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Abstract—The experience of implementing the Data 

Encryption Standard (DES) using high level VHDL and 

behavioral synthesis is described. It is shown that it is 

possible to describe an algorithm which is notoriously low-

level such that it is both readable and synthesizable using

behavioral modelling appropriate for behavioural synthesis. 

The paper also discusses typical design issues that arise when 

working at the behavioral level and shows that human insight 

is still necessary to achieve the best possible results. However, 

this insight is brought to bear at a high level — which is what 

humans are good at — whilst the synthesis system provides 

“decision support” and optimisation — which is what 

software and computers are good at. 

I. INTRODUCTION 

This paper describes the experience of designing a Data 

Encryption Standard (DES) core [1] in Electronic Code 

Book (ECB) mode [2] using behavioural VHDL and the 

MOODS behavioral synthesis system [3]. 

The main objective was to write a high-level language 

description that was both readable and synthesizable. The 

secondary objective was to explore the area/delay design 

space of both single and triple DES. The whole exercise 

took approximately four full days. 

All designs have been tested against the National 

Institute of Standards and Technology (NIST) standard set 

of test vectors for the DES ECB implementation [4]. The 

designs were simulated using both the pre-synthesis 

(behavioral) and post-synthesis (RTL) VHDL 

simultaneously, verifying that the outputs were not only 

the same, but were the expected outputs defined in the test 

set. 

While the software used for synthesis is the research 

platform at the University of Southampton, the concepts 

and behavioural modelling approach are fundamental. 

II. THE DATA ENCRYPTION STANDARD (DES) 

The Data Encryption Standard, usually referred to by 

the acronym DES, is a well-established encryption 

algorithm which was first standardized in 1988. The 

standard is maintained by the NIST [1]. DES is a 

symmetrical private-key cipher. This means that the same 

key is used to encrypt and to decrypt. It is therefore only 

suitable for applications where the key can be kept secure. 

A key consists of 64 bits — however, only 56 bits are 

used in DES and the other 8 bits are parity bits. 

Many people now consider DES’s 56-bit key to be too 

short and therefore capable of being cracked using a 

simple brute force attack. This argument is shallower than 

it first appears. Although it is becoming easier to search 

the entire key space, the problem of recognizing that a 

solution has been found is still severe. The DES cracker 

promulgated by the Electronic Frontier Foundation (EFF) 

[5], for example, relies on the plaintext being ASCII. If 

any form of pre-encryption encoding is used, or even if the 

plaintext is in binary form (such as a word-processing 

document) then the plaintext cannot reliably be recognized 

without a priori knowledge of the contents. 

Nevertheless, it is now common to find the algorithm 

being used in triplicate — an algorithm known as Triple-

DES or TDES for short. This algorithm uses the same DES 

core, but uses three passes with different keys. A common 

form of TDES is EDE2, which encrypts, decrypts and then 

encrypts again using two different keys. This form of 

TDES can be made backwards compatible with DES 

simply by making the two keys identical. 

DES was designed to be small and fast. It was designed 

in the mid-1980s and this is reflected in the fact that the 

algorithm is mainly based on shuffling and substitution — 

there is very little computation involved. Thus it is well-

suited to hardware implementation. It is described in detail 

in [1], [2], [4], [6]–[8]. 

III. MOODS 

MOODS (Multiple Objective Optimization in Control 

and Datapath Synthesis) is a high-level behavioral 

synthesis suite developed at the University of 

Southampton. It takes as input behavioral VHDL [9], [10]. 

and transforms this into structural VHDL that is 

behaviorally equivalent. MOODS is an aggressively 

optimizing behavioral synthesis suite (hardware compiler). 

The internal workings and algorithms have been described 

in detail elsewhere [3], [11]–[20], but in essence the 

operation of the system is as follows: 

• The initial high-level VHDL description is 

decomposed into ICODE, which is a hardware 

assembly language. A dataflow graph is extracted 
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from this and a naive control graph constructed with 

one dataflow operation per cycle. Thus the mapping 

from control graph to dataflow graph at this point is 

1:1. The dataflow graph describes the connectivity of 

the instructions and the control graph is a state 

machine that enables and disables data operations in 

the dataflow graph as needed to implement the 

algorithm. 

• Optimization with respect to area is achieved by 

physically sharing datapath units (via multiplexors) in 

which case the control graph is restructured to 

guarantee that data collisions do not occur. 

• Optimization with respect to delay is achieved by 

allowing datapath units to be connected 

combinatorially so that they can perform a combined 

operation in one clock cycle — effectively merging 

together control states. 

IV. INITIAL DESIGN 

The overall structure of the DES algorithm is shown in 

fig1. 

Fig. 1. Overall Structure of the DES Algorithm 

The core algorithm is repeated 16 times with a different 

subkey for each round. These subkeys are 48 bits long and 

are generated from the original 56-bit key. The first 

attempt at designing DES was based on the description of 

the DES algorithm in [21], which in turn is a summary of 

the algorithm as described in [8] and [7]. This description 

of the algorithm was converted directly to VHDL using a 

functional decomposition style. 

A. Overall Structure 

The first stage in this design was to create an entity and 

architecture with the required inputs and outputs and a 

single process containing the overall algorithm. This 

resulted in the VHDL process below: 

process 
begin 
wait until go = ’1’; 

    done <= ’0’; 
wait for 0 ns; 

    ciphertext <= 

    des_core(plaintext, key_reduce(key), 
encrypt);

    done <= ’1’; 
end process;

This process is a direct implementation of the main DES 

routine. This algorithm requires the two functions 

key_reduce and des_core. The former strips the parity 

bits from the key and the latter then implements the whole 

DES algorithm. The key_reduce function reduces the key 

from 64 to 56 bits and permutes the bits to form the initial 

state of the subkey: 

function key_reduce(key : in vec64) return 
vec56 is

--moods inline 
begin
  return 
  key(57) & key(49) & key(41) & key(33) & 
     ... 
  key(28) & key(20) & key(12) & key(4); 
end;

The compiler directive --moods inline causes the 

synthesizer to inline the function. This allows the 

optimizer more scope for optimization of the circuit. 

The des_core function applies the basic DES algorithm 

16 times on a slice of the data using a different subkey on 

each iteration: 

function des_core 
  --moods inline 
  (plaintext : vec64; 
  key : vec56; 
  encrypt : std_logic) 
return vec64 
is
variable data : vec64; 

  variable working_key : vec56 := key; 
begin
  data := initial_permutation(plaintext); 
for round in 0 to 15 loop

    working_key :=            
    key_rotate(working_key,round,encrypt); 
    data := data(33 to 64) & 
    (f(data(33 to 

64),key_compress(working_key)) 
    xor 
    data(1 to 32)); 
end loop;
return 

    final_permutation(data(33 to 64) & data(1 
to 32)); 

end;

The DES algorithm is made up of the key 

transformation functions key_rotate and key_compress,

and the data transformation functions 

initial_permutation, f and final_permutation.

B. Data Transformations 

The data transformations initial_permutation and 

final_permutation are simply hard-wired bit-swapping 

routines which are most easily implemented as 

concatenations. These two functions are symmetrical, so if 

you pass data through both functions, the result is the same 

as the input. The f function is the main data transform 

which is applied 16 times to the rightmost half — a 32-bit 

slice — of the data path. It takes as its second argument a 

48-bit subkey generated by the key_compress function. 
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The function first takes the 32-bit slice of the datapath and 

expands it into 48 bits using the expand function. The 

expand function is again just a rearrangement of bits — 

input bits are replicated in a special pattern to expand the 

32-bit input to the 48-bit output [1]. 

This expanded word is then exclusive-ored with the 

subkey and fed into a substitute block. This substitutes a 

different 4-bit pattern for each 6-bit slice of the input 

pattern (remember that the original input has been 

expanded from 32 bits to 48 bits, so there are eight 

substitutions in all). The substitution also has the effect of 

reducing the output back to 32 bits again. 

The substitute algorithm first splits the input 48 bits into 

eight 6-bit slices. Each slice is then used to lookup a 

substitution pattern for that 6-bit input. This structure is 

known as the S-block. In the initial implementation, a 

single ROM is used to store all the substitution patterns. 

The substitution combines a block index with the input 

data to form an address which is then used to lookup the 

substitution value in the S-block ROM. This address 

calculation is encapsulated in the smap function. The 8 

substitutions required are carried out by the 8 calls to smap

in the substitute function. The final stage of the datapath 

transform is the permute function which is another bit-

swapping routine [1]. 

These functions define the whole of the datapath part of 

the algorithm – with the majority of the code omitted for 

brevity. 

C. Key Transformations 

The encryption key also needs to be transformed a 

number of times - specifically, before each data 

transformation, the key is rotated and then a smaller 

subkey is extracted by selecting 48 of the 56 bits of the 

key. The rotation is the most complicated part of the key 

transformation. The 56-bit key is split into two halves and 

each half rotated by 0, 1 or 2 bits depending on which 

round of the DES algorithm is being implemented. The 

direction of the rotation is to the left during encryption and 

to the right during decryption. The algorithm is split into 

two functions — do_rotate which, as the name suggests, 

does the rotation and key_rotate which calls do_rotate

twice, once for each half of the key. The do_rotate

function uses a ROM to store the rotate distances for each 

round, numbered from 0 to 15. 

This, then, was the initial realization of DES in 

behavioural VHDL. Most of the low level functions have 

been omitted in this paper to save space, but can be easily 

derived from [1]. 

V. SYNTHESIS 

A. Initial Synthesis 

The design was synthesized by MOODS with delay 

prioritized first and area prioritized second. The target 

technology was the Xilinx Virtex library. 

Fig 2 shows the control state machine of the synthesized 

design. The whole state sequence represents the process, 

which is a loop as shown by the state transition from the 

last state (c11) back to the first (c1). 

Fig. 2. Control State Machine for Initial Synthesis 

The first two states c1 and c2 implement the input 

handshake on signal go to trigger the process. The DES 

core is implemented by the remaining states, namely states 

c3 to c11, which are in the main loop as shown by the state 

transition back from c11 to c3, so are executed 16 times. 

There are 9 states in this inner loop, giving a total 

algorithm length of 146 cycles including the 2 states 

required for the input handshake and 144 for the DES core 

itself. However, an inspection of the original structure 

shown in fig 1 suggests that a reasonable target for the 

inner loop is 2 cycles per round with an optimistic target of 

1 cycle. Clearly there is a problem with this design. 

MOODS predicts that this design has the area and delay 

characteristics shown in Table I in the line labeled (1). 

B. Optimizing the Datapath 

Examining the 9 control states in the main loop and 

relating these to the mapping of the control graph to the 

dataflow graph showed that the last 8 cycles were 

performing the Sblock and the first 2 cycles were mainly 

related to transforming the key. The second state is an 

overlap state where both key and data transforms are 

taking place. The problem with the last 8 cycles was fairly 

self-evident since there are eight substitutions and there are 

eight control states to perform them. Clearly there was 

something causing each substitution to be locked into a 

separate control state and therefore preventing 

optimization with respect to latency. It wasn’t difficult to 

see what — each of these states contained just register 

assignments, concatenations and a ROM read operation. It 

is the last of these that is the problem — the ROM 

implementation being targeted is a synchronous circuit, so 

the S-block ROM can only be accessed once per clock 

cycle — in other words once per control state. It is this that 

is preventing the datapath operations from being 

performed in parallel. 

Attacking this problem is beyond the capabilities of 

behavioural synthesis because it requires knowledge of the 

dataflow at a much higher level than can be automatically 
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extracted. The solution therefore requires modification of 

the original design. 

There are two obvious solutions to this problem — 

either split the S-block into eight smaller ROMs that can 

therefore be accessed in parallel or make the S-block a 

non-ROM so that the array gets expanded into a decoder 

block once for each access, giving eight decoders. 

The latter solution appears simplest, but it will result in 

eight 512-way decoders, which will be a very large 

implementation. 

The solution of splitting the ROMs is more likely to 

yield a useful solution. The substitute function was 

rewritten to have 8 mini-ROMs instead. 

This was resynthesized and resulted in the control graph 

shown in fig 3. The inner loop was found to have been 

reduced to 2 states, and examination of the last state 

confirmed that all of the S-block substitutions were being 

carried out in the one state c4. The key transformations 

were still split across the two inner states c3 and c4. 
___ 

______

Fig. 3. Control State Machine for Optimized S-blocks 

One interesting side-effect of this optimization is that it 

is also a smaller design. MOODS predicts that this design 

has the area and delay characteristics shown in Table I in 

the line labeled (2). 

C. Optimizing the Key Transformations 

Examination of the 2 control states in the main loop, 

which both contain key transformations, showed that both 

of these states were performing ROM access and rotate 

operations. 

Examination of the original key_rotate function 

showed that the shift distance ROMs are accessed twice 

per call, so this turned out to be exactly the same problem 

as with the Sblock ROM. Since ROMs are synchronous, 

they can only be accessed once per cycle and this forces at 

least two cycles to be used for the rotate. To solve this, the 

function can be rewritten to only access the ROMs once 

per call. 

This was resynthesized and resulted in the control graph 

shown in fig 4. The inner loop was found to have been 

reduced to 1 state (c3) containing both the key and data 

transformations which are repeated 16 times. As before, 

states c1 and c2 implement the input handshake. 

Fig. 4. Control State Machine for Optimized Key Rotate 

So, this optimization means that the target of 1 clock 

cycle per round of the core was achieved. MOODS 

predicts that this design has the area and delay 

characteristics shown in Table I in the line labeled (3). 

D. Final Optimization 

It was recognized that the key_rotate function could 

be simplified by rethinking the rotate algorithm such that a 

right rotate of 1 bit was replaced by a left rotate of 27 bits 

(for a 28-bit word). This eliminates a conditional 

statement, which it was felt could be preventing some 

optimizations from taking place.This means that there was 

no need to have a different algorithm for encryption and 

decryption. 

The state machine for this design was basically the same 

as for the previous design as shown in fig 4. It was found 

that this version was slightly slower than the previous 

design but significantly smaller. 

MOODS predicts that this design has the area and delay 

characteristics shown in Table I in the line labeled (4). 

E. Results 

The results predicted by MOODS for all the variations 

of the design discussed so far are summarized in Table I. 
TABLE I 

PHYSICAL METRICS FOR SINGLE DES DESIGNS 

Design Area Latency Clock Throughput 

 (slices) (cycles) (ns) (MB/s) 

(1) Initial Design 552 146 7.8 7.12 

(2) Optimised S blocks 426 34 7.1 35.2 

(3) Optimised Key 489 18 7.1 62.6 
(4) Optimised Branch 307 18 8.4 52.9 

It can be seen that design (3) is the fastest, but design 

(4) is the smallest. Fig 5 plots area versus throughput for 

these 4 designs. The X-axis represents the area of the 

design and the Y-axis the throughput. 

Fig. 5. Area versus Throughput for all DES Designs 
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VI. TRIPLE DES 

Building on this, the DES core developed above was 

used as the core for a Triple-DES implementation. The 

idea of triple DES is that data is encrypted three times. The 

rationale for choosing three iterations and the advantages 

and disadvantages of this are explained in [8]. A common 

form of Triple DES is known as EDE2, which means data 

is encrypted, decrypted and then encrypted again using two 

different keys. The first key is used for both encryptions 

and the second key for the decryption. 

There are obviously a number of different trade-offs that 

can be made in this design. Each of these is examined in 

the following sections. In all cases, the smallest 

implementation (design (4)) was used as the DES core. 

A. Minimum Area — Iterative 

To achieve a minimum area implementation, a single 

DES core is used for all three stages. The data is passed 

through this core three times with the different 

permutations of keys and encryption mode to achieve the 

EDE2 algorithm. 

Two different styles of VHDL were tried. These 

differed in the method used to select the different inputs 

for each encryption step. The first style used a case 

statement and the second style used indexed arrays. The 

case statement style results in the following VHDL 

architecture: 

architecture behavior of tdes_ede2_iterative is
  ... 
begin
process 
variable data : vec64; 
variable key : vec56; 
variable mode : std_logic; 

begin 
wait until go = ’1’; 

    done <= ’0’; 
wait for 0 ns; 

    data := plaintext; 
for i in 0 to 2 loop
case i is

        when 1 => 
          key := key_reduce(key2); 
          mode := not encrypt; 
        when others => 
          key := key_reduce(key1); 
          mode := encrypt; 

end case;
      data := des_core(data,key,mode); 

end loop;
    ciphertext <= data; 
    done <= ’1’; 
end process;

end;

It can be seen that this uses a case statement to select the 

appropriate key and encryption mode for each iteration. 

The characteristics of the case statement solution are 

shown in Table II in the line labeled (5). The core DES 

algorithm accounts for 48 cycles (3 iterations of 16 rounds 

with 1 cycle per round), leaving an additional overhead of 

3 cycles, due to the case statement selection of the key 

which adds an extra cycle per iteration of the core. The 

second style used arrays to store the keys and modes and 

then indexes these arrays to set the key and mode for each 

iteration. It was found that the latency was the same as the 

case statement solution but the area was approximately 

25% larger. This overhead is mostly due to the use of the 

register arrays which add up to about 200 extra flip-flops. 

Clearly the case statement design is the most efficient of 

the two and so this solution was kept and the array style 

solution discarded. 

B. Minimum Latency — Pipelined 

To achieve minimum latency between samples, three 

DES cores are used to form a pipeline. Data samples can 

then be fed into the pipeline every 18 cycles (the latency of 

the single core), although the time taken for a result to be 

generated is 50 cycles because of the pipeline length. The 

circuit is simply three copies of the single-DES process: 

architecture behavior of tdes_ede2_pipe is
  ... 
  signal intermediate1, intermediate2 : vec64; 
begin
  process 
  begin 
    wait until go = ’1’; 
    intermediate1 <= 

des_core(plaintext,key_reduce(key1),encrypt); 
  end process;
  process 
  begin 
    wait until go = ’1’; 
    intermediate2 <= 
    des_core(intermediate1,key_reduce(key2),not

encrypt); 
  end process;
  process 
  begin 
    wait until go = ’1’; 
    done <= ’0’; 
    wait for 0 ns; 
    ciphertext <= 
    des_core(intermediate2,key_reduce(key1), 
    encrypt); 
    done <= ’1’; 
  end process;
end;

Note how the done output is driven only by one of the 

cores — this will give the right result provided all three 

cores synthesize to the same delay, which in practice they 

will. This design decision alleviates the need to have 

handshaking between the cores. MOODS predicts that this 

design has the area and delay characteristics shown in 

Table II in the line labeled (6). The state machine shown in 

fig 6 shows the three independent processes. For example, 

the first process is represented by states c2, c3 and c4. The 

first two states perform the handshaking on go and c4 

implements the DES core with its 16 iterations. State c7 is 

the second DES core and c10 the third. 

Fig. 6. Control State Machine for Pipelined Triple-DES 
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VII.COMPARING THE APPROACHES 

The physical metrics of the previous section are the 

predicted values given by MOODS. To get a more accurate 

assessment of the design, RTL synthesis of the structural 

VHDL output of MOODS is required. This was carried out 

using Mentor Graphics’ Leonardo Spectrum RTL synthesis 

suite. These results can be finessed further by carrying out 

placement and routing using the Xilinx Integrated 

Software Environment (ISE) Foundation suite. The results 

predicted by all three tools (MOODS, Leonardo and 

Foundation) for the three approaches (DES, Iterative 

TDES and Pipelined TDES) are shown in Table II. In all 

cases, the design was optimized during RTL synthesis 

using the vendor’s default optimization settings — a 

combination of area and delay optimization — with 

maximum optimization effort. Placement and routing was 

performed with an unreachable clock period to force 

Foundation to produce the fastest design. 

Table II shows that MOODS tends to overestimate the 

area of the design and underestimate the delay. Both of 

these are expected outcomes. The tendency to overestimate 

area is because it isn’t possible to predict the effect of logic 

minimization when working at the behavioural level. The 

tendency to underestimate delay is because it isn’t possible 

to predict routing delays. 

VIII. CONCLUSION 

This paper has shown that it is possible to design and 

analyse complex algorithms such as DES using the 

abstraction of high-level VHDL and get a synthesizable 

design.  

However, the synthesis process is not and cannot ever 

be fully automated - human guidance is still necessary to 

optimize the design’s structure to get the best from the 

synthesis tools. 

Nevertheless the modifications are high-level design 

decisions and the final design is still readable and abstract. 

There has been no need to descend to low-level VHDL to 

implement DES. The implementations of Triple-DES show 

how VHDL code can easily be reused when written at this 

level of abstraction. 

It is quite an achievement to implement the DES and 

two implementations of the Triple-DES algorithm in four 

working days including testing and this demonstrates the 

kind of productivity that result from the application of 

behavioural modelling and behavioural synthesis tools. 
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