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ABSTRACT
This paper presents a top-down mixed-signal modeling 

approach that relies on Simulink converted-C modeling.  This 

modeling flow is divided into four fundamental operations: 

Build the behavioral model using Simulink. 

Generate the portable stand-alone C code using RTW.

Use FLI to link the generated C code with HDL. 

Write HDL wrappers. 

The resulting discrete-time C-based HDL model can 

seamlessly integrate with the digital and mixed-signal simulation 

environments without any special requirements from the 

simulator. With this approach we can truly achieve chip level or 

system level mixed-signal verification and analog vector 

generation.

1. INTRODUCTION
With the ever increasing complexity in highly integrated 

mixed-signal system on a Chip (SOC) or system in a package

(SIP) solutions, accurate mixed-signal simulation and test vector 

generation have become a challenging task in modern designs. A 

major contributor to this complexity is the different design 

methodologies required for designing its digital and analog 

components. These are important considerations because of the 

importance of thorough verification prior to tapeout, meeting 

important time to market requirements, and managing yield with 

well controlled tests once the device is in production. Traditional 

strategies involve partitioning the ASIC at the Analog-Digital 

boundary, and creating separate simulation environments. 

However these strategies typically leave holes in testing the signal 

interactions between the analog and digital domains. In order to 

achieve true full chip mixed-signal functional verification, or 

generate mixed-signal test vectors for SOC or SIP, there is   an 

urgent need to build an accurate behavioral model of the analog 

blocks, which can seamlessly integrate with the digital portion of 

the design. On the other hand, with the increasing number of 

transistors (millions) on a chip, performance is another bottle neck 

for the mixed-signal simulation. Currently there is no industry 

standard methodology and approach for handling such issues 

arising in mixed signal designs. SPICE-like mixed-signal 

simulations, although very accurate, are excruciatingly slow and 

often impractical, especially for large circuits. 

This paper introduces a new approach using Simulink[1] 

based C models for the analog and mixed-signal elements of the 

design to achieve reliable, fast and accurate chip level or system 

level mixed-signal simulation. The Simulink based C model is a 

discrete model that can interface with the design database in 

VHDL through an industry standard FLI (foreign Language 

Interface) [2] or Verilog through PLI (Program Language 

Interface) [2]. The Simulink model can be simulated with digital 

simulators such as Modelsim, Verilog XL, NC Verilog, etc. or 

mixed-signal simulators such as Advance-MS from Mentor 

Graphics [3] or Discovery AMS from Synopsis [4]. This new 

approach is different from traditional C modeling which requires 

developing the C code by hand. Manual coding is error prone, has 

a long development cycle and is hard to maintain. The Simulink 

based C model approach is also different from HDL mixed-signal 

modeling, such as VHDL-ams, Verilog-ams [5] and Verilog-A 

[6,7]. These are code based modeling languages, and require 

dedicated mixed-signal simulators, such as Advanced-MS or 

Nanosim. Another advantage of the proposed new modeling 

approach is that it is a top down. It can provide various degrees of 

abstraction in selecting the appropriate model for the application. 

At the end of the design cycle, this high abstraction-level 

behavioral model is verified against the analog transistor level 

block to ensure functional equivalence. The Simulink model, 

therefore, offers a consistent top down development methodology 

through the product development cycle. 

Another important aspect of this Simulink based C approach 

is that the model is a discrete time model. Discrete-time behaviors 

are generally expressed as logical Boolean equations or as 

communicating processes that are triggered by events, while 

continuous-time behaviors are generally expressed as differential 

algebraic equations. On one hand, with this discrete C-model, 

simulation speed increased 10 to 100 times over RTL design or 

SPICE[8] and this model is reasonably accurate at the architecture 

level. For example, a sigma-delta converter model will share 

frequency characteristic similar to its transistor design.  On the 

other hand, this discrete model is an ideal functional model and is 

not intended to capture behavior such as temperature coefficients, 

bias current sensitivity, resistor noise or other circuit 

characteristics.  

Simulink based C modeling flow can be divided into the four 

fundamental steps:

Build Simulink model with Real-Time Workshop 

(RTW)[8] constraints 

Generate stand-alone C code using RTW 

Modify C code to interface with VHDL or Verilog 

Write HDL wrappers.  

Each step will be discussed in details in the following sections. 

Examples of behavioral models of RC filter, Sigma-delta A2D 

converter and synchronization block will be given also. 

2. MIXED-SIGNAL MODELING USING 

SIMULINK
Simulink is a program that runs as a companion to MATLAB[1]. 

These programs are developed and marketed by the MathWorks, 
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Inc. Simulink and MATLAB form a package that serves as a 

vehicle for modeling dynamic systems. Simulink provides a 

graphical user interface (GUI) that is used for building block 

diagrams, performing simulations, as well as analyzing results. In 

Simulink, models are hierarchical, and models can be discrete, 

continuous or hybrid. For a mixed-signal model the Simulink 

model will be hybrid.   

In order to convert the mixed-signal Simulink model to C code 

smoothly using RTW, the Simulink model should be built with 

the following constraints: 

1) The following blocks are supported by RTW, and should not 

be used in the model: 

a.  Matlab FCN 

b. Algebraic loops 

c. Simulink s-function 

d. Variable step solver. 

2) The models should be discrete. If the model is built in 

continuous time domain, such as sample-hold circuit, 

integrator, or continuous time transfer function, use 

discretizer in Simulink to discretize the model.  

3) All input values that can change should be ports, not 

parameters. Parameters can sit in a modelname_init.m file. 

4) In order to simplify the c code, all input and output ports 

should be of type “double”. This will translate into a 

“double” in C, and into type “real” in VHDL. This may not 

be the most efficient way to handle the data when crossing 

between different domains, but it simplifies the automation 

scripts.  

3. SIMULINK MODEL OF BBRX 

Figure 1. Top-level block diagram of a single-channel BBRX

Figure 1 is a simplified example of the top-level Broad-band 

Receiver (BBRX) block diagram which normally implemented in 

the analog die or mixed-signal section of a design. This block 

diagram is only used to demonstrate the methodology of mixed-

signal modeling, not the functionalities of the Broad-Band 

Receiver. The incoming analog baseband signal I_ip passes 

through an analog RC filter and, optionally, through a gain buffer. 

Then the signal passes to a Sigma-delta A2D converter. The 

modulator converts the resulting signals into digital bit-streams 

(single bit or multiple bits); in this example, two bit-streams - Y1 

and Y2 are used.  The data is then passed through a 

synchronization block and then output to the digital block or 

digital chip. This is a typical of a mixed-signal design. It has a 

continuous time block (the RC filter), a mixed-signal block (the 

Sigma-Delta modulator) and a digital block (the synchronization 

unit). In this section the BBRX is used as an example to 

demonstrate the procedures that one must follow to build the 

mixed-signal models using Simulink. 

Figure 2 BBRX top-level port list 

The top-level port list of the BBRX is shown in Figure 2. The top-

level port list of the Simulink model should match the top level 

port list of the design block. At this level, “match” means the port 

names and dimensions should match the schematic design. The 

data type of the port in Simulink should be double; this will 

convert to double in C and real in VHDL through the FLI (Data 

type conversion will be discussed in wrapper section). 

Additionally, the appropriate sampling time will need to be 

defined for the ports. For the input ports, a reasonable sampling 

time should be defined. For the output ports sampling time can be 

inherited from the block driving the port or redefined. 

Figure 3 shows the top-level Simulink model of the BBRX block. 

It consists of an anti-aliasing RC filter, Sigma-Delta modulator 

(SD modulator), synchronization block and other control logic. 

Details of the RC filter, Sigma-delta modulator and 

synchronization blocks will be discussed in the following 

sections.

Figure 3 Top-level model of BBRX 

3.1 Simulink Model of RC Filter 
The schematic of a first order RC filter is shown in Figure 4. In 

this case, the single-ended RC filter consists of a variable input 

resistor (Rbias), a feedback resistor (Rfeed), a variable pole 

capacitor (Cpole), and an operational transconductance amplifier 

(OTA). The OTA gives transconductance amplification. That is, it 

takes the voltage difference from its inputs and converts it to a 

proportional current. The coefficient of proportionality, defined as 

the transconductance of the OTA, is gm; the transfer function of 

the low-pass filter can be deducted as:
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Figure 4 Block diagram of a single-ended RC filter 
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Rbias is a programmable resistor, and its value can be 

programmed through an 16 bit register. Cpole is a 

programmable capacitor; the user can select eight different 

configurations using 8 capacitors with values of 1pf, 2pf, …, 

7pf and 8pf through c_ctl_reg[2:0]. 

Figure 5 shows the implementation of the RC filter, which 

includes the continuous time integrator. In this model, both 

Rbias and Cpole are programmable. This model is a continuous 

time domain model which needs to be discretized when 

converted to c code. In Simulink, under tools, there is a 

utility called discretizer. The user can use this discretizer to 

discretize the continuous time domain model. The integration 

timestep is very important for the conversion. If the timestep 

is too big, the discretized model may not be able to represent 

the design to the required resolution. On the other hand, if 

the timestep is too small, it will affect the CPU time required 

for simulation. 

Figure 5 Model of RC filter in Simulink 

Table 1 shows the relationship between the timestep, 

performance, and simulation time.  These simulations were 

performed on a 32 bit Linux machine with RC time constant TRC

=1.9e-7s.  From the table we can see, when the timestep is too 

big, the algorithm wouldn’t be able to converge. When the 

timestep< 0.1TRC, if reduces the time steps, it greatly increases 

the CPU time, and the performance of model doesn’t improve 

much. Therefore, user should choose the integration timestep 

wisely.  

Rfeed

CpoleVin

Vout

Rbias

OTA

-

+

Integration 

timestep (s) 

CPU time(s) SNR(signal noise 

ratio in DB) 

6.0e-8 Not converge 

5.0e-8 151 -171 

4.0e-8 166 -171.5 

2.0e-8 194 -172.5 

1.0e-8 226 -172.5 

5.0e-9 331 -172.8 

Table 1 Relationship between integration timestep, 

performance and CPU time 

3.2 Sigma-delta modulator 

Figure 6 Simulink model of 4-level 4th order  modulator 

Figure 6 shows the Simulink model of a generic 4th order 4 level 

 A2D. There are two 4-level comparators and two A2D 

converters. In this model, the sampling time of the delay block 

should be based on the over sampling clock frequency. The 

reference voltages for comparator 1, comparator 2, DAC 1 and 

DAC 2 are programmable, and are generated from the reference 

block.

3.3 Signal Synchronization 
Figure 7 shows the Simulink model of the synchronization block. 

Dataclk, an input to this block, is used to synchronize the bit 

stream from Sigma-delta modulator. The synchronized data be 

will sent to the digital MSM chip. There is another control signal, 

clk_edge. With this signal the user can choose the digital data 

synchronized to the rising edge or the falling edge of dataclk. 
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Figure 7 Simulink model of the synchronization block 

4. CONVERT SIMULINK MODEL TO C
Real-Time Workshop is an application of Simulink. It 

generates optimized, portable and customized ANSI C code from 

Simulink models. It automatically builds programs that execute in 

Real-Time or Stand-alone non-real-time simulation. In this paper, 

only Stand-alone non-real-time C code will be used. 

The following configuration parameters should be set 

correctly before generating the C code: 

1) Simulation start time and stop time. Normally the 

simulation start time is set to 0, stop time to ‘inf’ for 

infinite. The end of the simulation will be controlled 

from outside the c environment.

2) The solver option. The solver type should be set to fixed 

step discrete. Variable step solver is allowed in 

Simulink, but not supported by RTW. 

3) Step size option. For C code generation, the step size 

can be set to ‘auto’. When customized C code, users can 

decide the step size through FLI interface. For the 

simulation case, the step size should be set to a 

reasonable value, such as half of the fast clock period. 

4) Solver mode. The solver model should be set to single-

tasking. The C code generated from single-tasking 

mode is much simpler than that from the multi-tasking 

mode.

5) Workspace IO option. Make sure the “save output” and 

“save time” options are off.  These options log both the 

results and the timestamp respectively.  During C code 

generation, these options should be off since there is no 

valid input to the model. 

6) System target file. Select the Generic Real-Time Target 

(grt.tlc). This will generate Stand-alone non-real-time C 

code.

Parameters in the model should be initialized if there are any. 

Then it is ready for the code generation. Code generation is 

simple. You can issue Matlab command make_rtw to generate the 

C code. Once the code generation is complete the following files 

will be generated in the directory ./X_grt_rtw (where ‘X’, the 

model name, is embedded in both the directory and most of its 

associated files): 

X.c: the stand alone C code that implements the model 

X_data.c:  initial parameter values used by the model 

X.h: an include header file containing definitions for 

parameters and state variables 

X_types.h: a file containing forward declarations of data 

types used in the code. 

X_private.h: a header file containing common include 

definitions

Rtmodel.h: a master header file for including generated code 

in the static main program.

There is another file used in the c code compilation to create the 

executable, grt_main.c. This file is located in the directory 

/installation/mathworks/version/rtw/c/grt/ (/installation is the 

directory where Mathworks products are installed). The file, 

grt_main.c,  contains the main() C routine that is used to initialize 

all the variables, allocate memory, invoke the functional routine 

that implements the model and terminate the program. Any 

display statements, interrupt handling with external clock or 

timing mechanism must be added in this file. The rest of the files 

remain untouched except the header file.

5. CUSTOMIZED C CODE 
The C code generated in step 4 can interface with VHDL or 

Verilog. For mixed-signal designs, Verilog 1995 doesn’t have real 

data type and cannot handle analog signals. Therefore, for mixed-

signal modeling, VHDL is chose to interface with C code. But 

this modeling flow can be used for digital modeling,  including 

DSP, ALU, etc. Under these circumstances the C code can 

interface with either VHDL or Verilog.  In this section, we mainly 

discuss how to modify the C code to interface with VHDL. 

The grt_main.c file needs to be modified to interface with 

VHDL. The interface will vary depending on the simulator used. 

Here the Modeltech FLI interface is shown as an example. Figure

8 illustrates the philosophy behind partitioning the C main 

function and the VHDL entity and architecture. The “x_init” in 

the VHDL architecture is the name of the initialization function in 

the main.c file. The “x.so” is the name of the shared object file 

generated from the C code. 

 C main (maim.c)

x_OneStep() {

/*get the value from VHDL input

  ports

/*execute functionality

/*drives value onto VHDL output 

ports

/*sensitize or wakeup 

call }

x_init() {

/*memory allocation

/*connect to VHDL ports

/*sensitize or wakeup call

}

 architecture one of x_sub is 

attribute of foreign: string

   Attribute foreign of one:

architecture is "x_init   ./x.so“

 end architecture one;

Entity x_sub is port(

  Signal  in1: in real;

Signal in2 : in real;

Signal out1: out real

) end x_sub;

Figure 8 Partition of C main () function 
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Basically  with the 

L WRAPPERS 
odel. The “inner” wrapper has 

s an example of the inner wrapper. In this example, the 

Figure 12 sh or the outer 

7. AUTOMATION SCRIPTS 
pper manually seems 

ode generated by RTW to 

Figure 9 Example of  init( ) routine 

Figure 10 Example of OneStep() routine 

the main() function has to be modified

functions like init() and OneStep(). The init() function has to be 

changed such that the the VHDL input and output ports connect to 

the Simulink model. The OneStep() function has to be modified 

with the addition of FLI commands to read in the VHDL values 

and to drive the c outputs back to the VHDL output ports. Figure

9 shows an example of the x_init() routine. This routine is the 

entry point into the foreign C model. This initialization function 

typically allocates memory, saves the handles to the signals in the 

port list, creates drivers on the port that will be driven, creates one 

or more processes (a C function that can be called when a signal 

changes) and sensitizes each process to a list of signals. In this 

example, it uses schedule wakeup instead of sensitize call.  Figure

10 gives an example of the OneStep( ) routine. This routine reads 

in the VHDL value (input ports in VHDL entity) through FLI 

command mti_GetSignalValue (for any scalar signals except real 

or time) or mti_GetSignalValueIndirect (for real signals or time), 

and pass the value to the input of foreign C-model. The input port 

of the foreign C model is under rtU data structure, and can be 

accessed as rtU.in1, rtU.in2, etc. Then rt_OneStep() routine 

executes the C routine (MdlOutputs(0)), and drives the C output 

back to VHDL output ports.  The output port of the foreign C 

model is under rtY data structure, and can be accessed as 

rtY.out1.

6. VHD
There are two wrappers for the c m

only real inputs and outputs, and its architecture calls the c library 

with a foreign attribute. The “outer” wrapper takes care of the 

conversion of the data format, as well as separating the bits in a 

digital bus. The name and data type of input/output ports of the 

“outer” wrapper must match the pin name of the analog schematic 

exactly. It can be useful for the “inner” layer to have a different 

number of inputs/output pins for debugging purpose; this is 

allowable

Figure 11 i
void init(mtiRegionIdT region, char *param, mtiInterfaceListT, mtiInterfaceListT *generics, 

mtiInterfaceListT *ports)
{    Xinst_rec     *ip_X;
     …

/* memory allocation and function callback */
ip_X = (Xinst_rec *)mti_Malloc(sizeof(Xinst_rec));
mti_AddRestartCB(mti_Free, ip_X);

/* create process and save the handles to the signals in the port list */

ip_X->procid = mti_CreateProcess("p1X", OneStep, 

data types of the input and output ports are real, and its 

architecture calls the c library with a foreign attribute.      

Figure 11 Example of Inner wrapper 

entity x_sub is
port (signal PortNameIn1     :  in   real;

signal PortNameIn2       :  in   real;
signal PortNameIn3       :  in   real;
signal PortNameOut1      :  out  real;
signal PortNameOut2      :  out  real );

end x_sub;
architecture one of x_sub is

attribute foreign : string;
attribute foreign of one : architecture is 

“x_init ./x.so";

end architecture one;

ip X);ip_X->In1 = mti_FindPort(ports, "in1");
   ip_X->In2 = mti_FindPort(ports, 

"in2");   mti_ScheduleWakeup(ip_X->procid, 1000);
    …

/* create drivers */
ip_X->Out1 = mti_CreateDriver(mti_FindPort(ports,"Out1"));
mti_SetDriverOwner(ip_X->Out1, ip_X->procid);

static void OneStep(void *param)
{  inst_rec *ip=param;
    …

/* get the inputs from VHDL port*/
mti_GetSignalValueIndirect(ip->In1 ,&(rtU.In1) );
mti_GetSignalValueIndirect(ip->In2 ,&(rtU.In2) );

     …

MdlOutputs(0);   /* execute the C function */

/* drive the value to the VHDL output port */

mti_ScheduleDriver(ip->Out1,(int)&(rtY.Out1),0,  MTI_TRANSPORT);

mti_ScheduleWakeup(ip->procid,1000);/*wakeup call*/

} /* end OneStep */

Figure 12 Example of outer wrapper 

ENTITY ModelTop IS
port (signal PortNameIn1      : in   real;

signal PortNameIn2    : in   std_logic;
signal PortNameIn3a   : in   std_logic;
signal PortNameIn3b   : in   std_logic;
signal PortNameIOut1  : out  real;
signal PortNameOut2   : out  std_logic );

END  ModelTop;
ARCHITECTURE one OF ModelTop IS
--internal signals for data type conversion
signal PortNameIn2_real       : real : = 0.0;

       Signal PortNameIn3_vector:unsigned(1 downto 0) := "00";
signal    PortNameIn3_real       : real := 0.0;
signal    PortNameOut2_real    : real;

BEGIN
PortNameIn2_real <= to_real(PortNameIn2     );
PortNameIn3_vector<= PortNameIn3a & PortNameIn3b;
PortNameIn3_real<= to_real(PortNameIn3_vector);
PortNameOut2 <= to_std_logic(PortNameOut2_real);

       …  (port map )
    END one;

ows an example of the outer wrappers. F

wrapper, the data type of input port PortNameIn2 is std_logic, and 

its corresponding inner wrapper type is real. This requires a data 

type conversion – converting the outer wrapper’s std_logic to 

real. The input ports PortNameIn3a and PortNameIn3b in the 

outer wrapper are mapped to the input port PortNameIn3 in the 

inner wrapper. In this case, the user needs to combine the input 

port PortNameIn3a and PortNameIn3b to a std_logic_vector, and 

convert the std_logic_vector to a real signal, then map this real 

signal to PortnameIn3 in the inner wrapper. For the output port 

PortNameOut2, users need to convert the real data type to 

std_logic by the function call to_std_logic. 

Customizing C code and writing VHDL wra

time consuming and tedious. This process can be automated by 

shell scripts and Perl scripts. The following section outlines the 

major steps of the automation scripts. 

1) Perl scripts to customize the C c

interface with VHDL. There are four major steps for this script. 

First, create a customize template grt_main.c file based on the 

grt_main.c file provided by Mathworks. This template file should 

have the proper format for FLI/PLI interface. Next, get the 

input/output port names and types of the generated C code 
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(Simulink model). This information is available in X.h file which 

was generated in step 4. Third, connect the VHDL inputs/outputs 

to the Simulink model's input and output ports respectively in the 

Init() routine. If the names of the Simulink model match the 

names of the VHDL wrapper, it will simplify the Perl script. The 

last step, add the FLI commands to read in the VHDL values to 

the c code and drive the C output back to the VHDL output ports 

in OneStep() routine, and add the sensitize command or schedule 

wakeup command in the Init() and OneStep() routine. 

2) Perl scripts for VHDL inner and outer wrapper. For the inner 

e C compile command which can be 

the scripts 1) to 3) together.  Figure

8. INTEGRATION AND SIMULATION
odes, 

he behavioral model of the 

of BBRX, followed by the analog differential input iip and iin 

wrapper, the input/output port names should exactly match its 

corresponding name in the Simulink model, and it is available in 

X.h file. For the outer wrapper, there are various ways to generate 

the outer wrapper. One easiest way is to annotate the inner 

wrapper (for VHDL, use “—“which will be interpreted as 

comment). This annotation specifies the new port name and data 

type in the outer wrapper.  

3) Perl script to generate th

used to generate C executable for various platforms. Currently we 

support Solaris, HP, Linux.

A shell script is used to link 

13 is shown the structure of the convert_c.sh script. 

Figure 13 an example of the automation scripts 

The wrappers of the Simulink based-c models are VHDL c

therefore the models can be treated as VHDL models from the 

integration point of view. These models can be integrated with 

RTL design, gate-level design and mixed-signal design. They can 

be used with either digital simulators or mixed-signal simulators 

as long as the simulator supports a c foreign language interface. 

ModeSim SE is a simulator product from Model Technology that 

supports VHDL/Verilog mixed-language simulation. We chose 

Modelsim for our mixed-signal simulation/verification 

environment due to its full-featured access to Verilog models and 

VHDL entities, including source code debugging, waveform 

viewing and hierarchy navigation.  

In our verification environment, t

BBRX, Codec and HKADC are integrated with the digital MSM 

chipset. Figure 14 shows the Modelsim simulation results of the 

BBRX. At the top of figure 14, it shows the register configuration 

(sinewave). The synchronized 4 bit Sigma-Delta modulator (SD) 

outputs are shown in Figure 14 followed by the analog inputs. 

The 4-bit SD outputs pass through a digital filter and the 

recovered sinewaves are shown at the bottom of Figure 14.

Figure 14  Modelsim Simulation result of BBRX block

9.

ercial 90 nm WCDMA MSM chip set 

SUMMARY
This Simulink based C modeling approach has been used 

successfully in comm

simulation environments. This method is used to model 12 bit 

Successive Approximation Housekeeping ADC’s, TXDAC’s, 

wide-band CODEC’s and Broad Band Receivers, which 

incorporate anti-aliasing filters, RC filters and Sigma-Delta 

modulators. With this mixed-signal simulation environment, 

we’re able to achieve full-package (system in a package) mixed-

signal simulation and mixed-signal test vector generation.  The 

top down approach to modeling analog portions of the design 

using Simulink models has proven to be invaluable time to market 

aid for getting chips reliably from concept to production.
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