vectors

# Krylov subspace Vectors Get a combinatorial explosion

Use Singular Vectors of Compromise System Grammians

Solve many simultaneous Lyapunov Inequalities

Nonlinear dynamical systems:

$$\frac{dx}{dt} = f(x) + Bu \qquad y = C^T x \quad x \in R^n$$

• Projection of the nonlinear operator f(x):



## Problems with MOR for nonlinear

- Substitute: x = Vz to  $\frac{dx}{dt} = f(x) + Bu$ • Reduced  $\frac{dz}{dt} = V^T f(Vz) + V^T Bu$
- A problem:  $V^T f(Vz)$ :  $R^q \longrightarrow R^N \longrightarrow R^N \longrightarrow R^q$ small q=10  $N=10^4$   $N=10^4$  q=10
- Using  $V^T f(Vz)$  is too expensive!

## Volterra Approach

• Use Taylor's expansions to approximate f(x):  $f(x) = f(x_0) + J(x - x_0) + W((x - x_0) \otimes (x - x_0)) + \dots$  Linear, quadratic reduced order models [Chen, Phillips 2000]: Ŵ  $\frac{dz}{dt} = \widetilde{V^T} \widetilde{JV}(z - z_0) + \widetilde{V^T} \widetilde{WV} \otimes \widetilde{V}(z - z_0) \otimes (z - z_0)$  $+V^T f(x_0) + V^T B u$ quadratic model <u>X</u>0 linear model

#### **Trajectory Piecewise Linear approximation of** *f*.



# Projection and TPWL approximation yields efficient $f^r$



#### TPWL approximation of *f*. Extraction algorithm



**Non-reduced state space** 

1.Compute  $A_1$ 2.0btain  $W_1$  and  $V_1$ using linear reduction for  $A_1$ 3. Simulate training input, collect and reduce linearizations  $A_i^{r} = W_1^T A_i V_1$  $f^{r}(x_{i}) = W_{1}^{T} f(x_{i})$ 

#### **Example problem**



# Linearized system has nonsymmetric, indefinite Jacobian

#### Numerical results <u> – nonlinear RLC transmission line</u>



#### Key issue: choosing projection

$$\begin{cases} \frac{dx(t)}{dt} = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

Krylov-subspace methods

**Balanced-truncation methods** 



#### Numerical results – RLC transmission line



#### **Micromachined device example**



#### TPWL-TBR results <u>– MEMS switch example</u>



#### **Eigenvalue behavior of linearized models**

Eigenvalues of reduced Jacobians, q=7

Eigenvalues of reduced Jacobians,  $\mathbf{q} = \mathbf{8}$ 



TBR is adding complex-conjugate pair

#### Explanation of even-odd effect – Problem statement



### Define our problem: How perturbation in the initial system affects projection basis?

#### Hankel singular values, MEMS beam example



This is the key to the problem.

Singular values are arranged in pairs!

#### **Explaining even-odd behavior**



#### Analysis implies simple recipe for using TBR

- □ Pick reduced order to insure
  - Remaining Hankel singular values are small enough
  - The last kept and first removed Hankel Singular Values are well separated
- Helps insure that all linearizations stably reduced

- Projection Methods
- Data Mining
- Support Vector Machines
- Nonlinear Generalizations of Controllability and Observability
- Finite-State Automata
- Sophisticated Sampling and Fitting

#### **Massively Coupled Effects**



Courtesy of Harris Semiconductor

- Digital <u>Narrow</u> Signal Range 20db
   Effective to Screen Small couplings
- Analog Wide Signal Dynamic Range 80db
   Small couplings must be retained

**Problem!** 

 Analog Block – 1000's of interacting interconnect lines
 Millions of Coupling terms Massively Coupled

#### **Still to Come: Massively Coupled Interconnect Analysis**



Courtesy of Harris Semiconductor

Need to draw a box and extract everything
 Including all the small couplings
 Extracted Result must be efficient in a simulator

Will try to use SVD based methods plus model order reduction
 SVD for the geometric coupling
 MOR for the frequency dependence
 Still Massively Coupled Problem-- But New Approaches!

#### The role of fitting versus projection?

#### Fitting only uses I/O data

- Convex optimization procedures
- No smoothness between models

# Projection uses the system description Has more information, what good is that info Can pick out the state space that preserves smoothness

For projection, how to get Observe/Control
 Robustness demands we get x's large in transfer behavior

#### Will Lyapunov Inequalities help?

