
Abstract

Hardware description languages, mainly Verilog and 

VHDL including their analog and mixed-signal extensions, 

represent a significant investment by the electronic design 

automation community. Hardware description language 

technology promises productivity advances such as a 

medium for intellectual property exchange, model 

portability, model productivity, greater design 

collaboration, top-down design for AMS, AMS synthesis, 

and richer mixed-level, mixed-signal simulation for 

improved simulation throughput. Modeling tools represent 

a step toward completion of the dwelling the EDA 

community seeks to build upon the hardware description 

language foundation. One such environment of tools is 

described in this tutorial on Paragon†. Paragon will be 

described and demonstrated on both behavioral models 

using multiple HDLs and compact device modeling 

applications involving Verilog-A primarily.  
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1. Introduction and the HDL Foundation 

In 1987, the author first used the MAST® modeling 

language in what came to be known initially as an analog 

hardware description language (HDL) and later as a mixed-

signal HDL. MAST was a proprietary language and was 

used in conjunction with the Saber simulator [1]. MAST 

demonstrated distinct advantages for analog and mixed-

signal modeling by allowing the user to focus primarily on 

model behavior issues, not the entrapments of the 

simulator’s algorithms or data structures. Saber and MAST 

together represented the first widely available circuit 

simulation platform that separated models from the 

simulator in this liberating fashion. 

Digital HDLs were already standardized by the late 

1980s. Two languages emerged in the market: VHDL and 

Verilog. These languages were seen as valuable to multi-

level digital hardware representation, but the biggest 

impetus to their use came when additional tools such as 

logic synthesis came of age. VHDL and Verilog were/are 

the input languages for these tools and the design 

advantages of learning and using such a language became 

too compelling to ignore.  

†
Portions of this research were supported by the National Science 

Foundation under grants EEC-0088011, the Office of Naval Research 

under Subaward No. USC 01-636, DARPA under grant N66001-

01-1-8919, and the SRC under grant SRC05-463.

In the early 1990s the efforts toward standardization 

of analog extensions to the standard digital HDLs began. 

The first effort culminated in 1999 with the approved 

standard analog and mixed-signal extensions to VHDL 

[2]. This new language is referred to as VHDL-AMS and 

is a superset of VHDL. Later such extensions were added 

and approved to Verilog [3]. This language is known as 

Verilog-AMS and is a superset of Verilog. However, 

during the 1990s a different language emerged from 

Cadence to address the modeling of analog behavior 

beyond that of SPICE-like netlists much as MAST had 

done with Saber. This language is known as Verilog-A 

[4]. Recently, Verilog-A had extensions added to it in 

support of compact modeling of semiconductor devices 

[5]. 

Clearly, a substantial investment has been made by 

members of the electronic design automation (EDA) 

community (industry and academia) in defining and 

creating viable HDL technology. These investments have 

been made by the “language lawyers”1 for 

standardization, model developers for libraries, and 

simulator architects for platforms that enable model 

separation from analog circuit simulation algorithms. 

With such a significant investment, it is imperative that 

the returns and the promises be realized. And yet, as 

recently as this year, two major IEEE conferences have 

had forums where the value of analog/mixed-signal 

(AMS) HDL technology has been debated [6, 7]. Such 

debates no longer rage regarding the digital HDLs. They 

have become part of the fabric of digital design and are 

taught in most electrical and computer engineering 

curricula. In fairness, both of these forums were held at 

conferences primarily focused on a single market 

segment – the semiconductor market and IC design – but 

the fact that the EDA industry is even asking the question 

is an indictment. Certainly, analog synthesis, a very 

difficult prospect, would do for AMS HDLs what digital 

synthesis did for Verilog and VHDL, but that solution 

has not been achieved yet. 

AMS technology has been more widely adopted in 

the transportation industry where the ability to 

concurrently model and simulate multiple disciplines 

(e.g., electro-mechanical, electro-thermal, electro-

hydraulic) has been a big advantage, but even in this 

arena there are barriers to adoption. AMS flows have 

been adopted by some IC design houses. Many view it as 

the future of analog/mixed-signal design, but the 

1
a glib reference to those highly skilled experts that are adept at 

defining consistent language semantics to the finest degree of detail 

while also being clairvoyant enough to perceive future pitfalls if such 

issues are not dealt with properly
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adoption has been lethargic. One explanation for this 

glacial movement is that by itself AMS HDLs do not 

represent a significant productivity enhancement as 

compared to how analog IC designers achieve tape-out 

today. A second, related explanation is that analog IC 

designers are still successful doing it “like they’ve always 

done it” even with added time-to-market pressures, 

increased performance demands driven by embedded 

digital systems, and challenges posed by constantly 

advancing process technology. Finally, another explanation 

is that the deployment of AMS HDL technology has not 

yet reached a level of comfort for the analog IC design 

community to feel it is ready to be relied upon. They use 

SPICE for transistor level analysis and are heavily invested 

in its use. They rely on transistor models derived from the 

foundry to verify that their designs perform as desired and 

work over process corners and temperature. They have an 

increasing need for behavioral modeling, but the barriers to 

the adoption of AMS HDL technology as the solution 

include:  

(1) the learning curve for the HDL and 

(2) integration with their favored SPICE tools 

because they need transistor simulations along 

with their behavioral models.  

Barrier (2) above is a simulator feature issue and not the 

topic of this paper. However, it is important to point out 

that many AMS HDL simulators and their associated 

environments have yet to achieve analysis and post-

simulation analysis features found in SPICE tools. This 

certainly does not encourage adoption. The good news is 

that this is an active area of development and will be 

addressed. 

To delve deeper into barrier (1) above, it is not merely 

the learning of a new language that poses an obstacle – 

although for the majority of analog designers this is real – 

it is in understanding how simulators work internally and 

composing the model in a way less likely to cause 

problems. Another part of the learning curve of AMS 

HDLs is adjusting their thinking from that of a schematic-

driven functional way of thinking to an expression-based 

approach. To illustrate these points consider that an analog 

IC designer knows that a pair of diodes can provide a 

limiting function in a model they are creating, but the 

associative if-then-else structure in an HDL is easily 

misconstructed such that either the simulator will have 

convergence problems or, more fundamentally, it simply is 

not what the designer intended. Frustration mounts very 

quickly in a designer when simulations of a model fail to 

converge, particularly when this model is not even the 

topic of design. It may merely be a representation of a bias 

circuit or a dynamic load configuration needed in order to 

proceed with the design activity. Frustration continues to 

mount when very little exists in the way of tools and 

methods to diagnose and remedy such problems. In truth, 

these issues exist for all users of AMS HDL technology 

today and will be the focus of the modeling tools described 

in this paper. 

The next section of the paper will describe the 

modeling tool Paragon including what it is, how it is used, 

and how it addresses the elements of barrier (1) [8, 9]. 

Section 3 focuses on a couple of examples while Section 

4 concludes by reviewing some of the promises that HDL 

technology makes and how Paragon helps make these 

promises come true. 

2. The Paragon Modeling Tool  

Paragon2 is a graphical modeling environment that 

consists of interfaces that segment the modeling process 

along logical macromodeling lines of thinking. It utilizes 

a mixture of schematic, browsing and textual interfaces 

as illustrated in Fig. 1 to expedite model creation and 

visualization of the effects present within a model. While 

Fig. 1 is the illustration of a semiconductor device model, 

Paragon is easily applied to the modeling of higher-level 

circuit and system blocks. Both will be described in the 

examples in Section 3. 

For the purpose of describing the use of Paragon, an 

“outside-in” modeling process that begins with 

describing the model interface (i.e., connections or ports, 

name of model, model parameters) and flows to the 

internal structural and behavioral details will be 

followed. However, no restrictions are placed on the user 

as to what modeling steps are performed when. Referring 

again to Fig. 1, the leftmost portion of the screenshot 

illustrates the browser/editor for loading models (upper 

left) and editing the interface of the current model (lower 

left). A special set of dialogs appear for creating or 

modifying model parameters that allow the user to 

specify model parameter types, units, default values, and 

numerical ranges of validity. When appropriate, such as 

in the case of units and types, built-in or standard values 

are accessible from the dialog. In deference to 

semiconductor device modeling, Paragon also allows the 

user to distinguish between process parameters and 

instance parameters for the model. In fact, Paragon is 

able to import a .MODEL card to expedite the task of 

model parameter entry and defaulting for process 

parameters. 

Models consist of structure (or topology) and 

behavior in general. The top-right portion of the 

screenshot of Fig. 1 shows a schematic view of the 

internal structure of the model being created. This 

window is referred to as the topology editor. The 

behavior is reflected in the expressions (lower right) used 

to describe either a block in the structure or a set of 

expressions that are used to derive internal variables 

from the model parameters and other model variables. A 

Paragon model can consist purely of equations and 

essentially no structure, a structure with associated 

equations as in Fig. 1, or a hierarchical model with a 

structure only (i.e., a macromodel). 

Once the model equations, topology, and interface 

information are entered, the model code can be 

generated. However, Paragon contains some model 

checking  functions  that  can  be  executed  to  determine  

2
Paragon is being commercialized by Lynguent, Inc. under a license 

agreement from the University of Arkansas. The commercial name of 

the tool is ModLyngTM. All screenshots in this paper are taken from 

ModLyng. 
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Fig. 1. Equation editor (lower right), topology editor (top center), and model interface editor showing the partially depleted 

BSIMSOIv2.2 MOSFET model. 

continuity of key functions in the model or to perform 

consistency checking of equations and variables. 

If a MAST, Verilog-A, or VHDL-AMS model already 

exists, then it can be imported into Paragon3. Recently, 

Modelica models can be imported through a tool written by 

a partner institution in Russia [10]. At this point the model 

topology may need to be arranged in a logical fashion, but 

the model is present and can be easily modified, analyzed 

and eventually debugged in this environment. Of course, 

the model can be output in any of the languages supported 

by Paragon if no language-specific concepts have been 

employed. If a Verilog-AMS model is imported and it does 

employ a semantic not representable in VHDL-AMS or 

other languages, then only Verilog-AMS code generation 

will be enabled. In this way, even though a guiding 

principle behind Paragon’s concept is language 

independent model entry, it does not have to behave as a 

“common denominator” modeling environment. It is 

designed to operate in the context of the major HDLs as 

required. 

In order to address model checking issues and to reduce 

simulation time, Paragon has a rich and growing set of 

3
Paragon only supported MAST import, but ModLyng supports the 

import of all three languages. 

analysis and utility methods. An abstract syntax tree 

(AST) is created for each model to identify and represent 

the inter-relationships between different time-varying 

variables and constants of the model. The AST is 

analyzed to determine functional and time dependencies 

in the model. This enables the generation of efficient and 

readable code. The model import mechanism also utilizes 

a combination of the above mentioned utilities and 

distinguishes between sequential and simultaneous 

blocks of the model. It also identifies undefined variables 

before actually saving the model to the database. These 

and other features differentiate the model importer from 

basic language translators. So far, continuous time 

models have been the focus for model importing while 

research effort is ongoing to include event-driven 

behavior. 

A significant advantage of Paragon is that it produces 

readable, standardized hardware description language 

code that captures design intent and removes the 

common implementation errors that result in unnecessary 

iterations. Paragon can generate Verilog-A, Verilog-

AMS, VHDL-AMS, MAST, and some C-based 

languages for special purpose simulators. Paragon 

models are easier to support than hundreds or thousands 

of lines of code due to the mixed graphical and textual 
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representation in the tool. The learning curve for these 

tools is not steep due to the fact that Paragon is 

exceptionally intuitive to use as a result of using familiar 

user interface approaches such as schematic capture. 

Outputs such as symbols for use in design environments 

and model documentation in HTML format can be 

generated from Paragon as well to expedite model use. 

Paragon utilizes a generic XML schema, which enables the 

capture of information specific to model data. The use of 

XML, which is open source and a standardized format, 

allows easy data interchange and formatting. Many 

standard language translation tools like Extensible Style 

Sheet Language Transformations (XSLT) [11] can be used 

to manipulate the data and convert it into a desired target 

format.

In addition to the HDL code generation functionality, 

Paragon can also be used in combination with other tools 

like the ADMS [12, 13] and MCAST [14] model compilers 

to generate low level C code for target simulators. One can 

imagine the amount of time, effort and complexity 

involved in writing and debugging huge models such as 

those in the BSIM family in either C or an HDL like 

Verilog-A before actually deploying in simulations. The 

usefulness and capacity of high level advanced modeling 

tools like Paragon was illustrated by generating two 

BSIMSOI models (version 2.2 and 3.2) and validating 

against the built-in Spectre model in [15]. Another 

example of Paragon’s capacity is illustrated by the VBIC 

implementation as described in [16]. In each case, the 

Verilog-A code generated by Paragon was fed into ADMS 

to compile it into C for the compiled model interface of 

Spectre. 

3. Examples  

The first example to be described is a semiconductor 

device model (BSIMSOI). This leverages off of the 

information presented in Fig. 1. Several state-of-the-art 

device models have been implemented over the past year 

including BSIMSOI, EKV, VBIC, and a SiC JFET power 

device model [17-21].  

The BSIMSOI model consists of over 15,000 lines of C 

code as implemented for SPICE. It represents the most 

significant stress test for Paragon due to its complexity and 

size. The BSIMSOI model consists of as many as six 

external pins (or ports): drain (d), gate (g), source (s), 

external body (p), back gate (e), and an optional thermal 

pin. The thermal pin was not required for the project that 

this model was created for. An additional internal body 

node (b) exists within the model as can be seen in the 

model topology of Fig. 1 on the far right-hand side. The 

model creation process was started by entering the ports 

and then importing a .MODEL card populated with the 

default values of all process parameters. This import 

process resulted in the fmodeltype entry in the model 

parameters list of Fig. 1. The instance parameters were 

input directly using the user interface.  

Next, all of the model expressions involving model 

parameter manipulation were entered into the equation 

editor. These expressions are easily stripped out from the 

Berkeley C code and pasted into the editor for speed and 

syntactical correctness. At this point, the longest task of 

the modeling effort is the input of the model topology 

and the equations that go with those blocks (i.e., branch 

constitutive equations) or the equations that algebraically 

compute internal variables needed for the branch 

constitutive equations. For a model the size of BSIMSOI 

this takes a couple of days normally. The challenge is 

that in Paragon one is capturing the model in more of a 

macro or object-oriented style using the topology as the 

driving implementation vehicle. Whether the original 

Berkeley model is implemented from such a diagram or 

not, this object-orientation is not reflected in the C 

implementation. Therefore, up until now, this has been a 

manual process that is error-prone requiring careful 

model validation against a known good model. This 

validation typically takes a few days itself and more if 

serious errors have been made.  

This situation has led us to develop a Verilog-A 

model import mechanism that is currently being tested 

with BSIM3 and BSIM4. The development has focused 

on Verilog-A for two main reasons. Verilog-A is readily 

generated from the Berkeley C code and it is commonly 

used as an implementation format for semiconductor 

device models. This will reduce the implementation time 

in Paragon for existing semiconductor models to a couple 

of hours allowing for manual rearrangement of the 

default place-and-route of the model topology that gets 

automatically generated. 

Once the model is implemented in Paragon the utility 

of the environment can be brought to bear on the device 

model. For example, the continuity checking algorithm 

can be employed to analyze complex equations in the 

model. Relationships within the model can be visualized. 

Alternative output formats can be considered such as 

VHDL-AMS. Enhancements to the model can be 

considered by a larger audience of model developers than 

those familiar with SPICE codes. The project that led to 

the BSIMSOI version 2.2 implementation was focused 

on adding radiation effects to the base model. These 

effects included total dose and single event effects. These 

enhancements were made and the model regenerated in 

Verilog-A. The model was then compiled using ADMS 

and linked into Spectre through its compiled model 

interface. 

To conclude the semiconductor device modeling 

illustration, once the topology, equations and interface 

are input, the code can be generated in Verilog-A, 

VHDL-AMS, and MAST at the present time. By using 

model compilers these codes can be converted into C and 

therefore made to run quite efficiently. 

The second example is the behavioral model creation 

of a commercial-off-the-shelf (COTS) quartz crystal 

oscillator. A behavioral model of the C38SA device (200 

°C, 7.3728MHz) from Sentry Manufacturing was 

required as part of a larger, high temperature system. The 

basic behavioral model was to be modified to include 

temperature and performance degradation effects as a 

function of time and temperature (i.e., aging effects). 
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Fig. 2. C38SA quartz oscillator model as defined in Paragon. 

Fig. 2 shows the screenshot of the base oscillator model 

without thermal or aging effects. A much simpler model 

conceptually than the semiconductor device model, it still 

consists of the same basic elements: interface, topology 

and equations. In this case the output voltage, frequency 

and waveshape are modeled according to experimental 

measurements made of the device. The jitter of this 

oscillator was insignificant (even over temperature) and 

thus neglected in the model. In this case, the model was 

generated using VHDL-AMS and simulated using 

SystemVisionTM. Fig. 3 shows the basic simulation results 

as compared to measurements. While the ringing was not 

captured in this simple model, the basic functionality is 

there. 

Next, the lognormal behavior of the oscillator model’s 

output high voltage as a function of time and temperature 

was modeled according to [22]. This amounted to adding a 

few extra equations and parameters to the model. The 

limited experimental data taken allowed for a basic aging 

model for the oscillator. The oscillator does not operate for 

very long beyond its 200 °C rating. The experimental data 

indicated that the leading indicator of failure occurred 

when the output voltage dropped by 20 %, indicating that 

oscillator failure was imminent. The voltage drops rapidly 

once it falls by 20 %, analogous to the voltage on a battery 

when discharging. The nominal output voltage was about 5 

V.

The oscillator model with aging was simulated at 220 

°C and 250 °C and accurately predicted oscillator failure at 

these temperatures. For 220 °C the device failed at 

approximately 73 hours and at 250 °C it failed at 15.5 

hours – both within a few percent of the measured data. 

Another experimentally validated simulation predicted that 

if the oscillator was first operated for 10 hours at 250 °C, 

then it would only operate for approximately 35 hours at 

220 °C before degrading to a point of failure thus 

indicating that the model was capable of predicting 

thermally-induced failures as a function of time at 

temperature. 

4. Conclusions  

This tutorial paper has described the use of the Paragon 

modeling tool that is built to operate on the HDL 

foundation and reduce the barriers to widespread usage 

of these technologies by making them easier to 

effectively use, improve the resulting models created, 

and provide a richer set of debugging capability in the 

future. By way of conclusion it is instructive to review 

some of the promises that HDL technology espouses to 

see where things stand at this point. A representative list 

is shown below: 

1. Medium for intellectual property (IP) exchange 

2. Model portability  

3. Design collaboration (ease of collaboration between 

customers-suppliers, companies, design groups) 

4. Top-down design for AMS (medium for 

expressibility of analog and mixed-signal blocks 

during design exploration phase) 

5. Analog Synthesis (AMS needed for the models) 

6. Mixed-level and Mixed-signal Simulation 

From the six items listed above, modeling tools such 

as Paragon help to directly address four of them (2, 3, 4, 

6). Modeling tools such as Paragon help to insure model 

portability, encourage design collaboration and top-down 

design methods because of the ease of making models 

and sharing them (even if encrypted), and certainly 

promote mixed-level simulation. The choice of whether 

to use HDLs as a medium for IP exchange may depend 
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on a number issues, but certainly once the decision is made 

to use HDLs then modeling tools will greatly help to 

facilitate IP exchange in the same way encrypted models 

can be delivered from customer to supplier, for example. 

Lastly, experts in analog synthesis have indicated a need 

for modeling tools to enable their simulation-based 

approaches. However, tools like Paragon need more 

research and additional utility to address these 

requirements because they are driven from a bottom-up 

behavioral model generation need such as described in 

[23]. 

Fig. 3. Output waveforms of the C38SA quartz oscillator and the 

behavioral model.
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