
DES in Four Days using Behavioural Modeling & Synthesis

Peter R. Wilson and Andrew D. Brown

School of Electronics and Copmputer Science, The University of Southampton, Southampton, UK

prw@ecs.soton.ac.uk & adb@ecs.soton.ac.uk

Abstract—The experience of implementing the Data

Encryption Standard (DES) using high level VHDL and

behavioral synthesis is described. It is shown that it is

possible to describe an algorithm which is notoriously low-

level such that it is both readable and synthesizable using

behavioral modelling appropriate for behavioural synthesis.

The paper also discusses typical design issues that arise when

working at the behavioral level and shows that human insight

is still necessary to achieve the best possible results. However,

this insight is brought to bear at a high level — which is what

humans are good at — whilst the synthesis system provides

“decision support” and optimisation — which is what

software and computers are good at.

I. INTRODUCTION

This paper describes the experience of designing a Data

Encryption Standard (DES) core [1] in Electronic Code

Book (ECB) mode [2] using behavioural VHDL and the

MOODS behavioral synthesis system [3].

The main objective was to write a high-level language

description that was both readable and synthesizable. The

secondary objective was to explore the area/delay design

space of both single and triple DES. The whole exercise

took approximately four full days.

All designs have been tested against the National

Institute of Standards and Technology (NIST) standard set

of test vectors for the DES ECB implementation [4]. The

designs were simulated using both the pre-synthesis

(behavioral) and post-synthesis (RTL) VHDL

simultaneously, verifying that the outputs were not only

the same, but were the expected outputs defined in the test

set.

While the software used for synthesis is the research

platform at the University of Southampton, the concepts

and behavioural modelling approach are fundamental.

II. THE DATA ENCRYPTION STANDARD (DES)

The Data Encryption Standard, usually referred to by

the acronym DES, is a well-established encryption

algorithm which was first standardized in 1988. The

standard is maintained by the NIST [1]. DES is a

symmetrical private-key cipher. This means that the same

key is used to encrypt and to decrypt. It is therefore only

suitable for applications where the key can be kept secure.

A key consists of 64 bits — however, only 56 bits are

used in DES and the other 8 bits are parity bits.

Many people now consider DES’s 56-bit key to be too

short and therefore capable of being cracked using a

simple brute force attack. This argument is shallower than

it first appears. Although it is becoming easier to search

the entire key space, the problem of recognizing that a

solution has been found is still severe. The DES cracker

promulgated by the Electronic Frontier Foundation (EFF)

[5], for example, relies on the plaintext being ASCII. If

any form of pre-encryption encoding is used, or even if the

plaintext is in binary form (such as a word-processing

document) then the plaintext cannot reliably be recognized

without a priori knowledge of the contents.

Nevertheless, it is now common to find the algorithm

being used in triplicate — an algorithm known as Triple-

DES or TDES for short. This algorithm uses the same DES

core, but uses three passes with different keys. A common

form of TDES is EDE2, which encrypts, decrypts and then

encrypts again using two different keys. This form of

TDES can be made backwards compatible with DES

simply by making the two keys identical.

DES was designed to be small and fast. It was designed

in the mid-1980s and this is reflected in the fact that the

algorithm is mainly based on shuffling and substitution —

there is very little computation involved. Thus it is well-

suited to hardware implementation. It is described in detail

in [1], [2], [4], [6]–[8].

III. MOODS

MOODS (Multiple Objective Optimization in Control

and Datapath Synthesis) is a high-level behavioral

synthesis suite developed at the University of

Southampton. It takes as input behavioral VHDL [9], [10].

and transforms this into structural VHDL that is

behaviorally equivalent. MOODS is an aggressively

optimizing behavioral synthesis suite (hardware compiler).

The internal workings and algorithms have been described

in detail elsewhere [3], [11]–[20], but in essence the

operation of the system is as follows:

• The initial high-level VHDL description is

decomposed into ICODE, which is a hardware

assembly language. A dataflow graph is extracted

0-7803-9352-X/05/$20.00 © 2005 IEEE. 82

from this and a naive control graph constructed with

one dataflow operation per cycle. Thus the mapping

from control graph to dataflow graph at this point is

1:1. The dataflow graph describes the connectivity of

the instructions and the control graph is a state

machine that enables and disables data operations in

the dataflow graph as needed to implement the

algorithm.

• Optimization with respect to area is achieved by

physically sharing datapath units (via multiplexors) in

which case the control graph is restructured to

guarantee that data collisions do not occur.

• Optimization with respect to delay is achieved by

allowing datapath units to be connected

combinatorially so that they can perform a combined

operation in one clock cycle — effectively merging

together control states.

IV. INITIAL DESIGN

The overall structure of the DES algorithm is shown in

fig1.

Fig. 1. Overall Structure of the DES Algorithm

The core algorithm is repeated 16 times with a different

subkey for each round. These subkeys are 48 bits long and

are generated from the original 56-bit key. The first

attempt at designing DES was based on the description of

the DES algorithm in [21], which in turn is a summary of

the algorithm as described in [8] and [7]. This description

of the algorithm was converted directly to VHDL using a

functional decomposition style.

A. Overall Structure

The first stage in this design was to create an entity and

architecture with the required inputs and outputs and a

single process containing the overall algorithm. This

resulted in the VHDL process below:

process
begin
wait until go = ’1’;

 done <= ’0’;
wait for 0 ns;

 ciphertext <=

 des_core(plaintext, key_reduce(key),
encrypt);

 done <= ’1’;
end process;

This process is a direct implementation of the main DES

routine. This algorithm requires the two functions

key_reduce and des_core. The former strips the parity

bits from the key and the latter then implements the whole

DES algorithm. The key_reduce function reduces the key

from 64 to 56 bits and permutes the bits to form the initial

state of the subkey:

function key_reduce(key : in vec64) return
vec56 is

--moods inline
begin
 return
 key(57) & key(49) & key(41) & key(33) &
 ...
 key(28) & key(20) & key(12) & key(4);
end;

The compiler directive --moods inline causes the

synthesizer to inline the function. This allows the

optimizer more scope for optimization of the circuit.

The des_core function applies the basic DES algorithm

16 times on a slice of the data using a different subkey on

each iteration:

function des_core
 --moods inline
 (plaintext : vec64;
 key : vec56;
 encrypt : std_logic)
return vec64
is
variable data : vec64;

 variable working_key : vec56 := key;
begin
 data := initial_permutation(plaintext);
for round in 0 to 15 loop

 working_key :=
 key_rotate(working_key,round,encrypt);
 data := data(33 to 64) &
 (f(data(33 to

64),key_compress(working_key))
 xor
 data(1 to 32));
end loop;
return

 final_permutation(data(33 to 64) & data(1
to 32));

end;

The DES algorithm is made up of the key

transformation functions key_rotate and key_compress,

and the data transformation functions

initial_permutation, f and final_permutation.

B. Data Transformations

The data transformations initial_permutation and

final_permutation are simply hard-wired bit-swapping

routines which are most easily implemented as

concatenations. These two functions are symmetrical, so if

you pass data through both functions, the result is the same

as the input. The f function is the main data transform

which is applied 16 times to the rightmost half — a 32-bit

slice — of the data path. It takes as its second argument a

48-bit subkey generated by the key_compress function.

83

The function first takes the 32-bit slice of the datapath and

expands it into 48 bits using the expand function. The

expand function is again just a rearrangement of bits —

input bits are replicated in a special pattern to expand the

32-bit input to the 48-bit output [1].

This expanded word is then exclusive-ored with the

subkey and fed into a substitute block. This substitutes a

different 4-bit pattern for each 6-bit slice of the input

pattern (remember that the original input has been

expanded from 32 bits to 48 bits, so there are eight

substitutions in all). The substitution also has the effect of

reducing the output back to 32 bits again.

The substitute algorithm first splits the input 48 bits into

eight 6-bit slices. Each slice is then used to lookup a

substitution pattern for that 6-bit input. This structure is

known as the S-block. In the initial implementation, a

single ROM is used to store all the substitution patterns.

The substitution combines a block index with the input

data to form an address which is then used to lookup the

substitution value in the S-block ROM. This address

calculation is encapsulated in the smap function. The 8

substitutions required are carried out by the 8 calls to smap

in the substitute function. The final stage of the datapath

transform is the permute function which is another bit-

swapping routine [1].

These functions define the whole of the datapath part of

the algorithm – with the majority of the code omitted for

brevity.

C. Key Transformations

The encryption key also needs to be transformed a

number of times - specifically, before each data

transformation, the key is rotated and then a smaller

subkey is extracted by selecting 48 of the 56 bits of the

key. The rotation is the most complicated part of the key

transformation. The 56-bit key is split into two halves and

each half rotated by 0, 1 or 2 bits depending on which

round of the DES algorithm is being implemented. The

direction of the rotation is to the left during encryption and

to the right during decryption. The algorithm is split into

two functions — do_rotate which, as the name suggests,

does the rotation and key_rotate which calls do_rotate

twice, once for each half of the key. The do_rotate

function uses a ROM to store the rotate distances for each

round, numbered from 0 to 15.

This, then, was the initial realization of DES in

behavioural VHDL. Most of the low level functions have

been omitted in this paper to save space, but can be easily

derived from [1].

V. SYNTHESIS

A. Initial Synthesis

The design was synthesized by MOODS with delay

prioritized first and area prioritized second. The target

technology was the Xilinx Virtex library.

Fig 2 shows the control state machine of the synthesized

design. The whole state sequence represents the process,

which is a loop as shown by the state transition from the

last state (c11) back to the first (c1).

Fig. 2. Control State Machine for Initial Synthesis

The first two states c1 and c2 implement the input

handshake on signal go to trigger the process. The DES

core is implemented by the remaining states, namely states

c3 to c11, which are in the main loop as shown by the state

transition back from c11 to c3, so are executed 16 times.

There are 9 states in this inner loop, giving a total

algorithm length of 146 cycles including the 2 states

required for the input handshake and 144 for the DES core

itself. However, an inspection of the original structure

shown in fig 1 suggests that a reasonable target for the

inner loop is 2 cycles per round with an optimistic target of

1 cycle. Clearly there is a problem with this design.

MOODS predicts that this design has the area and delay

characteristics shown in Table I in the line labeled (1).

B. Optimizing the Datapath

Examining the 9 control states in the main loop and

relating these to the mapping of the control graph to the

dataflow graph showed that the last 8 cycles were

performing the Sblock and the first 2 cycles were mainly

related to transforming the key. The second state is an

overlap state where both key and data transforms are

taking place. The problem with the last 8 cycles was fairly

self-evident since there are eight substitutions and there are

eight control states to perform them. Clearly there was

something causing each substitution to be locked into a

separate control state and therefore preventing

optimization with respect to latency. It wasn’t difficult to

see what — each of these states contained just register

assignments, concatenations and a ROM read operation. It

is the last of these that is the problem — the ROM

implementation being targeted is a synchronous circuit, so

the S-block ROM can only be accessed once per clock

cycle — in other words once per control state. It is this that

is preventing the datapath operations from being

performed in parallel.

Attacking this problem is beyond the capabilities of

behavioural synthesis because it requires knowledge of the

dataflow at a much higher level than can be automatically

84

extracted. The solution therefore requires modification of

the original design.

There are two obvious solutions to this problem —

either split the S-block into eight smaller ROMs that can

therefore be accessed in parallel or make the S-block a

non-ROM so that the array gets expanded into a decoder

block once for each access, giving eight decoders.

The latter solution appears simplest, but it will result in

eight 512-way decoders, which will be a very large

implementation.

The solution of splitting the ROMs is more likely to

yield a useful solution. The substitute function was

rewritten to have 8 mini-ROMs instead.

This was resynthesized and resulted in the control graph

shown in fig 3. The inner loop was found to have been

reduced to 2 states, and examination of the last state

confirmed that all of the S-block substitutions were being

carried out in the one state c4. The key transformations

were still split across the two inner states c3 and c4.

Fig. 3. Control State Machine for Optimized S-blocks

One interesting side-effect of this optimization is that it

is also a smaller design. MOODS predicts that this design

has the area and delay characteristics shown in Table I in

the line labeled (2).

C. Optimizing the Key Transformations

Examination of the 2 control states in the main loop,

which both contain key transformations, showed that both

of these states were performing ROM access and rotate

operations.

Examination of the original key_rotate function

showed that the shift distance ROMs are accessed twice

per call, so this turned out to be exactly the same problem

as with the Sblock ROM. Since ROMs are synchronous,

they can only be accessed once per cycle and this forces at

least two cycles to be used for the rotate. To solve this, the

function can be rewritten to only access the ROMs once

per call.

This was resynthesized and resulted in the control graph

shown in fig 4. The inner loop was found to have been

reduced to 1 state (c3) containing both the key and data

transformations which are repeated 16 times. As before,

states c1 and c2 implement the input handshake.

Fig. 4. Control State Machine for Optimized Key Rotate

So, this optimization means that the target of 1 clock

cycle per round of the core was achieved. MOODS

predicts that this design has the area and delay

characteristics shown in Table I in the line labeled (3).

D. Final Optimization

It was recognized that the key_rotate function could

be simplified by rethinking the rotate algorithm such that a

right rotate of 1 bit was replaced by a left rotate of 27 bits

(for a 28-bit word). This eliminates a conditional

statement, which it was felt could be preventing some

optimizations from taking place.This means that there was

no need to have a different algorithm for encryption and

decryption.

The state machine for this design was basically the same

as for the previous design as shown in fig 4. It was found

that this version was slightly slower than the previous

design but significantly smaller.

MOODS predicts that this design has the area and delay

characteristics shown in Table I in the line labeled (4).

E. Results

The results predicted by MOODS for all the variations

of the design discussed so far are summarized in Table I.
TABLE I

PHYSICAL METRICS FOR SINGLE DES DESIGNS

Design Area Latency Clock Throughput

 (slices) (cycles) (ns) (MB/s)

(1) Initial Design 552 146 7.8 7.12

(2) Optimised S blocks 426 34 7.1 35.2

(3) Optimised Key 489 18 7.1 62.6
(4) Optimised Branch 307 18 8.4 52.9

It can be seen that design (3) is the fastest, but design

(4) is the smallest. Fig 5 plots area versus throughput for

these 4 designs. The X-axis represents the area of the

design and the Y-axis the throughput.

Fig. 5. Area versus Throughput for all DES Designs

85

VI. TRIPLE DES

Building on this, the DES core developed above was

used as the core for a Triple-DES implementation. The

idea of triple DES is that data is encrypted three times. The

rationale for choosing three iterations and the advantages

and disadvantages of this are explained in [8]. A common

form of Triple DES is known as EDE2, which means data

is encrypted, decrypted and then encrypted again using two

different keys. The first key is used for both encryptions

and the second key for the decryption.

There are obviously a number of different trade-offs that

can be made in this design. Each of these is examined in

the following sections. In all cases, the smallest

implementation (design (4)) was used as the DES core.

A. Minimum Area — Iterative

To achieve a minimum area implementation, a single

DES core is used for all three stages. The data is passed

through this core three times with the different

permutations of keys and encryption mode to achieve the

EDE2 algorithm.

Two different styles of VHDL were tried. These

differed in the method used to select the different inputs

for each encryption step. The first style used a case

statement and the second style used indexed arrays. The

case statement style results in the following VHDL

architecture:

architecture behavior of tdes_ede2_iterative is
 ...
begin
process
variable data : vec64;
variable key : vec56;
variable mode : std_logic;

begin
wait until go = ’1’;

 done <= ’0’;
wait for 0 ns;

 data := plaintext;
for i in 0 to 2 loop
case i is

 when 1 =>
 key := key_reduce(key2);
 mode := not encrypt;
 when others =>
 key := key_reduce(key1);
 mode := encrypt;

end case;
 data := des_core(data,key,mode);

end loop;
 ciphertext <= data;
 done <= ’1’;
end process;

end;

It can be seen that this uses a case statement to select the

appropriate key and encryption mode for each iteration.

The characteristics of the case statement solution are

shown in Table II in the line labeled (5). The core DES

algorithm accounts for 48 cycles (3 iterations of 16 rounds

with 1 cycle per round), leaving an additional overhead of

3 cycles, due to the case statement selection of the key

which adds an extra cycle per iteration of the core. The

second style used arrays to store the keys and modes and

then indexes these arrays to set the key and mode for each

iteration. It was found that the latency was the same as the

case statement solution but the area was approximately

25% larger. This overhead is mostly due to the use of the

register arrays which add up to about 200 extra flip-flops.

Clearly the case statement design is the most efficient of

the two and so this solution was kept and the array style

solution discarded.

B. Minimum Latency — Pipelined

To achieve minimum latency between samples, three

DES cores are used to form a pipeline. Data samples can

then be fed into the pipeline every 18 cycles (the latency of

the single core), although the time taken for a result to be

generated is 50 cycles because of the pipeline length. The

circuit is simply three copies of the single-DES process:

architecture behavior of tdes_ede2_pipe is
 ...
 signal intermediate1, intermediate2 : vec64;
begin
 process
 begin
 wait until go = ’1’;
 intermediate1 <=

des_core(plaintext,key_reduce(key1),encrypt);
 end process;
 process
 begin
 wait until go = ’1’;
 intermediate2 <=
 des_core(intermediate1,key_reduce(key2),not

encrypt);
 end process;
 process
 begin
 wait until go = ’1’;
 done <= ’0’;
 wait for 0 ns;
 ciphertext <=
 des_core(intermediate2,key_reduce(key1),
 encrypt);
 done <= ’1’;
 end process;
end;

Note how the done output is driven only by one of the

cores — this will give the right result provided all three

cores synthesize to the same delay, which in practice they

will. This design decision alleviates the need to have

handshaking between the cores. MOODS predicts that this

design has the area and delay characteristics shown in

Table II in the line labeled (6). The state machine shown in

fig 6 shows the three independent processes. For example,

the first process is represented by states c2, c3 and c4. The

first two states perform the handshaking on go and c4

implements the DES core with its 16 iterations. State c7 is

the second DES core and c10 the third.

Fig. 6. Control State Machine for Pipelined Triple-DES

86

VII.COMPARING THE APPROACHES

The physical metrics of the previous section are the

predicted values given by MOODS. To get a more accurate

assessment of the design, RTL synthesis of the structural

VHDL output of MOODS is required. This was carried out

using Mentor Graphics’ Leonardo Spectrum RTL synthesis

suite. These results can be finessed further by carrying out

placement and routing using the Xilinx Integrated

Software Environment (ISE) Foundation suite. The results

predicted by all three tools (MOODS, Leonardo and

Foundation) for the three approaches (DES, Iterative

TDES and Pipelined TDES) are shown in Table II. In all

cases, the design was optimized during RTL synthesis

using the vendor’s default optimization settings — a

combination of area and delay optimization — with

maximum optimization effort. Placement and routing was

performed with an unreachable clock period to force

Foundation to produce the fastest design.

Table II shows that MOODS tends to overestimate the

area of the design and underestimate the delay. Both of

these are expected outcomes. The tendency to overestimate

area is because it isn’t possible to predict the effect of logic

minimization when working at the behavioural level. The

tendency to underestimate delay is because it isn’t possible

to predict routing delays.

VIII. CONCLUSION

This paper has shown that it is possible to design and

analyse complex algorithms such as DES using the

abstraction of high-level VHDL and get a synthesizable

design.

However, the synthesis process is not and cannot ever

be fully automated - human guidance is still necessary to

optimize the design’s structure to get the best from the

synthesis tools.

Nevertheless the modifications are high-level design

decisions and the final design is still readable and abstract.

There has been no need to descend to low-level VHDL to

implement DES. The implementations of Triple-DES show

how VHDL code can easily be reused when written at this

level of abstraction.

It is quite an achievement to implement the DES and

two implementations of the Triple-DES algorithm in four

working days including testing and this demonstrates the

kind of productivity that result from the application of

behavioural modelling and behavioural synthesis tools.

IX. REFERENCES

[1] “Data encryption standard,” National Institute of Standards and
Technology (NIST), Federal Information Processing Standard (FIPS)

Publication 46-3, Oct. 1999.

[2] “DES modes of operation,” National Institute of Standards and
Technology (NIST), Federal Information Processing Standard (FIPS)

Publication 81, Dec. 1980.

[3] A. D. Brown and A. C. Williams, “The MOODS behavioural
synthesis

system,” in Proceedings of the 3rd International Forum on Design

Languages (FDL), Tubingen, Germany, Sept. 2000, pp. 17–21.
[4] “Validating the correctness of hardware implementations of the NBS

data encryption standard,” National Institute of Standards and

Technology, Tech. Rep. 500-20, 1980.
[5] Electronic Frontier Foundation, Cracking DES. O’Reilly and

Associates Inc., July 1998.

[6] “Guidelines for implementing and using the NBS data encryption
standard,” National Institute of Standards and Technology (NIST),

Federal Information Processing Standard (FIPS) Publication 74, Apr.
1981.
[7] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied

Cryptography. CRC press, 1996.

[8] B. Schneier, Applied Cryptography, 2nd ed. Wiley press, 1996.
[9] A. J. Rushton, MOODS VHDL Style Guide, MOODS v1.2 ed., LME

Design Automation Ltd., Chilworth Park, Southampton, UK, Aug. 2001.

[10] M. Zwoli˜nski and A. J. Rushton, MOODS VHDL Reference,
MOODS v1.2 ed., LME Design Automation Ltd., Chilworth Park,

Southampton, UK, Aug. 2001.

[11] A. D. Brown, A. C. Williams, and Z. A. Baidas, “Hierarchical
module expansion in a VHDL behavioural synthesis system,” in

Electronic Chips and Systems Design Languages, J. Mermet, Ed. Kluwer

Academic Publishers, 2001, pp. 249–260.
[12] K. R. Baker and A. J. Currie, “Multiple objective optimisation in a

behavioural synthesis system,” IEE Proceedings - G, vol. 140, no. 4,

pp. 253–260, 1993.
[13] Z. A. Baidas, A. D. Brown, and A. C. Williams, “A VHDL

behavioural synthesis system with floating point support,” in Forum on

Design Languages 2000, Tubingen, Germany, 2000, pp. 31–36.
[14] ——, “Floating point behavioural synthesis,” IEEE Transactions on

Computer Aided Design, vol. 20, no. 7, pp. 828–839, 2001.

[15] A. C. Williams, A. D. Brown, and M. Zwoli˜nski, “Simultaneous
optimisation of dynamic power, area and delay in behavioural synthesis,”
IEE Proceedings on Computers and Digital Techniques, vol. 147, no. 6,

pp. 383–390, 2000.
[16] A. C. Williams, A. D. Brown, and Z. A. Baidas, “Hierarchical

module expansion in a VHDL behavioural synthesis system,” in Forum

on Design Languages, 1998.
[17] A. D. Brown, K. R. Baker, and A. C. Williams, “Online testing

of statically and dynamically scheduled synthesized systems,” IEEE
Transactions on Computer Aided Design, vol. 16, pp. 47–57, 1997.

[18] K. R. Baker, “Multiple objective optimisation of data and control

paths in a behavioural silicon compiler,” Ph.D. dissertation, University of
Southampton, Southampton, England, Sept. 1992.

[19] D. J. D. Milton, “Dynamic memory allocation within a behavioural

synthesis system,” Ph.D. dissertation, University of Southampton,
Southampton, England, Jan. 2002.

[20] A. C. Williams, “A behavioural VHDL synthesis system using data

path optimisation,” Ph.D. dissertation, University of Southampton,
Southampton, England, Oct. 1997.

[21] A. D. Brown, “Application note - DES core,” LME Design

Automation, Southampton, UK, Tech. Rep., Dec. 2000.

87

