Behavioral Simulator of Analog-to-Digital Converters

Grzegorz Zareba Olgierd. A. Palusinski

University of Arizona

CMSL - Circuit Modeling and Simulation Laboratory

Outline

- Introduction and Motivation
- Behavioral Simulator of Analog-to-Digital Converters
- Basic Building Modules of Analog-to-Digital Converters
 - Example of sample-and-hold module
- Simulation of Analog-to-Digital Converters
 - Example of 8-bit multistage A/D converter
 - Example of 8-bit pipelined A/D converter
- Summary
- Future work

Introduction Simulation Levels

- **Behavioral level simulation**
 - circuit is described by structural and behavioral blocks
 - **Register level simulation**
 - circuit is defined by combinational and sequential components
 - sequence of register transfers and arithmetic operations is used to describe circuit operation
- Switch level simulation
 - CMOS transistors are simplified and seen as gate-controlled switches
- Gate level simulation
 - transistors are grouped into logic gates
- **Electrical level simulation** • delivers the greatest amount of details about the circuit **PSpice**, requires solving a system of nonlinear ordinary differential **MicroCap** equations FI FCTRICAL and CMSL - Circuit Modeling and Simulation Laboratory COMPUTER
 - ENGINEERING

Simulink,

Verilog, VHDL

Introduction Available Simulation Tools

Two options are available for behavioral simulation of A/D converters:

- Commercial Simulation Tools (Matlab/Simulink, HDL-based simulators)
- Dedicated simulators (capable to simulate only one particular A/D converter)

Disadvantages of Commercial Simulation Tools:

- expensive in terms of computer time
- translation of simulation language is needed
- limited by simulation language capability

Disadvantages of Dedicated simulators:

- excessive programming effort needed for implementation of converter model
- allows for simulation only one dedicated A/D converter

Introduction

Simulations with Commercial Simulation Tools

Simulation languages: VHDL, VHDL-A, Verilog, etc

Graphical languages: Simulink, LabView, VEE, etc

CMSL - Circuit Modeling and Simulation Laboratory

Introduction

New Approach in Behavioral Modeling of A/D Converters

CMSL - Circuit Modeling and Simulation Laboratory

Introduction

New Approach in Behavioral Modeling of A/D Converters

What is a DLL module?

A library of executable functions or data that can be used by a Windows application

Advantages:

- Any programming environment can be used to create a DLL module
- DLL module can be modified without having to update the simulator
- Executable module

Disadvantage?

• It seems that creation of a DLL module requires a proficiency in programming

CMSL - Circuit Modeling and Simulation Laboratory

Behavioral Simulator of A/D Converters Structure of the simulator

CMSL - Circuit Modeling and Simulation Laboratory

Behavioral Simulator of A/D Converters

Representation of A/D converters

CMSL - Circuit Modeling and Simulation Laboratory

Behavioral Simulator of A/D Converters Basic Building Modules of A/D converters

CMSL - Circuit Modeling and Simulation Laboratory

Behavioral Simulator of A/D Converters BBMs – Example of BBM written in C++

DLL Module Executable behavior of the BBM if(bCtr) { // Block activated by the control line if(bSample) dOutput = dInput; bSample = false; else More flexible than existing dOutput = dInput; simulation languages bSample = true; else // Block activated by the output line if(bSample) dOutput = dInput; }

CMSL - Circuit Modeling and Simulation Laboratory

Basic Building Modules Sample-and-Hold Module

CMSL - Circuit Modeling and Simulation Laboratory

Basic Building Modules

Sample-and-Hold Module – Behavioral model

Sampling mode: charging capacitor C_H

$$V_{CH}\left(t\right) = V_{CH}\left(t - \Delta t\right) + \left(V_{in}\left(t\right) + V_{off}\left(t\right)\right) \left(1 - e^{\frac{\Delta t}{t_{acq}} \cdot \ln(0.001)}\right)$$

Sampling mode: discharging capacitor C_H

$$V_{CH}\left(t\right) = \left(V_{CH}\left(t - \Delta t\right) - V_{in}\left(t\right)\right) \cdot e^{\frac{\Delta t}{t_{acq}}\ln(0.001)} + V_{CH}\left(t - \Delta t\right)$$

Holding mode: discharging capacitor C_H

$$V_{CH}\left(t\right) = V_{CH}\left(t - \Delta t\right) - D_r \cdot \Delta t$$

- *t_{acq}* acquisition time,
- $V_{in}(t)$ input voltage,
- Δt time step of the simulator,
- $V_{off}(t)$ input offset voltage,
- D_r droop rate

CMSL - Circuit Modeling and Simulation Laboratory

Basic Building Modules Sample and Hold Module – Simulation results

6 Hold Sample Hold Sample Hold Sample Hold Sample 5 Vout, Vctrl [V] 1 3 Output signal 1 0 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 1 t[us]

Simulation results

Test circuit

UA.

CMSL - Circuit Modeling and Simulation Laboratory

Basic Building Modules Other Modules

Analog BBMs:

- Comparator
- Sample-and-Hold
- Analog Switch
- Voltage Reference
- Folding circuit
- Summation
- Subtraction

Digital BBMs:

- Digital Register
- Shift Register

Mixed-Signal BBMs:

- Sub-ADC
- Sub-DAC
- Binary Encoder

Control BBMs:

- Input Signal
- Register
- Clock
- Clock Delay
- Noise Generator

Flash, multi-stage, pipelined, and folding A/D converters

CMSL - Circuit Modeling and Simulation Laboratory

Basic Building Modules Graphical representation of BBMs

BBM's (Behavior encapsulated in Dynamic Link Library):

Setting Parameters for Comparator Module:

- Gain
- Input Offset Voltage
- Slew rate
- Min Output Amplitude
- Max Output Amplitude
- Min Hysteresis
- Max Hysteresis

CMSL - Circuit Modeling and Simulation Laboratory

Behavioral Simulator of A/D Converters Simulator core

CMSL - Circuit Modeling and Simulation Laboratory

Behavioral Simulator of A/D Converters Simulation Module – Multilevel dynamic list

Behavioral Simulator of A/D Converters Simulation Module – Simulation setup

Simulation Setup	×
Simulation time 60 [us] O ms O us O ns O cycle Simulation mode © Test mode	Input Signal Type Sine Ramp Static C Triangle
C Static (DNL_INL) C Dynamic (SFDR) Output file ADC8Pv2.out Open	C File Frequency 100000
OK Cancel	Level 0 💿 Level 1 🔿 Fit 🔲

Simulation Setup:

- Simulation Time
- Simulation Mode
- Input Signal type
- Clock Frequency
- Output File

Behavioral Simulator of A/D Converters Post-Processing Module

Post-processing:

- Localization of code transition points
- Calculation of DNL and INL
- Determination of offset and gain error
- Calculation of SFDR

Required circuit configuration:

CMSL - Circuit Modeling and Simulation Laboratory

Simulation of A/D Converters

8-bit Multistage A/D Converter

CMSL - Circuit Modeling and Simulation Laboratory

Simulation of A/D Converters 8-bit Multistage A/D Converter

Simulation of A/D Converters 8-bit Multistage A/D Converter – Simulation results

CMSL - Circuit Modeling and Simulation Laboratory

Simulation of A/D Converters 8-bit Multistage A/D Converter – Simulink

CMSL - Circuit Modeling and Simulation Laboratory

Simulation of A/D Converters Pipelined A/D Converters

Basic elements:

- Sample-and-hold
- Sub-ADC
- Sub-DAC
- Summation
- Amplifier
- Shift register
- Digital correction

$$V_{res} = V_{in} - D_k \left(V_{in} \right) \cdot \frac{V_{FS}}{2^k - 1} \left[V \right]$$

CMSL - Circuit Modeling and Simulation Laboratory

Simulation of A/D Converters 8-bit Pipelined A/D Converter - Schematic

Simulation of A/D Converters

8-bit Pipelined A/D Converter – Simulation results

CMSL - Circuit Modeling and Simulation Laboratory

Summary

- New approach in behavioral simulation of A/D Converters
- New simulation algorithm based on combination of an event driven scheme and data flow technique
- Advanced method for encapsulating BBMs in DLL modules
- Significant reduction of circuit preparation and simulation time
- Open simulator architecture, which allows adding new BBMs without modification of the simulator core
- Simulation package capable to simulate various architectures of A/D converters as well as analog, digital and other mixed-signal circuits

Future work

- Implementation of load effect
- Construction of BBMs designated to support simulation of D/A converters (current source, analog switch, etc.)
- Construction of post-processing module for D/A converters
- Implementation of an interface to PSpice simulator
- Implementation of an interface to Matlab and Simulink
- Development of distributed simulation framework using Local Area Networks (LANs) or Universal Serial Bus (USB)
- Implementation of BBMs for system level design (RAM, EPROM, etc.)

Questions ?

CMSL - Circuit Modeling and Simulation Laboratory