

Trends in RF/Mixed-Signal Design and Its Implications on Computer Aided Design

by Henry Chang, Ken Kundert 9/22/05

Bridging the GAP

Outline

- Design Drivers
- Design Challenges
- Addressing Challenges
 - Design Teams
 - Methodology and CAD
- Conclusions

The Morning Paper

MERCURYNEWS.COM

1AA

Friday's Fry's
Electronics
circular8 pages of the
electronics
We Make!!!

With "Cool" Mixed-Signal Chips

PROGRESSIVE SCAN

 Plays DVD, DVD+R/+RW, CD, CD-R/-RW, CD+G, VCD, SVCD, MP3

#4493246

Latest and More Expensive

*Best Buy and CompUSA ads also

New Technology Premium

600% Premium!!!!

800%

Could Be Worse

Bright Spot

Not Just Cost

One Device, Do Everything

- 3D Video Games
- Streaming Video
- MP3 Player
- Bluetooth
- Mobile Web
- 1.3MP Camera
- Video Camera
- Speakerphone
- Voice Dial
- Mini SD Card
- Address Book
- Speed Dial

4 oz, 4 hour talk, 1 week standby

Fierce Competition

Outline

- Design Drivers
- Design Challenges
- Addressing Challenges
 - Design Teams
 - Methodology and CAD
- Conclusions

Design Challenges

- Functionality
 - Many standards
 - Adaptable to different end products
- Performance
 - Specifications and exceeding them
 - Low power
- Cost
 - High yield
 - Small die area
- All before the holidays!
 - Design productivity
 - Design quality
 - Fast ramp to volume
- Repeatable

Complexity

Performance

	1954				
<i>linini</i> minini	Next Generation			QUXGA QSXGA	13M
	15,000		10Gb/s	QXGA	8M
	10,000	540Mb/s	1Gb/s	UXGA	6M
Mainstream	7,200	802.11g	100BaseT	SXGA	4M
	5,400	802.11b	10BaseT	XGA	3M
	4,500		Appletalk	SVGA	2M
	3,600		RS-232	VGA	1M
	Obsolete			EGA	0.5M
				CGA	0.3M
	Mainstream	Mainstream 10,000 7,200 5,400 4,500	15,000 10,000 540Mb/s 7,200 802.11g 5,400 802.11b 4,500 3,600	15,000 10Gb/s Mainstream 10,000 540Mb/s 1Gb/s 7,200 802.11g 100BaseT 5,400 802.11b 10BaseT 4,500 Appletalk	15,000

Disk Drive Wireless Networking Video Digital Camera (RPM) (Pixels)

CICC 2005 Examples

A Discrete Time Quad-band GSM/GPRS Receiver in a 90nm Digital CMOS Process [1]

A 0.8-1.3V 16-channel 2.5Gb/s High-speed Serial Transceiver in a 90nm Standard CMOS Process [2]

A Highly-Integrated CMOS Analog Baseband Transceiver with 180MSPS 13b Pipelined CMOS ADC and Dual 12b DACs [3]

Outline

- Design Drivers
- Design Challenges
- Addressing Challenges
 - Design Teams
 - Methodology and CAD
- Conclusions

Design Levels

Design Teams

Design Level	Designer/Team	Cause of Sleepless Nights		
Analog Block	Analog Designer	Function, Performance		
Analog IP	Design Lead	Architecture, Function, Performance, IP Packaging		
Chip	System Designer	Architecture, Performance		
	Implementation	Schedule, Integration, Function		
	Verification Engineer	Function (Performance)		
ASSP	Production Engineer	Design for Test, Yield		
9	Business Owner	Schedule, Customer Relationship		
End Product	"Customer"	System "Bring Up"		

Own concerns plus communicating with others

Complex Communication

- Geography / time zone / language
- Different concerns
- Different design domains
- Different design languages

The Problem

Verification Issues

- Chip Functional Verification
- IP Functional Verification
- IP Performance Verification
- Block Performance Verification

Outline

- Design Drivers
- Design Challenges
- Addressing Challenges
 - Design Teams
 - Methodology and CAD
- Conclusions

Top-Down Verification

- Verification planning
- Shared design representations
- Verification of each design change
- Continual refinement w/quick initial iteration
- Executable models and scripts used daily

Flow

Must be owned by design team and be an integral part of design process

Navigating the Details

- Verilog vs. VHDL?
- Verilog vs. Verilog-A vs. Verilog-AMS?
- When mixed-level? When mixed-mode?
- Level of model? How many levels?
- How to verify models?
- Verification vs. design models?
- Effort to invest?
- Build generic models?
- How to integrate with design?
- Who writes models?
- Purpose of each model? Concerns? What to model?
- Customer of model?
- Spice transient vs. timing simulator?
- Where does Matlab fit in?
- How to help design not impact design?

Design vs. Verification

Design

Scratch Pad

Excel, Matlab, Models

Parametric Selection

Verification

Full functional verification

Full performance verification

Regression Testing

Monte Carlo / Corners Analysis

Are the same models used? Same person for both tasks?

Analog Verification Engineer

- Modeling expert (digital and analog)
- Paired with analog IP design lead
- Understands top-down verification
- Understands simulation technologies
- Focuses on verification and delivering models to customers (internal and external)

The Real Issues

- Work jointly with designers
- Talk to designers
- Test ideas with them
- Read about what they are struggling with <u>http://www.designers-guide.org/</u>

Conclusions

- Fierce competition driving design
- Analog design is multi-dimensional
- Analog verification changing
- New methodologies required
- Analog behavioral modeling has new roles to play

Portable Music

- First AM/FM "walkman"
 - 25 years ago
 - \$285 (adjusted for inflation)
 - 4 x AA batteries
 - Stereo
- FM/MP3 Player
 - \$60
 - 1 x AAA battery
 - CD Quality
 - < 20% of the weight</p>

Buyer's Remorse

References

- [1] K. Muhammad et al, "A Discrete Time Quad-band GSM/GPRS Receiver in a 90nm Digital CMOS Process," *IEEE CICC Proceedings*, September 2005.
- [2] Y. Doi et al, "A 0.8-1.3V 16-channel 2.5Gb/s High-speed Serial Transceiver in a 90nm Standard CMOS Process," *IEEE CICC Proceedings*, September 2005.
- [3] K. Gulati et al, "A Highly-Integrated CMOS Analog Baseband Transceiver with 180MSPS 13b Pipelined CMOS ADC and Dual 12b DACs," *IEEE CICC Proceedings*, September 2005.

