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A Multitechnology Phase-Locked Loop 

Evaluating the New Technology 
• What is system performance (capture, lock, noise, etc)?
• What is the impact of modifying technology parameters?
• How tight must manufacturing tolerances be? 
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CAD for Diverse IC TechnologyCAD for Diverse IC Technology

Initial Assessment
What is possible with a combination of technology?
Will new technology improve SYSTEM performance?
Requires a rough “optimization” step!

System Performance optimization
Assess intra and inter technology trade-offs .
What is the impact of fabrication decisions?
Automate Analysis and Synthesis/Optimization

Manufacturability/Yield optimization
Optimize design considering variations!



Need to Assess and Optimize System Need to Assess and Optimize System 
PerformancePerformance

Hierarchical Simulation
Encapsulate the physics.
Automatically move between hierarchical levels.
Approach must apply given diverse technology.

Hooks for Synthesis/Optimization
Compute Performance Sensitivities to:

Fabrication decisions
Layout modifications
Architectural Changes.

Manufacturability/Yield 
Optimize design considering variations!



Goal: Optimize Technology for the Application
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Need to simulate ENTIRE system with dynamically 
accurate models for ALL the components

Capture Simulation will require thousands of oscillator cycles



Circuit 
Ordinary differential equation solver

Carbon Nanotube Transistor
Molecular Dynamics or Atomistic Simulation

Microresonator
Coupled 3-D Electro-Elasto-Fluidic Simulation

Optical Transducers
3-D Coupled Device-Optics Simulator

Interconnect + Substrate
3-D Full-Wave Simulation

MultiphysicsMultiphysics Simulation ApproachSimulation Approach

Capture Simulation of thousands of cycles will never finish! 
Must Generate Macromodels



MacromodelMacromodel Generation Now Done By HandGeneration Now Done By Hand

Interconnect Expert

MEMS Expert

Device Expert

6 months…

6 months…

6 months…

( ) ( ( )) ( )r
r r

dx t F x t bu t
dt

= +

( ) ( )T
r ry t c x t=

Model for the
System Simulator  

p+

oxide

n+i

Will Never Keep Up With Diverse Technology



Generate  a Reduced-Order Model Directly from 3-D 
Geometry and Physics
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Complicated Geometry, 
Coupled Physics, 

possibly even statistical

Low order state-space 
model which captures 

input (u)/output(y) 
behavior  

The Numerical The Numerical MacromodelingMacromodeling Paradigm  Paradigm  

Lundstrom et al.



WhatWhat’’s Needed For Numerical s Needed For Numerical MacromodelingMacromodeling

2) Model-Order  Reduction

•Fluids, EM Fields, mechanics, Transport
•Must handle ENTIRE Devices!

1)  Fast Coupled Domain 3-D Solvers 

• Start with a Meshed 3-D Structure (>100,000 DOF’s)
• Or Start with molecular positions
• Automatic generation of low-order model (<100 DOF’s) 
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3) Hooks for Optimization
• Model Should be parameterized 



Where Are We Now? Where Are We Now? 

Fast 3-D E-M Solvers
Multipole, Hierarchical 
SVD, Precorrected-FFT, 
Wavelets

Efficient MOR
Krylov, Krylov-TBR, 
Projection methods, 
Frequency Domain 
POD, PMTBR, etc

Still Issues
Passivity
Performance for 
Distributed Systems
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Linear, Few Port Problem is Getting there.



Original Dynamical System - Single Input/Output

Reduced Dynamical System q << N, but I/O preserved

State-Space Description
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Projection Framework



T
qV

No explicit A need, Only Matrix-vector products

For each column of qU
Multiply by ,  then dot result with columns of qA V

qU

rA
qxq

=

NxN

Forming the Reduced Matrix



Use Eigenvectors
Use Time Series Data

Compute
Use the SVD to pick q < k important vectors

Use Frequency Domain Data
Compute
Use the SVD to pick q < k important vectors

Krylov subspace Vectors
Use Singular Vectors of System Grammians

Picking U and V
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Easy to Model Even Complicated Frequency BehaviorEasy to Model Even Complicated Frequency Behavior

Krylov subspace methods (red)
Excellent match over a narrow range of frequencies

SVD of Hankel Operator (~TBR) (blue)
Minimizes worst case frequency domain error
Recently developed fast algorithms (CFADI).



Can to get most observable and most controllable 
modes

Harder to get the modes with the largest transfer 
product, if different

Happens in More Nonsymmetric problems (RLC)
Help to work with 2nd Order Systems?

Persistent Problem with Projection
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Transfer Function Point of View

Reduced Model Dynamical System
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Reduced Model Transfer Function
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Why Not Just fit the data
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Key New Result – Matching Real Part (or 
Imaginary part) is a Convex Optimization Problem

Is Projection A Waste Of Time?
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Field solvers can 
produce  instance 
impedance vs. 
frequency curves.

Motivation Example: RF microMotivation Example: RF micro--inductorinductor

How are the substrate eddy 
currents affecting the quality 
factor of the inductor?
How are the displacement 
currents affecting the 
resonance of the inductor?
Need to capture all 2nd order 
effects



Model Order Reduction for LINEARLY Model Order Reduction for LINEARLY 
Parameterized SystemsParameterized Systems

•• Given a large parameterized linear system:Given a large parameterized linear system:
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•• Projection Preserves the Smoothness of the Projection Preserves the Smoothness of the 
Parameter Variation!Parameter Variation!

•• Will Rational Fitting?Will Rational Fitting?
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Many State Spaces per Transfer function

Reduced Model Transfer Function
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Many Dynamical Systems have the same 
transfer function, only one retains 

smoothness
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Pick vectors to match points Pick vectors to match points 
or derivatives, or both, for or derivatives, or both, for 

each parametereach parameter
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It is a p-variables Taylor series expansion

Interpolation Approaches GeneralizeInterpolation Approaches Generalize



Use Eigenvectors of Many Systems
Use Frequency Domain and Parameter Domain 
Data

Compute state for lots of points
Use the SVD to pick q < k important vectors

Krylov subspace Vectors
Get a combinatorial explosion

Use Singular Vectors of Compromise System 
Grammians

Solve many simultaneous Lyapunov Inequalities

Picking U and V



Projection of the nonlinear operator f(x):

V space

x f(x)f(.)

z=VTx
VTf(x)

V space (.)f̂
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How to find         ? (.)f̂
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Nonlinear dynamical systems:

Nonlinear MOR Nonlinear MOR –– Representation ProblemRepresentation Problem
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Substitute: Vzx = to Buxf
dt
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Using VTf(Vz) is too expensive!

Problems with MOR for nonlinear Problems with MOR for nonlinear 
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x0

linear model
quadratic model

VolterraVolterra ApproachApproach

Use Taylor’s expansions to approximate f(x):
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Linear, quadratic reduced order models 
[Chen, Phillips 2000]:
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Trajectory Piecewise Linear approximation of  Trajectory Piecewise Linear approximation of  f.f.

Training 
trajectory

x
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…

Simulating 
trajectory

wi(x) is zero 
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1.Compute A1
2.Obtain W1 and V1

using linear reduction 
for A1

3.Simulate training 
input, collect and 
reduce linearizations
Ai

r = W1
TAiV1

f r (xi)=W1
Tf(xi)

TPWL approximation of TPWL approximation of f. f. 
Extraction algorithmExtraction algorithm

Non-reduced state space

Initial system 
position

Training 
trajectory

x0

x1
x2

xn

…



Example problemExample problem
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Linearized system has  
nonsymmetric, indefinite Jacobian

RLC line
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0.025
Full linearized model, N=800
Full nonlinear model, N=800
TPWL model, q=4, TBR basis
TPWL model, q=30, Krylov basis

Input:

training
input

testing
input

Numerical results Numerical results 
–– nonlinear RLC transmission line  nonlinear RLC transmission line  

System response for input current i(t) = (sin(2π/10)+1)/2
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Key issue: choosing projectionKey issue: choosing projection

Result:
projection matrices W and V

Krylov-subspace methods Balanced-truncation methods

( ) ( ) ( )

( ) ( )

dx t Ax t Bu t
dt

y t Cx t

= +

=



0 5 10 15 20 25 30
10-4

10-3

10-2

10-1

100

TBR TPWL model
Krylov TPWL model

Numerical results Numerical results ––
RLC transmission line RLC transmission line 

Error in transient
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Order of the reduced model

TBR-based TPWL 
beat 
Krylov-based

4-th order TBR 
TPWL  reaches 
the limit of TPWL 
representation



MicromachinedMicromachined device exampledevice example

x

Si substrate

2 um of poly Si

0.5 um of poly Si deflection

2.3 um gap

filled with air
0.5 um SiN

z

y

y(t) − center point

u=v(t)
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non-symmetric 
indefinite Jacobian

FD model
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TBR TPWL model
Krylov TPWL model

TPWLTPWL--TBR resultsTBR results
–– MEMS switch exampleMEMS switch example

Errors in transient

Order of reduced system
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Odd order models 
unstable!

Even order models 
beat Krylov

Why???

Unstable!



EigenvalueEigenvalue behavior of behavior of linearizedlinearized modelsmodels

Eigenvalues of reduced Jacobians, q=7 Eigenvalues of reduced Jacobians, q=8

TBR is adding complex-conjugate pair
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Explanation of evenExplanation of even--odd effect odd effect ––
Problem statementProblem statement

Consider two LTI systems:
Initial:

(            )
Perturbed:
(           )

TBR 
reduction

TBR 
reduction

Projection basis V Projection basis V

Define our problem:
How perturbation in the initial system 

affects projection basis?

, ,A B C% %%, ,A B C

~
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Hankel singular value

HankelHankel singular values, singular values, 
MEMS beam exampleMEMS beam example

# of the Hankel singular value

This is the key 
to the problem.

Singular values 
are arranged in 
pairs!



Explaining evenExplaining even--odd behavior odd behavior 

The closer Hankel singular
values lie to each other, the

more corresponding eigenvectors
of V tend to intermix!

Analysis implies simple recipe for using TBR
Pick reduced order to insure

Remaining Hankel singular values are small enough
The last kept and first removed Hankel Singular Values are well 
separated

Helps insure that all linearizations stably reduced
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Projection Methods
Data Mining
Support Vector Machines
Nonlinear Generalizations of 
Controllability and Observability
Finite-State Automata
Sophisticated Sampling and Fitting 

Many Methods Under InvestigationMany Methods Under Investigation



Digital – Narrow Signal Range – 20db
Effective to Screen Small couplings 

Analog – Wide Signal Dynamic Range – 80db 
Small couplings must be retained

Analog Block – 1000’s of interacting 
interconnect lines

Millions of Coupling terms Massively Coupled 
Problem!

Courtesy of Harris
Semiconductor

Z(fZ(f))

Massively Coupled EffectsMassively Coupled Effects



Still to Come: Massively Coupled  Interconnect AnalysisStill to Come: Massively Coupled  Interconnect Analysis

Courtesy of Harris
Semiconductor

Need to draw a box and extract everything
Including all the small couplings
Extracted Result must be efficient in a simulator

Will try to use SVD based methods plus model 
order reduction

SVD for the geometric coupling
MOR for the frequency dependence

Still Massively Coupled 
Problem-- But New 

Approaches!



Fitting only uses I/O data
Convex optimization procedures
No smoothness between models

Projection uses the system description
Has more information, what good is that info
Can pick out the state space that preserves 
smoothness

For projection, how to get Observe/Control
Robustness demands we get x’s large in transfer 
behavior

Will Lyapunov Inequalities help?

The role of fitting versus projection?



Impact of Reliable nonlinear MORImpact of Reliable nonlinear MOR
Automatic Compact Model Generation

PDE’s: 
D-D, Schrod, Etc.

Q-V, I-V 
equations

Multiscale modeling?

PDE’s: 
D-D, Schrod, Etc.

Atomic-level
New device/technology models
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