
Mixed-signal modeling using Simulink based-C
Shoufeng Mu
Qualcomm Inc

4243 Campus Point Ct.
(858)651-7600

smu@qualcomm.com

Michael Laisne
Qualcomm Inc

4243 Campus Point Ct.
(858)651-4164

mlaisne@qualcomm.com

ABSTRACT
This paper presents a top-down mixed-signal modeling

approach that relies on Simulink converted-C modeling. This

modeling flow is divided into four fundamental operations:

Build the behavioral model using Simulink.

Generate the portable stand-alone C code using RTW.

Use FLI to link the generated C code with HDL.

Write HDL wrappers.

The resulting discrete-time C-based HDL model can

seamlessly integrate with the digital and mixed-signal simulation

environments without any special requirements from the

simulator. With this approach we can truly achieve chip level or

system level mixed-signal verification and analog vector

generation.

1. INTRODUCTION
With the ever increasing complexity in highly integrated

mixed-signal system on a Chip (SOC) or system in a package

(SIP) solutions, accurate mixed-signal simulation and test vector

generation have become a challenging task in modern designs. A

major contributor to this complexity is the different design

methodologies required for designing its digital and analog

components. These are important considerations because of the

importance of thorough verification prior to tapeout, meeting

important time to market requirements, and managing yield with

well controlled tests once the device is in production. Traditional

strategies involve partitioning the ASIC at the Analog-Digital

boundary, and creating separate simulation environments.

However these strategies typically leave holes in testing the signal

interactions between the analog and digital domains. In order to

achieve true full chip mixed-signal functional verification, or

generate mixed-signal test vectors for SOC or SIP, there is an

urgent need to build an accurate behavioral model of the analog

blocks, which can seamlessly integrate with the digital portion of

the design. On the other hand, with the increasing number of

transistors (millions) on a chip, performance is another bottle neck

for the mixed-signal simulation. Currently there is no industry

standard methodology and approach for handling such issues

arising in mixed signal designs. SPICE-like mixed-signal

simulations, although very accurate, are excruciatingly slow and

often impractical, especially for large circuits.

This paper introduces a new approach using Simulink[1]

based C models for the analog and mixed-signal elements of the

design to achieve reliable, fast and accurate chip level or system

level mixed-signal simulation. The Simulink based C model is a

discrete model that can interface with the design database in

VHDL through an industry standard FLI (foreign Language

Interface) [2] or Verilog through PLI (Program Language

Interface) [2]. The Simulink model can be simulated with digital

simulators such as Modelsim, Verilog XL, NC Verilog, etc. or

mixed-signal simulators such as Advance-MS from Mentor

Graphics [3] or Discovery AMS from Synopsis [4]. This new

approach is different from traditional C modeling which requires

developing the C code by hand. Manual coding is error prone, has

a long development cycle and is hard to maintain. The Simulink

based C model approach is also different from HDL mixed-signal

modeling, such as VHDL-ams, Verilog-ams [5] and Verilog-A

[6,7]. These are code based modeling languages, and require

dedicated mixed-signal simulators, such as Advanced-MS or

Nanosim. Another advantage of the proposed new modeling

approach is that it is a top down. It can provide various degrees of

abstraction in selecting the appropriate model for the application.

At the end of the design cycle, this high abstraction-level

behavioral model is verified against the analog transistor level

block to ensure functional equivalence. The Simulink model,

therefore, offers a consistent top down development methodology

through the product development cycle.

Another important aspect of this Simulink based C approach

is that the model is a discrete time model. Discrete-time behaviors

are generally expressed as logical Boolean equations or as

communicating processes that are triggered by events, while

continuous-time behaviors are generally expressed as differential

algebraic equations. On one hand, with this discrete C-model,

simulation speed increased 10 to 100 times over RTL design or

SPICE[8] and this model is reasonably accurate at the architecture

level. For example, a sigma-delta converter model will share

frequency characteristic similar to its transistor design. On the

other hand, this discrete model is an ideal functional model and is

not intended to capture behavior such as temperature coefficients,

bias current sensitivity, resistor noise or other circuit

characteristics.

Simulink based C modeling flow can be divided into the four

fundamental steps:

Build Simulink model with Real-Time Workshop

(RTW)[8] constraints

Generate stand-alone C code using RTW

Modify C code to interface with VHDL or Verilog

Write HDL wrappers.

Each step will be discussed in details in the following sections.

Examples of behavioral models of RC filter, Sigma-delta A2D

converter and synchronization block will be given also.

2. MIXED-SIGNAL MODELING USING

SIMULINK
Simulink is a program that runs as a companion to MATLAB[1].

These programs are developed and marketed by the MathWorks,

0-7803-9352-X/05/$20.00 © 2005 IEEE. 128

Inc. Simulink and MATLAB form a package that serves as a

vehicle for modeling dynamic systems. Simulink provides a

graphical user interface (GUI) that is used for building block

diagrams, performing simulations, as well as analyzing results. In

Simulink, models are hierarchical, and models can be discrete,

continuous or hybrid. For a mixed-signal model the Simulink

model will be hybrid.

In order to convert the mixed-signal Simulink model to C code

smoothly using RTW, the Simulink model should be built with

the following constraints:

1) The following blocks are supported by RTW, and should not

be used in the model:

a. Matlab FCN

b. Algebraic loops

c. Simulink s-function

d. Variable step solver.

2) The models should be discrete. If the model is built in

continuous time domain, such as sample-hold circuit,

integrator, or continuous time transfer function, use

discretizer in Simulink to discretize the model.

3) All input values that can change should be ports, not

parameters. Parameters can sit in a modelname_init.m file.

4) In order to simplify the c code, all input and output ports

should be of type “double”. This will translate into a

“double” in C, and into type “real” in VHDL. This may not

be the most efficient way to handle the data when crossing

between different domains, but it simplifies the automation

scripts.

3. SIMULINK MODEL OF BBRX

Figure 1. Top-level block diagram of a single-channel BBRX

Figure 1 is a simplified example of the top-level Broad-band

Receiver (BBRX) block diagram which normally implemented in

the analog die or mixed-signal section of a design. This block

diagram is only used to demonstrate the methodology of mixed-

signal modeling, not the functionalities of the Broad-Band

Receiver. The incoming analog baseband signal I_ip passes

through an analog RC filter and, optionally, through a gain buffer.

Then the signal passes to a Sigma-delta A2D converter. The

modulator converts the resulting signals into digital bit-streams

(single bit or multiple bits); in this example, two bit-streams - Y1

and Y2 are used. The data is then passed through a

synchronization block and then output to the digital block or

digital chip. This is a typical of a mixed-signal design. It has a

continuous time block (the RC filter), a mixed-signal block (the

Sigma-Delta modulator) and a digital block (the synchronization

unit). In this section the BBRX is used as an example to

demonstrate the procedures that one must follow to build the

mixed-signal models using Simulink.

Figure 2 BBRX top-level port list

The top-level port list of the BBRX is shown in Figure 2. The top-

level port list of the Simulink model should match the top level

port list of the design block. At this level, “match” means the port

names and dimensions should match the schematic design. The

data type of the port in Simulink should be double; this will

convert to double in C and real in VHDL through the FLI (Data

type conversion will be discussed in wrapper section).

Additionally, the appropriate sampling time will need to be

defined for the ports. For the input ports, a reasonable sampling

time should be defined. For the output ports sampling time can be

inherited from the block driving the port or redefined.

Figure 3 shows the top-level Simulink model of the BBRX block.

It consists of an anti-aliasing RC filter, Sigma-Delta modulator

(SD modulator), synchronization block and other control logic.

Details of the RC filter, Sigma-delta modulator and

synchronization blocks will be discussed in the following

sections.

Figure 3 Top-level model of BBRX

3.1 Simulink Model of RC Filter
The schematic of a first order RC filter is shown in Figure 4. In

this case, the single-ended RC filter consists of a variable input

resistor (Rbias), a feedback resistor (Rfeed), a variable pole

capacitor (Cpole), and an operational transconductance amplifier

(OTA). The OTA gives transconductance amplification. That is, it

takes the voltage difference from its inputs and converts it to a

proportional current. The coefficient of proportionality, defined as

the transconductance of the OTA, is gm; the transfer function of

the low-pass filter can be deducted as:

129

Figure 4 Block diagram of a single-ended RC filter

biasm

feedbias

eq

poleeq

eqm

biasm

polefeedbiasbiasm

feedbiasm

in

out

Rg

RR
R

Where

SCR
Rg

Rg

SCRRRg

RRg

V

V
sH

1

1

1

1

)(
1

1

1

)(
)(

Rbias is a programmable resistor, and its value can be

programmed through an 16 bit register. Cpole is a

programmable capacitor; the user can select eight different

configurations using 8 capacitors with values of 1pf, 2pf, …,

7pf and 8pf through c_ctl_reg[2:0].

Figure 5 shows the implementation of the RC filter, which

includes the continuous time integrator. In this model, both

Rbias and Cpole are programmable. This model is a continuous

time domain model which needs to be discretized when

converted to c code. In Simulink, under tools, there is a

utility called discretizer. The user can use this discretizer to

discretize the continuous time domain model. The integration

timestep is very important for the conversion. If the timestep

is too big, the discretized model may not be able to represent

the design to the required resolution. On the other hand, if

the timestep is too small, it will affect the CPU time required

for simulation.

Figure 5 Model of RC filter in Simulink

Table 1 shows the relationship between the timestep,

performance, and simulation time. These simulations were

performed on a 32 bit Linux machine with RC time constant TRC

=1.9e-7s. From the table we can see, when the timestep is too

big, the algorithm wouldn’t be able to converge. When the

timestep< 0.1TRC, if reduces the time steps, it greatly increases

the CPU time, and the performance of model doesn’t improve

much. Therefore, user should choose the integration timestep

wisely.

Rfeed

CpoleVin

Vout

Rbias

OTA

-

+

Integration

timestep (s)

CPU time(s) SNR(signal noise

ratio in DB)

6.0e-8 Not converge

5.0e-8 151 -171

4.0e-8 166 -171.5

2.0e-8 194 -172.5

1.0e-8 226 -172.5

5.0e-9 331 -172.8

Table 1 Relationship between integration timestep,

performance and CPU time

3.2 Sigma-delta modulator

Figure 6 Simulink model of 4-level 4th order modulator

Figure 6 shows the Simulink model of a generic 4th order 4 level

 A2D. There are two 4-level comparators and two A2D

converters. In this model, the sampling time of the delay block

should be based on the over sampling clock frequency. The

reference voltages for comparator 1, comparator 2, DAC 1 and

DAC 2 are programmable, and are generated from the reference

block.

3.3 Signal Synchronization
Figure 7 shows the Simulink model of the synchronization block.

Dataclk, an input to this block, is used to synchronize the bit

stream from Sigma-delta modulator. The synchronized data be

will sent to the digital MSM chip. There is another control signal,

clk_edge. With this signal the user can choose the digital data

synchronized to the rising edge or the falling edge of dataclk.

130

Figure 7 Simulink model of the synchronization block

4. CONVERT SIMULINK MODEL TO C
Real-Time Workshop is an application of Simulink. It

generates optimized, portable and customized ANSI C code from

Simulink models. It automatically builds programs that execute in

Real-Time or Stand-alone non-real-time simulation. In this paper,

only Stand-alone non-real-time C code will be used.

The following configuration parameters should be set

correctly before generating the C code:

1) Simulation start time and stop time. Normally the

simulation start time is set to 0, stop time to ‘inf’ for

infinite. The end of the simulation will be controlled

from outside the c environment.

2) The solver option. The solver type should be set to fixed

step discrete. Variable step solver is allowed in

Simulink, but not supported by RTW.

3) Step size option. For C code generation, the step size

can be set to ‘auto’. When customized C code, users can

decide the step size through FLI interface. For the

simulation case, the step size should be set to a

reasonable value, such as half of the fast clock period.

4) Solver mode. The solver model should be set to single-

tasking. The C code generated from single-tasking

mode is much simpler than that from the multi-tasking

mode.

5) Workspace IO option. Make sure the “save output” and

“save time” options are off. These options log both the

results and the timestamp respectively. During C code

generation, these options should be off since there is no

valid input to the model.

6) System target file. Select the Generic Real-Time Target

(grt.tlc). This will generate Stand-alone non-real-time C

code.

Parameters in the model should be initialized if there are any.

Then it is ready for the code generation. Code generation is

simple. You can issue Matlab command make_rtw to generate the

C code. Once the code generation is complete the following files

will be generated in the directory ./X_grt_rtw (where ‘X’, the

model name, is embedded in both the directory and most of its

associated files):

X.c: the stand alone C code that implements the model

X_data.c: initial parameter values used by the model

X.h: an include header file containing definitions for

parameters and state variables

X_types.h: a file containing forward declarations of data

types used in the code.

X_private.h: a header file containing common include

definitions

Rtmodel.h: a master header file for including generated code

in the static main program.

There is another file used in the c code compilation to create the

executable, grt_main.c. This file is located in the directory

/installation/mathworks/version/rtw/c/grt/ (/installation is the

directory where Mathworks products are installed). The file,

grt_main.c, contains the main() C routine that is used to initialize

all the variables, allocate memory, invoke the functional routine

that implements the model and terminate the program. Any

display statements, interrupt handling with external clock or

timing mechanism must be added in this file. The rest of the files

remain untouched except the header file.

5. CUSTOMIZED C CODE
The C code generated in step 4 can interface with VHDL or

Verilog. For mixed-signal designs, Verilog 1995 doesn’t have real

data type and cannot handle analog signals. Therefore, for mixed-

signal modeling, VHDL is chose to interface with C code. But

this modeling flow can be used for digital modeling, including

DSP, ALU, etc. Under these circumstances the C code can

interface with either VHDL or Verilog. In this section, we mainly

discuss how to modify the C code to interface with VHDL.

The grt_main.c file needs to be modified to interface with

VHDL. The interface will vary depending on the simulator used.

Here the Modeltech FLI interface is shown as an example. Figure

8 illustrates the philosophy behind partitioning the C main

function and the VHDL entity and architecture. The “x_init” in

the VHDL architecture is the name of the initialization function in

the main.c file. The “x.so” is the name of the shared object file

generated from the C code.

 C main (maim.c)

x_OneStep() {

/*get the value from VHDL input

 ports

/*execute functionality

/*drives value onto VHDL output

ports

/*sensitize or wakeup

call }

x_init() {

/*memory allocation

/*connect to VHDL ports

/*sensitize or wakeup call

}

 architecture one of x_sub is

attribute of foreign: string

 Attribute foreign of one:

architecture is "x_init ./x.so“

 end architecture one;

Entity x_sub is port(

 Signal in1: in real;

Signal in2 : in real;

Signal out1: out real

) end x_sub;

Figure 8 Partition of C main () function

131

Basically with the

L WRAPPERS
odel. The “inner” wrapper has

s an example of the inner wrapper. In this example, the

Figure 12 sh or the outer

7. AUTOMATION SCRIPTS
pper manually seems

ode generated by RTW to

Figure 9 Example of init() routine

Figure 10 Example of OneStep() routine

the main() function has to be modified

functions like init() and OneStep(). The init() function has to be

changed such that the the VHDL input and output ports connect to

the Simulink model. The OneStep() function has to be modified

with the addition of FLI commands to read in the VHDL values

and to drive the c outputs back to the VHDL output ports. Figure

9 shows an example of the x_init() routine. This routine is the

entry point into the foreign C model. This initialization function

typically allocates memory, saves the handles to the signals in the

port list, creates drivers on the port that will be driven, creates one

or more processes (a C function that can be called when a signal

changes) and sensitizes each process to a list of signals. In this

example, it uses schedule wakeup instead of sensitize call. Figure

10 gives an example of the OneStep() routine. This routine reads

in the VHDL value (input ports in VHDL entity) through FLI

command mti_GetSignalValue (for any scalar signals except real

or time) or mti_GetSignalValueIndirect (for real signals or time),

and pass the value to the input of foreign C-model. The input port

of the foreign C model is under rtU data structure, and can be

accessed as rtU.in1, rtU.in2, etc. Then rt_OneStep() routine

executes the C routine (MdlOutputs(0)), and drives the C output

back to VHDL output ports. The output port of the foreign C

model is under rtY data structure, and can be accessed as

rtY.out1.

6. VHD
There are two wrappers for the c m

only real inputs and outputs, and its architecture calls the c library

with a foreign attribute. The “outer” wrapper takes care of the

conversion of the data format, as well as separating the bits in a

digital bus. The name and data type of input/output ports of the

“outer” wrapper must match the pin name of the analog schematic

exactly. It can be useful for the “inner” layer to have a different

number of inputs/output pins for debugging purpose; this is

allowable

Figure 11 i
void init(mtiRegionIdT region, char *param, mtiInterfaceListT, mtiInterfaceListT *generics,

mtiInterfaceListT *ports)
{ Xinst_rec *ip_X;
 …

/* memory allocation and function callback */
ip_X = (Xinst_rec *)mti_Malloc(sizeof(Xinst_rec));
mti_AddRestartCB(mti_Free, ip_X);

/* create process and save the handles to the signals in the port list */

ip_X->procid = mti_CreateProcess("p1X", OneStep,

data types of the input and output ports are real, and its

architecture calls the c library with a foreign attribute.

Figure 11 Example of Inner wrapper

entity x_sub is
port (signal PortNameIn1 : in real;

signal PortNameIn2 : in real;
signal PortNameIn3 : in real;
signal PortNameOut1 : out real;
signal PortNameOut2 : out real);

end x_sub;
architecture one of x_sub is

attribute foreign : string;
attribute foreign of one : architecture is

“x_init ./x.so";

end architecture one;

ip X);ip_X->In1 = mti_FindPort(ports, "in1");
 ip_X->In2 = mti_FindPort(ports,

"in2"); mti_ScheduleWakeup(ip_X->procid, 1000);
 …

/* create drivers */
ip_X->Out1 = mti_CreateDriver(mti_FindPort(ports,"Out1"));
mti_SetDriverOwner(ip_X->Out1, ip_X->procid);

static void OneStep(void *param)
{ inst_rec *ip=param;
 …

/* get the inputs from VHDL port*/
mti_GetSignalValueIndirect(ip->In1 ,&(rtU.In1));
mti_GetSignalValueIndirect(ip->In2 ,&(rtU.In2));

 …

MdlOutputs(0); /* execute the C function */

/* drive the value to the VHDL output port */

mti_ScheduleDriver(ip->Out1,(int)&(rtY.Out1),0, MTI_TRANSPORT);

mti_ScheduleWakeup(ip->procid,1000);/*wakeup call*/

} /* end OneStep */

Figure 12 Example of outer wrapper

ENTITY ModelTop IS
port (signal PortNameIn1 : in real;

signal PortNameIn2 : in std_logic;
signal PortNameIn3a : in std_logic;
signal PortNameIn3b : in std_logic;
signal PortNameIOut1 : out real;
signal PortNameOut2 : out std_logic);

END ModelTop;
ARCHITECTURE one OF ModelTop IS
--internal signals for data type conversion
signal PortNameIn2_real : real : = 0.0;

 Signal PortNameIn3_vector:unsigned(1 downto 0) := "00";
signal PortNameIn3_real : real := 0.0;
signal PortNameOut2_real : real;

BEGIN
PortNameIn2_real <= to_real(PortNameIn2);
PortNameIn3_vector<= PortNameIn3a & PortNameIn3b;
PortNameIn3_real<= to_real(PortNameIn3_vector);
PortNameOut2 <= to_std_logic(PortNameOut2_real);

 … (port map)
 END one;

ows an example of the outer wrappers. F

wrapper, the data type of input port PortNameIn2 is std_logic, and

its corresponding inner wrapper type is real. This requires a data

type conversion – converting the outer wrapper’s std_logic to

real. The input ports PortNameIn3a and PortNameIn3b in the

outer wrapper are mapped to the input port PortNameIn3 in the

inner wrapper. In this case, the user needs to combine the input

port PortNameIn3a and PortNameIn3b to a std_logic_vector, and

convert the std_logic_vector to a real signal, then map this real

signal to PortnameIn3 in the inner wrapper. For the output port

PortNameOut2, users need to convert the real data type to

std_logic by the function call to_std_logic.

Customizing C code and writing VHDL wra

time consuming and tedious. This process can be automated by

shell scripts and Perl scripts. The following section outlines the

major steps of the automation scripts.

1) Perl scripts to customize the C c

interface with VHDL. There are four major steps for this script.

First, create a customize template grt_main.c file based on the

grt_main.c file provided by Mathworks. This template file should

have the proper format for FLI/PLI interface. Next, get the

input/output port names and types of the generated C code

132

(Simulink model). This information is available in X.h file which

was generated in step 4. Third, connect the VHDL inputs/outputs

to the Simulink model's input and output ports respectively in the

Init() routine. If the names of the Simulink model match the

names of the VHDL wrapper, it will simplify the Perl script. The

last step, add the FLI commands to read in the VHDL values to

the c code and drive the C output back to the VHDL output ports

in OneStep() routine, and add the sensitize command or schedule

wakeup command in the Init() and OneStep() routine.

2) Perl scripts for VHDL inner and outer wrapper. For the inner

e C compile command which can be

the scripts 1) to 3) together. Figure

8. INTEGRATION AND SIMULATION
odes,

he behavioral model of the

of BBRX, followed by the analog differential input iip and iin

wrapper, the input/output port names should exactly match its

corresponding name in the Simulink model, and it is available in

X.h file. For the outer wrapper, there are various ways to generate

the outer wrapper. One easiest way is to annotate the inner

wrapper (for VHDL, use “—“which will be interpreted as

comment). This annotation specifies the new port name and data

type in the outer wrapper.

3) Perl script to generate th

used to generate C executable for various platforms. Currently we

support Solaris, HP, Linux.

A shell script is used to link

13 is shown the structure of the convert_c.sh script.

Figure 13 an example of the automation scripts

The wrappers of the Simulink based-c models are VHDL c

therefore the models can be treated as VHDL models from the

integration point of view. These models can be integrated with

RTL design, gate-level design and mixed-signal design. They can

be used with either digital simulators or mixed-signal simulators

as long as the simulator supports a c foreign language interface.

ModeSim SE is a simulator product from Model Technology that

supports VHDL/Verilog mixed-language simulation. We chose

Modelsim for our mixed-signal simulation/verification

environment due to its full-featured access to Verilog models and

VHDL entities, including source code debugging, waveform

viewing and hierarchy navigation.

In our verification environment, t

BBRX, Codec and HKADC are integrated with the digital MSM

chipset. Figure 14 shows the Modelsim simulation results of the

BBRX. At the top of figure 14, it shows the register configuration

(sinewave). The synchronized 4 bit Sigma-Delta modulator (SD)

outputs are shown in Figure 14 followed by the analog inputs.

The 4-bit SD outputs pass through a digital filter and the

recovered sinewaves are shown at the bottom of Figure 14.

Figure 14 Modelsim Simulation result of BBRX block

9.

ercial 90 nm WCDMA MSM chip set

SUMMARY
This Simulink based C modeling approach has been used

successfully in comm

simulation environments. This method is used to model 12 bit

Successive Approximation Housekeeping ADC’s, TXDAC’s,

wide-band CODEC’s and Broad Band Receivers, which

incorporate anti-aliasing filters, RC filters and Sigma-Delta

modulators. With this mixed-signal simulation environment,

we’re able to achieve full-package (system in a package) mixed-

signal simulation and mixed-signal test vector generation. The

top down approach to modeling analog portions of the design

using Simulink models has proven to be invaluable time to market

aid for getting chips reliably from concept to production.

10. REFERENCES

#!/bin/sh

#Usage: convert_c.sh diary modelname no_inst wakeuptime

#arch[sol| hp| linux | linux64] modeltech_version

diary=$1; shift; m=$1; shift;
no_inst=$1; shift;
wakeup=$1; shift
arch=$1; shift;

version=$1; shift;

/usr/bin/diary2compile.pl $diary $no_inst $arch $version > ./compile

chmod +x ./compile
/usr/bin/create_main.pl $m.h $wakeup $arch $*

[1] Simulink manual from

http://www.mathworks.com/products/simulink/
/usr/bin/wrappers.pl $m $no_inst

.

anual.
./compile $arch modelsim

[2] ModelSim SE/EE Foreign Language Interface m

[3] http://www.mentor.com/products/ic_nanometer_design/news

/ams_simulator.cfm.

[4] http://www.electronicstalk.com/news/syn/syn201.html

[5] Francois Pecheux, Christophe Lallement, IEEE Transac

on Computer-Aided Design of Integrated Circuits and

tion

[6]

ademic Publishers, 2004.

ng

blishers,

[8]

ch for Mixed Analog-digital ASIC Designs,

Systems, Vol.24, No.2.

K. S. Kundert and O. Zinke. The Designer’s Guide to

Verilog-AMS. Kluwer Ac

[7] D. Fitzpatrick and I. Miller, Analog Behavioral Modeli

with the Verilog-A Language, Kluwer Academic Pu

1998.

Bill Luo, Jim Lear, A Unified Functional Verification

Approa

DesignCon, 2003.

133

