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Micromachined
Resonator

Kimerling Opto-electrical

Evaluating the New Technology
 \What Is system performance (capture, lock, noise, etc)?

 \What is the impact of modifying technology parameters?
* How tight must manufacturing tolerances be?



CAD for Diverse IC Technology

m [nitial Assessment
OoWhat is possible with a combination of technology?
oWill new technology improve SYSTEM performance?
ORequires arough “optimization” step!

m System Performance optimization
OAssess intra and inter technology trade-offs .
OWhat is the impact of fabrication decisions?
OAutomate Analysis and Synthesis/Optimization

m Manufacturability/Yield optimization
O0Optimize design considering variations!



Need to Assess and Optimize System
Performance

m Hierarchical Simulation
OEncapsulate the physics.
OAutomatically move between hierarchical levels.
OApproach must apply given diverse technology.

m Hooks for Synthesis/Optimization

O0Compute Performance Sensitivities to:
e Fabrication decisions
e Layout modifications
e Architectural Changes.

m Manufacturability/Yield
O0Optimize design considering variations!



Goal: Optimize Technology for the Application

Bachtold, et al., > o> @ Micromachined

S Science, Nov. 2001 [t Sl Resonator

Kimerling Opto-electrical
Group transducers

Need to simulate ENTIRE system with dynamically
accurate models for ALL the components

Capture Simulation will require thousands of oscillator cycles



Multiphysics Simulation Approach

m Circuit
O Ordinary differential equation solver

m Carbon Nanotube Transistor
O Molecular Dynamics or Atomistic Simulation

ot

m Microresonator
O Coupled 3-D Electro-Elasto-Fluidic Simulation

7

m Optical Transducers
O 3-D Coupled Device-Optics Simulator

ot

m Interconnect + Substrate
0O 3-D Full-Wave Simulation

Capture Simulation of thousands of cycles will never finish!
Must Generate Macromodels



Macromodel Generation Now Done By Hand

N

B _ pe () + e
dt
y(t)=c, x,(t)
\ ~ J

W Model for the

System Simulator

Will Never Keep Up With Diverse Technology



The Numerical Macromodeling Paradigm

Generate a Reduced-Order Model Directly from 3-D
Geometry and Physics

Automatic dx;lf’) = F(x (1)) + ()
() =c, x.(t)

8. 2 P 2 M \ J
Lundstrom et al. e
~ g ol Low order state-space
Complicated Geometry, m_odel which captures
Coupled Physics, Input (u)/output(y)
behavior

possibly even statistical



What's Needed For Numerical Macromodeling

dx, (1)
dt
y(t)=c¢ x,(1)

1) Fast Coupled Domain 3-D Solvers
Fluids, EM Fields, mechanics, Transport

Must handle ENTIRE Devices!

2) Model-Order Reduction

o Start with a Meshed 3-D Structure (>100,000 DOF’s)
 Or Start with molecular positions
e Automatic generation of low-order model (<100 DOF’s)

— F(x, (1)) + bu()

3) Hooks for Optimization
* Model Should be parameterized



Where Are We Now?

Linear, Few Port Problem 1s Getting there.

__15—'% ) m Fast 3-D E-M Solvers

\
E:ﬁ O Multipole, Hierarchical
SVD, Precorrected-FFT,
Wavelets
>

m Efficient MOR

O Krylov, Krylov-TBR,
Projection methods,
Frequency Domain
POD, PMTBR, etc

m Still Issues
O Passivity

O Performance for
Distributed Systems




State-Space Description

m Original Dynamical System - Single Input/Qutput

-~ -
dt NxN Nx1 v

scalar scalar
input output

Nx1

m Reduced Dynamical System g << N, but I/O preserved

dx’”(t) :A,,x(t)+b,,u(t) y.(¢) :c,,Tx,,(t)
dt —— P e o
gxq gx1 scalar scalar gx1l

input output

dx(t) = A x(t)+ b u(t) JL(f_),: ng(t)



Projection Framework

. . T
X=Ax+bu, y=c'x =>x =Ax +bu, y. =c x

Equation Testing Change of variables

T Ay ~ x~=U x
I/q Ax~A},x’, q’r

T
V. space 4, =V, AU, U, space
Galerkin — ¥ space = U, space



Forming the Reduced Matrix

m No explicit A need, Only Matrix-vector products

For each column of U,
Multiply by 4, then dot result with columns of ¥,



Picking U and V

Use Eigenvectors

Use Time Series Data
O Compute
O Use the SVD to pick g <k important vectors

x(to),x(tl),---,x(tk)

Use Frequency Domain Data
O Compute
O Use the SVD to pick g < k important vectors

X(Sl),X(Sz),“°,X(Sk)

Krylov subspace Vectors

Use Singular Vectors of System Grammians



Easy to Model Even Complicated Frequency Behavior
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m Krylov subspace methods (red)
O Excellent match over a narrow range of frequencies

m SVD of Hankel Operator (~TBR) (blue)

O Minimizes worst case frequency domain error
O Recently developed fast algorithms (CFADI).



Persistent Problem with Projection

m Can to get most observable and most controllable
modes

X, (jo,)

X, (jo,)

(jod—4)" b, i={,..,q}

(joI-A) ¢, i=f...q}

m Harder to get the modes with the largest transfer
product, if different

O Happens in More Nonsymmetric problems (RLC)
0 Help to work with 2"d Order Systems?



Transfer Function Point of View

Reduced Model Dynamical System

dx (¢
=40 b0 106 5 (0
B el

Reduced Model Transfer Function

1 (s) = by +b{s+---+b 57"

l+a s+---+a,s”



Why Not Just fit the data

/\ b’”+b’”s+ +b, 5T
f \ l+a;s+---+a,s*
\—-\

(1+afsl. -I-“'-I-a;Siq)H(Si)—(bg +be+---+b;_1Sq_l) ~0

Key New Result — Matching Real Part (or
Imaginary part) is a Convex Optimization Problem

Is Projection A Waste Of Time?



Motivation Example: RF micro-inductor

m How are the substrate eddy
currents affecting the quality
factor of the inductor?

m How are the displacement
currents affecting the
resonance of the inductor?

m Need to capture all 2" order
effects
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m Field solvers can
produce instance
Impedance vs.
frequency curves.




Model Order Reduction for LINEARLY
Parameterized Systems

e Given alarge parameterized linear system:
p

+...+S

P
& gl - - Spl))2

—c' x

 Projection Preserves the Smoothness of the
Parameter Variation!

« Will Rational Fitting?



Many State Spaces per Transfer function

Reduced Model Transfer Function

dx;t(t) = A,,x(t) +bru(t) y(t)=c. x (t)
= H(s)=c, (SI—A,,)_lb,,

Similarity (x = Sw) Transformed Transfer Function
aw, (t)
dt

=SASw(t)+S bu(t) vy (t)=c. Sw,.(¢)

= H(s) ICFTS(S]—S_lArS) S7b =c, (sI—A4, )_1 b,

Many Dynamical Systems have the same
transfer function, only one retains
smoothness



Interpolation Approaches Generalize
[S1E1+... +SpEp—I]x=bu
y=c'x
-1 0 m
x:—[l—(lelerJrSpEp)] bu:Z(SlElJr---JrSpEp) b u
m=0
m [tis ap-variables Taylor series expansion

x € spanib, Eb,Eb, - E b, Elb,(EE, + E,E )b, |
e

- - Pick vectors to match points
A or derivatives, or both, for
x= U X each parameter




Picking U and V

m Use Eigenvectors of Many Systems

m Use Frequency Domain and Parameter Domain
Data

O0Compute state for lots of points
OUse the SVD to pick g < k important vectors

m Krylov subspace Vectors
O0Get a combinatorial explosion

m Use Singular Vectors of Compromise System
Grammians

O0Solve many simultaneous Lyapunov Inequalities



Nonlinear MOR - Representation Problem

= Nonlinear dynamical systems:

%:f(x)+Bu y=C'x xeR

= Projection of the nonlinear operator f(x):

4 —_JO) Jx)

1)

= How to find f(.) ?



Problems with MOR for nonlinear

d
Substitute: x = 'z to j);: £(x)+ Bu
f(2)
Reduced g, ———
system: —=) f(VZ)-I—V Bu

dt
A problem: V' f(Vz): R? > R" > R" - R*

small large large small
qg=10 qg=10



Volterra Approach

= Use Taylor's expansions to approximate f(x).

F(x)=f(x) +J(x—x) + W ((x—x) ®(x—xp)) +...
= Linear, quadratic reduced order models
[Chen, Phillips 2000]:

J

dZ fJL\

E oV IV (2 2,) + VTV @V (2~ 2,) ® (2~ 2,)
dt +V" f(x,)+V"Bu

W

guadratic model
linear model



Trajectory Piecewise Linear approximation of f.

from () = 2w () + A (r=)

Simulating
trajectory




Projection and TPWL approximation
yields efficient T '

F () = Y (Y £ () + WAV (=)

Evaluating /" .,,, only order ¢° operations



TPWL approximation of f.
— FExtractionalgonthm

1.Compute 4,

2.0btain W, and ¥,
using linear reduction
for 4,

.\ 3.Simulate training

X, Input, collect and
reduce linearizations
A= WAV,

)= )

Non-reduced state space



Example problem

RLC line
iy(v) iy(v)
N N
1 L
1 W_S coe _J\/\]Y;]\mm N
R L R L
i(t)<> r§ __id(vixc — C — C

O

Linearized system has
nonsymmetric, indefinite Jacobian



Numerical results

System response for input current i(t) = (sin(2x/10)+1)/2
0.025 ‘

m |[nput: —«= Full linearized model, N=800
,/"'\\ - Full nonlinear model, N=800
d \,| === TPWL model, g=4, TBR basis
4 S" 0.02¢ % NETTIT TPWL model, g=30, Krylov basis |
—
)
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Key issue: choosing projection

- dx(¢
) _ () + Bul)
< dt
LT e
Krylov-subspace methods Balanced-truncation methods

O g



Numerical results —

Error In transient

10 ¢ ‘ ‘
N - Keylow TPWL metisl |
°\
VRN
= “’%%o 4-th order TBR
5 1 "‘%%% TPWL reaches
— *oe,.  thelimit of TPWL
10" "= representation
10-40 é 16 1‘5 26 2‘5 30

Order of the reduced model



Micromachined device example

2 um of poly Si y(t) — center point

z ‘ / 0.5 um of poly Si deflection
y
u=v(t) '

0.5 um SiN 2.3 um gap
filled with air

o'y Ou
Elg—Sg—Fezeﬁj(p P, )dy = P : === FD model

V((A+6K)u’ pVp) =122 (g’“‘) 1
non-symmetric

Indefinite Jacobian




TPWL-TBR results
- -—MFMSswiichexample

Errors In transient

10%

Odd order models e TBR TPWL model | UnStabFE|
unstable! . ¢ Kryloy IR#WTmodel
10" |

Even order models & 0 N N
beat Krylov o D
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Order of reduced system



Eigenvalue behavior of linearized models

Eigenvalues of reduced Jacobians, Q=7
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Explanation of even-odd effect —

——Dioblemsiatement

Consider two LTI systems:

Initial: PeftuIbgd:
(A4,B,C) (A,B,C)
TBR ~BR
reduction reduction
Projection basis V Projection basis V

Define our problem:
How perturbation in the initial system

affects projection basis?



Hankel singular values,

777777777777 J7777777777771»777777777777\ [ [ \7
e —e Hankel singular value |

# of the Hankel singular value



Explaining even-odd behavior

The closer Hankel singular

. (QE)TAQ,O | values lie to each other, the
C. = 0 Ol ,k # I more corresponding eigenvectors
ﬁk — ll of V tend to intermix!

m Analysis implies simple recipe for using TBR

O Pick reduced order to insure
e Remaining Hankel singular values are small enough
e The last kept and first removed Hankel Singular Values are well
Sseparated

O Helps insure that all linearizations stably reduced



Many Methods Under Investigation

m Projection Methods
m Data Mining
m Support Vector Machines

m Nonlinear Generalizations of
Controllability and Observability

m Finite-State Automata
m Sophisticated Sampling and Fitting



Massively Coupled Effects

Courtesy of Harris
Semiconductor

m Digital — Narrow Signal Range — 20db
O Effective to Screen Small couplings

m Analog — Wide Signal Dynamic Range — 80db
O Small couplings must be retained

m Analog Block — 1000’s of interacting
Interconnect lines

O Millions of Coupling terms < Massively Coupled

Problem!



Still to Come: Massively Coupled Interconnect Analysis

Courtesy of Harris
Semiconductor

m Need to draw a box and extract everything
O Including all the small couplings
O Extracted Result must be efficient in a simulator

m Will try to use SVD based methods plus model
order reduction Still Massivelv Counled
o SVD for the geometric coupling L VIassIvely Louple

O MOR for the frequency dependence Problem-- But New
Approaches!




The role of fitting versus projection?

m Fitting only uses I/O data
OConvex optimization procedures
ONo smoothness between models

m Projection uses the system description
O Has more information, what good is that info

OCan pick out the state space that preserves
smoothness

m For projection, how to get Observe/Control

ORobustness demands we get x’s large in transfer
behavior

m Will Lyapunov Inequalities help?



Impact of Reliable nonlinear MOR
m Automatic Compact Model Generation

Q-V, I-V

m Multiscale modeling?

:A{o?n.i_c.-lév.ef
m New device/technology models
dx, (1)

P — = F(x U
! _—) )b

{
[_valve | o




