
Abstract

Hardware description languages, mainly Verilog and

VHDL including their analog and mixed-signal extensions,

represent a significant investment by the electronic design

automation community. Hardware description language

technology promises productivity advances such as a

medium for intellectual property exchange, model

portability, model productivity, greater design

collaboration, top-down design for AMS, AMS synthesis,

and richer mixed-level, mixed-signal simulation for

improved simulation throughput. Modeling tools represent

a step toward completion of the dwelling the EDA

community seeks to build upon the hardware description

language foundation. One such environment of tools is

described in this tutorial on Paragon†. Paragon will be

described and demonstrated on both behavioral models

using multiple HDLs and compact device modeling

applications involving Verilog-A primarily.

Keywords

Paragon, ModLyngTM, modeling tools, hardware

description language

1. Introduction and the HDL Foundation

In 1987, the author first used the MAST® modeling

language in what came to be known initially as an analog

hardware description language (HDL) and later as a mixed-

signal HDL. MAST was a proprietary language and was

used in conjunction with the Saber simulator [1]. MAST

demonstrated distinct advantages for analog and mixed-

signal modeling by allowing the user to focus primarily on

model behavior issues, not the entrapments of the

simulator’s algorithms or data structures. Saber and MAST

together represented the first widely available circuit

simulation platform that separated models from the

simulator in this liberating fashion.

Digital HDLs were already standardized by the late

1980s. Two languages emerged in the market: VHDL and

Verilog. These languages were seen as valuable to multi-

level digital hardware representation, but the biggest

impetus to their use came when additional tools such as

logic synthesis came of age. VHDL and Verilog were/are

the input languages for these tools and the design

advantages of learning and using such a language became

too compelling to ignore.

†
Portions of this research were supported by the National Science

Foundation under grants EEC-0088011, the Office of Naval Research

under Subaward No. USC 01-636, DARPA under grant N66001-

01-1-8919, and the SRC under grant SRC05-463.

In the early 1990s the efforts toward standardization

of analog extensions to the standard digital HDLs began.

The first effort culminated in 1999 with the approved

standard analog and mixed-signal extensions to VHDL

[2]. This new language is referred to as VHDL-AMS and

is a superset of VHDL. Later such extensions were added

and approved to Verilog [3]. This language is known as

Verilog-AMS and is a superset of Verilog. However,

during the 1990s a different language emerged from

Cadence to address the modeling of analog behavior

beyond that of SPICE-like netlists much as MAST had

done with Saber. This language is known as Verilog-A

[4]. Recently, Verilog-A had extensions added to it in

support of compact modeling of semiconductor devices

[5].

Clearly, a substantial investment has been made by

members of the electronic design automation (EDA)

community (industry and academia) in defining and

creating viable HDL technology. These investments have

been made by the “language lawyers”1 for

standardization, model developers for libraries, and

simulator architects for platforms that enable model

separation from analog circuit simulation algorithms.

With such a significant investment, it is imperative that

the returns and the promises be realized. And yet, as

recently as this year, two major IEEE conferences have

had forums where the value of analog/mixed-signal

(AMS) HDL technology has been debated [6, 7]. Such

debates no longer rage regarding the digital HDLs. They

have become part of the fabric of digital design and are

taught in most electrical and computer engineering

curricula. In fairness, both of these forums were held at

conferences primarily focused on a single market

segment – the semiconductor market and IC design – but

the fact that the EDA industry is even asking the question

is an indictment. Certainly, analog synthesis, a very

difficult prospect, would do for AMS HDLs what digital

synthesis did for Verilog and VHDL, but that solution

has not been achieved yet.

AMS technology has been more widely adopted in

the transportation industry where the ability to

concurrently model and simulate multiple disciplines

(e.g., electro-mechanical, electro-thermal, electro-

hydraulic) has been a big advantage, but even in this

arena there are barriers to adoption. AMS flows have

been adopted by some IC design houses. Many view it as

the future of analog/mixed-signal design, but the

1
a glib reference to those highly skilled experts that are adept at

defining consistent language semantics to the finest degree of detail

while also being clairvoyant enough to perceive future pitfalls if such

issues are not dealt with properly

Modeling Tools Built Upon the HDL Foundation

H. Alan Mantooth

Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA 72701

0-7803-9352-X/05/$20.00 © 2005 IEEE. 118

adoption has been lethargic. One explanation for this

glacial movement is that by itself AMS HDLs do not

represent a significant productivity enhancement as

compared to how analog IC designers achieve tape-out

today. A second, related explanation is that analog IC

designers are still successful doing it “like they’ve always

done it” even with added time-to-market pressures,

increased performance demands driven by embedded

digital systems, and challenges posed by constantly

advancing process technology. Finally, another explanation

is that the deployment of AMS HDL technology has not

yet reached a level of comfort for the analog IC design

community to feel it is ready to be relied upon. They use

SPICE for transistor level analysis and are heavily invested

in its use. They rely on transistor models derived from the

foundry to verify that their designs perform as desired and

work over process corners and temperature. They have an

increasing need for behavioral modeling, but the barriers to

the adoption of AMS HDL technology as the solution

include:

(1) the learning curve for the HDL and

(2) integration with their favored SPICE tools

because they need transistor simulations along

with their behavioral models.

Barrier (2) above is a simulator feature issue and not the

topic of this paper. However, it is important to point out

that many AMS HDL simulators and their associated

environments have yet to achieve analysis and post-

simulation analysis features found in SPICE tools. This

certainly does not encourage adoption. The good news is

that this is an active area of development and will be

addressed.

To delve deeper into barrier (1) above, it is not merely

the learning of a new language that poses an obstacle –

although for the majority of analog designers this is real –

it is in understanding how simulators work internally and

composing the model in a way less likely to cause

problems. Another part of the learning curve of AMS

HDLs is adjusting their thinking from that of a schematic-

driven functional way of thinking to an expression-based

approach. To illustrate these points consider that an analog

IC designer knows that a pair of diodes can provide a

limiting function in a model they are creating, but the

associative if-then-else structure in an HDL is easily

misconstructed such that either the simulator will have

convergence problems or, more fundamentally, it simply is

not what the designer intended. Frustration mounts very

quickly in a designer when simulations of a model fail to

converge, particularly when this model is not even the

topic of design. It may merely be a representation of a bias

circuit or a dynamic load configuration needed in order to

proceed with the design activity. Frustration continues to

mount when very little exists in the way of tools and

methods to diagnose and remedy such problems. In truth,

these issues exist for all users of AMS HDL technology

today and will be the focus of the modeling tools described

in this paper.

The next section of the paper will describe the

modeling tool Paragon including what it is, how it is used,

and how it addresses the elements of barrier (1) [8, 9].

Section 3 focuses on a couple of examples while Section

4 concludes by reviewing some of the promises that HDL

technology makes and how Paragon helps make these

promises come true.

2. The Paragon Modeling Tool

Paragon2 is a graphical modeling environment that

consists of interfaces that segment the modeling process

along logical macromodeling lines of thinking. It utilizes

a mixture of schematic, browsing and textual interfaces

as illustrated in Fig. 1 to expedite model creation and

visualization of the effects present within a model. While

Fig. 1 is the illustration of a semiconductor device model,

Paragon is easily applied to the modeling of higher-level

circuit and system blocks. Both will be described in the

examples in Section 3.

For the purpose of describing the use of Paragon, an

“outside-in” modeling process that begins with

describing the model interface (i.e., connections or ports,

name of model, model parameters) and flows to the

internal structural and behavioral details will be

followed. However, no restrictions are placed on the user

as to what modeling steps are performed when. Referring

again to Fig. 1, the leftmost portion of the screenshot

illustrates the browser/editor for loading models (upper

left) and editing the interface of the current model (lower

left). A special set of dialogs appear for creating or

modifying model parameters that allow the user to

specify model parameter types, units, default values, and

numerical ranges of validity. When appropriate, such as

in the case of units and types, built-in or standard values

are accessible from the dialog. In deference to

semiconductor device modeling, Paragon also allows the

user to distinguish between process parameters and

instance parameters for the model. In fact, Paragon is

able to import a .MODEL card to expedite the task of

model parameter entry and defaulting for process

parameters.

Models consist of structure (or topology) and

behavior in general. The top-right portion of the

screenshot of Fig. 1 shows a schematic view of the

internal structure of the model being created. This

window is referred to as the topology editor. The

behavior is reflected in the expressions (lower right) used

to describe either a block in the structure or a set of

expressions that are used to derive internal variables

from the model parameters and other model variables. A

Paragon model can consist purely of equations and

essentially no structure, a structure with associated

equations as in Fig. 1, or a hierarchical model with a

structure only (i.e., a macromodel).

Once the model equations, topology, and interface

information are entered, the model code can be

generated. However, Paragon contains some model

checking functions that can be executed to determine

2
Paragon is being commercialized by Lynguent, Inc. under a license

agreement from the University of Arkansas. The commercial name of

the tool is ModLyngTM. All screenshots in this paper are taken from

ModLyng.

119

Fig. 1. Equation editor (lower right), topology editor (top center), and model interface editor showing the partially depleted

BSIMSOIv2.2 MOSFET model.

continuity of key functions in the model or to perform

consistency checking of equations and variables.

If a MAST, Verilog-A, or VHDL-AMS model already

exists, then it can be imported into Paragon3. Recently,

Modelica models can be imported through a tool written by

a partner institution in Russia [10]. At this point the model

topology may need to be arranged in a logical fashion, but

the model is present and can be easily modified, analyzed

and eventually debugged in this environment. Of course,

the model can be output in any of the languages supported

by Paragon if no language-specific concepts have been

employed. If a Verilog-AMS model is imported and it does

employ a semantic not representable in VHDL-AMS or

other languages, then only Verilog-AMS code generation

will be enabled. In this way, even though a guiding

principle behind Paragon’s concept is language

independent model entry, it does not have to behave as a

“common denominator” modeling environment. It is

designed to operate in the context of the major HDLs as

required.

In order to address model checking issues and to reduce

simulation time, Paragon has a rich and growing set of

3
Paragon only supported MAST import, but ModLyng supports the

import of all three languages.

analysis and utility methods. An abstract syntax tree

(AST) is created for each model to identify and represent

the inter-relationships between different time-varying

variables and constants of the model. The AST is

analyzed to determine functional and time dependencies

in the model. This enables the generation of efficient and

readable code. The model import mechanism also utilizes

a combination of the above mentioned utilities and

distinguishes between sequential and simultaneous

blocks of the model. It also identifies undefined variables

before actually saving the model to the database. These

and other features differentiate the model importer from

basic language translators. So far, continuous time

models have been the focus for model importing while

research effort is ongoing to include event-driven

behavior.

A significant advantage of Paragon is that it produces

readable, standardized hardware description language

code that captures design intent and removes the

common implementation errors that result in unnecessary

iterations. Paragon can generate Verilog-A, Verilog-

AMS, VHDL-AMS, MAST, and some C-based

languages for special purpose simulators. Paragon

models are easier to support than hundreds or thousands

of lines of code due to the mixed graphical and textual

120

representation in the tool. The learning curve for these

tools is not steep due to the fact that Paragon is

exceptionally intuitive to use as a result of using familiar

user interface approaches such as schematic capture.

Outputs such as symbols for use in design environments

and model documentation in HTML format can be

generated from Paragon as well to expedite model use.

Paragon utilizes a generic XML schema, which enables the

capture of information specific to model data. The use of

XML, which is open source and a standardized format,

allows easy data interchange and formatting. Many

standard language translation tools like Extensible Style

Sheet Language Transformations (XSLT) [11] can be used

to manipulate the data and convert it into a desired target

format.

In addition to the HDL code generation functionality,

Paragon can also be used in combination with other tools

like the ADMS [12, 13] and MCAST [14] model compilers

to generate low level C code for target simulators. One can

imagine the amount of time, effort and complexity

involved in writing and debugging huge models such as

those in the BSIM family in either C or an HDL like

Verilog-A before actually deploying in simulations. The

usefulness and capacity of high level advanced modeling

tools like Paragon was illustrated by generating two

BSIMSOI models (version 2.2 and 3.2) and validating

against the built-in Spectre model in [15]. Another

example of Paragon’s capacity is illustrated by the VBIC

implementation as described in [16]. In each case, the

Verilog-A code generated by Paragon was fed into ADMS

to compile it into C for the compiled model interface of

Spectre.

3. Examples

The first example to be described is a semiconductor

device model (BSIMSOI). This leverages off of the

information presented in Fig. 1. Several state-of-the-art

device models have been implemented over the past year

including BSIMSOI, EKV, VBIC, and a SiC JFET power

device model [17-21].

The BSIMSOI model consists of over 15,000 lines of C

code as implemented for SPICE. It represents the most

significant stress test for Paragon due to its complexity and

size. The BSIMSOI model consists of as many as six

external pins (or ports): drain (d), gate (g), source (s),

external body (p), back gate (e), and an optional thermal

pin. The thermal pin was not required for the project that

this model was created for. An additional internal body

node (b) exists within the model as can be seen in the

model topology of Fig. 1 on the far right-hand side. The

model creation process was started by entering the ports

and then importing a .MODEL card populated with the

default values of all process parameters. This import

process resulted in the fmodeltype entry in the model

parameters list of Fig. 1. The instance parameters were

input directly using the user interface.

Next, all of the model expressions involving model

parameter manipulation were entered into the equation

editor. These expressions are easily stripped out from the

Berkeley C code and pasted into the editor for speed and

syntactical correctness. At this point, the longest task of

the modeling effort is the input of the model topology

and the equations that go with those blocks (i.e., branch

constitutive equations) or the equations that algebraically

compute internal variables needed for the branch

constitutive equations. For a model the size of BSIMSOI

this takes a couple of days normally. The challenge is

that in Paragon one is capturing the model in more of a

macro or object-oriented style using the topology as the

driving implementation vehicle. Whether the original

Berkeley model is implemented from such a diagram or

not, this object-orientation is not reflected in the C

implementation. Therefore, up until now, this has been a

manual process that is error-prone requiring careful

model validation against a known good model. This

validation typically takes a few days itself and more if

serious errors have been made.

This situation has led us to develop a Verilog-A

model import mechanism that is currently being tested

with BSIM3 and BSIM4. The development has focused

on Verilog-A for two main reasons. Verilog-A is readily

generated from the Berkeley C code and it is commonly

used as an implementation format for semiconductor

device models. This will reduce the implementation time

in Paragon for existing semiconductor models to a couple

of hours allowing for manual rearrangement of the

default place-and-route of the model topology that gets

automatically generated.

Once the model is implemented in Paragon the utility

of the environment can be brought to bear on the device

model. For example, the continuity checking algorithm

can be employed to analyze complex equations in the

model. Relationships within the model can be visualized.

Alternative output formats can be considered such as

VHDL-AMS. Enhancements to the model can be

considered by a larger audience of model developers than

those familiar with SPICE codes. The project that led to

the BSIMSOI version 2.2 implementation was focused

on adding radiation effects to the base model. These

effects included total dose and single event effects. These

enhancements were made and the model regenerated in

Verilog-A. The model was then compiled using ADMS

and linked into Spectre through its compiled model

interface.

To conclude the semiconductor device modeling

illustration, once the topology, equations and interface

are input, the code can be generated in Verilog-A,

VHDL-AMS, and MAST at the present time. By using

model compilers these codes can be converted into C and

therefore made to run quite efficiently.

The second example is the behavioral model creation

of a commercial-off-the-shelf (COTS) quartz crystal

oscillator. A behavioral model of the C38SA device (200

°C, 7.3728MHz) from Sentry Manufacturing was

required as part of a larger, high temperature system. The

basic behavioral model was to be modified to include

temperature and performance degradation effects as a

function of time and temperature (i.e., aging effects).

121

Fig. 2. C38SA quartz oscillator model as defined in Paragon.

Fig. 2 shows the screenshot of the base oscillator model

without thermal or aging effects. A much simpler model

conceptually than the semiconductor device model, it still

consists of the same basic elements: interface, topology

and equations. In this case the output voltage, frequency

and waveshape are modeled according to experimental

measurements made of the device. The jitter of this

oscillator was insignificant (even over temperature) and

thus neglected in the model. In this case, the model was

generated using VHDL-AMS and simulated using

SystemVisionTM. Fig. 3 shows the basic simulation results

as compared to measurements. While the ringing was not

captured in this simple model, the basic functionality is

there.

Next, the lognormal behavior of the oscillator model’s

output high voltage as a function of time and temperature

was modeled according to [22]. This amounted to adding a

few extra equations and parameters to the model. The

limited experimental data taken allowed for a basic aging

model for the oscillator. The oscillator does not operate for

very long beyond its 200 °C rating. The experimental data

indicated that the leading indicator of failure occurred

when the output voltage dropped by 20 %, indicating that

oscillator failure was imminent. The voltage drops rapidly

once it falls by 20 %, analogous to the voltage on a battery

when discharging. The nominal output voltage was about 5

V.

The oscillator model with aging was simulated at 220

°C and 250 °C and accurately predicted oscillator failure at

these temperatures. For 220 °C the device failed at

approximately 73 hours and at 250 °C it failed at 15.5

hours – both within a few percent of the measured data.

Another experimentally validated simulation predicted that

if the oscillator was first operated for 10 hours at 250 °C,

then it would only operate for approximately 35 hours at

220 °C before degrading to a point of failure thus

indicating that the model was capable of predicting

thermally-induced failures as a function of time at

temperature.

4. Conclusions

This tutorial paper has described the use of the Paragon

modeling tool that is built to operate on the HDL

foundation and reduce the barriers to widespread usage

of these technologies by making them easier to

effectively use, improve the resulting models created,

and provide a richer set of debugging capability in the

future. By way of conclusion it is instructive to review

some of the promises that HDL technology espouses to

see where things stand at this point. A representative list

is shown below:

1. Medium for intellectual property (IP) exchange

2. Model portability

3. Design collaboration (ease of collaboration between

customers-suppliers, companies, design groups)

4. Top-down design for AMS (medium for

expressibility of analog and mixed-signal blocks

during design exploration phase)

5. Analog Synthesis (AMS needed for the models)

6. Mixed-level and Mixed-signal Simulation

From the six items listed above, modeling tools such

as Paragon help to directly address four of them (2, 3, 4,

6). Modeling tools such as Paragon help to insure model

portability, encourage design collaboration and top-down

design methods because of the ease of making models

and sharing them (even if encrypted), and certainly

promote mixed-level simulation. The choice of whether

to use HDLs as a medium for IP exchange may depend

122

on a number issues, but certainly once the decision is made

to use HDLs then modeling tools will greatly help to

facilitate IP exchange in the same way encrypted models

can be delivered from customer to supplier, for example.

Lastly, experts in analog synthesis have indicated a need

for modeling tools to enable their simulation-based

approaches. However, tools like Paragon need more

research and additional utility to address these

requirements because they are driven from a bottom-up

behavioral model generation need such as described in

[23].

Fig. 3. Output waveforms of the C38SA quartz oscillator and the

behavioral model.

5. Acknowledgements

The author would like to acknowledge and express his

gratitude to all of the students that have contributed to the

development of Paragon in the MSCAD Laboratory at the

University of Arkansas over the past six years: O. Abbasi,

A. Austin, V. Chaudhary, Y. Feng, M. Francis, C.

Gathercole, H. Gunupudi, N. Hingora, X. Huang, J.

Kutchka, P. Mallick, J. Mao, H. Nguyen, E. Pettis, C.

Vemulapally, and W. Zheng.

6. References

[1] H. A. Mantooth and M. Fiegenbaum, Modeling with an

Analog Hardware Description Language, Kluwer Academic

Publishers, Norwell, MA, 1995.

[2] 1076.1-1999 IEEE Standard VHDL Analog and Mixed-

Signal Extensions Language Reference Manual, IEEE Press,

ISBN 0-7381-1640-8.

[3] Accellera, “Verilog-AMS Language Reference Manual –

Analog & Mixed-Signal Extensions to Verilog HDL,”

Version 2.2, Nov. 2004. http://www.eda.org/verilog-ams

[4] D. Fitzpatrick, I. Miller, Analog Behavioral Modeling with

Verilog-A, Kluwer Academic Publishers, Norwell, MA,

1997.

[5] Accellera, “Proposed Verilog-A Language Extensions for

Compact Modeling,” version 9, 23 pgs, Aug. 2004.

http://www.eda.org/verilog-ams

[6] Accellera Breakfast and Panel Discussion, “Design and

Verification: Can the Analog/Mixed-Signal (AMS)

Standard Bridge the Chasm?,” Anaheim Hilton, Anaheim,

CA, June 15, 2005.

[7] CICC Panel Discussion, “Analog Behavioral Modeling:

Fantasy, Fad, or Foundation for the Future?,” Doubletree

Hotel, San Jose, CA, Sept. 20, 2005.

[8] V. Chaudhary, M. Francis, X. Huang, H. A.

Mantooth, “Paragon - A mixed-signal behavioral

modeling environment,” IEEE Int. Conf. on

Communications, Circuits, & Syst. (ICCCAS),

vol. 2, pp. 1315-1321, Chengdu, China, June 2002.

[9] P. Mallick, M. Francis, C. Vemulapally, A.

Austin, H. A. Mantooth, “Achieving language

independence with Paragon,” International

Workshop on Behavioral Modeling and

Simulation (BMAS), pp. 149-153, Oct. 2003.

[10] Y. Chernukhin, M. Polenov, C. Vemulapally, E.

Solodovnik, H. A. Mantooth and R. Dougal, “Deploying

Modelica models into multiple simulation environments,”

International Workshop on Behavioral Modeling and

Simulation (BMAS) – these proceedings, 6 pgs., Sept.

2005.

[11] Extensible Stylesheet Language,

http://www.w3.org/TR/xslt

[12] L. Lemaitre, C. McAndrew and S. Hamm, “ADMS –

Automatic Device Model Sythesizer,” Proc. IEEE Custom

Int. Circ. Conf., pp. 27-30, 2002.

[13] ADMS Model Compiler,

http://sourceforge.net/projects/mot-adms

[14] B. Wan, B. P. Hu, L. Zhou and C.-J. Shi, “MCAST – An

abstract-syntax-tree based model compiler for circuit

simulation,” IEEE Custom Integrated Circuits Conf.

(CICC), pp. 249-252, Sept. 2003.

[15] BSIM3SOI Source code and Documentation, http://www-

device.eecs.berkeley.edu/~bsimsoi/

[16] VBIC BJT Model, http://www.designers-guide.org/VBIC/

[17] A. M. Francis, B. O. Woods, H. A. Mantooth, M. Vlach,

L. Lemaitre, “A Methodology for Rapid Development and

Simulator Integration of Compact Models,” Proc. of SRC

TECHCON 2005, 6 pgs., Oct. 2005.

[18] M. Francis, V. Chaudhary and H. A. Mantooth,

“Compact modeling of semiconductor devices

using higher level methods,” IEEE 2004

International Symposium on Circuits and

Systems, vol. 5, pp. v-109 - v-112, May 2004.

[19] V. Chaudhary, M. Francis, W. Zheng, H. A.

Mantooth and L. Lemaitre, “Automatic Generation of

Compact Semiconductor Device models using Paragon

and ADMS,” International Workshop on Behavioral

Modeling and Simulation (BMAS), pp. 107-112, Oct.

2004.

[20] A. S. Kashyap, C. Vemulapally and H. A. Mantooth,

“VHDL-AMS Modeling of Silicon Carbide Power

Semiconductor Devices,” IEEE Workshop on Computers

in Power Electronics (COMPEL), pp. 50-54, Aug 2004.

[21] M. Bucher, C. Lallement, C. Enz, F. Théodoloz and F.

Krummenacher, “The EPFL-EKV MOSFET Model

Equations for Simulation,” Technical Report, Model

Version 2.6, June 1997. Revision I, September, 1997,

Revision II, July, 1998.

[22] F. R. Nash, Estimating Device Reliability: Assessment of

Credibility, ch. 7., Kluwer Academic Publishers, Norwell,

MA, 1993.

[23] H. A. Mantooth, L. Ren, X. Huang, Y. Feng, W. Zheng,

“A survey of bottom-up behavioral modeling methods for

analog circuits,” IEEE Proc. Int. Symp. Circuits Syst., pp.

910-913, Bangkok, Thailand, May 2003.

123

