Design Methodologies for Advanced Low Power Communication Circuits and Systems

Brian Otis University of Washington Electrical Engineering botis@ee.washington.edu

September 22, 2005

Motivation

Present case studies from the design of multiple layers of a wireless sensor network platform

Show current methodologies, representative results, and difficulties with these methods

Observation: simulation across disciplines, not just technologies, is crucial for the success of future ultra-small electronic systems

I will highlight important questions that we were not able to answer with our current methodology

Application: Wireless Sensing

Nodes must be small (<1cm³) & self-contained (use energy scavenging)

This network would allow:

- Saving energy in building environments
- Tire pressure monitoring
- Wildlife monitoring
- Radiation monitoring
- Biological and implantable devices

Why is this difficult?

The environment is inherently energy starved

Confluence of many technologies, all of which are at their stateof-the-art (necessary to reduce form-factor and power dissipation over current solutions)

Large, ad-hoc networks assembled non-deterministically

Must communicate reliably over uncertain RF links

Sensor Network Hierarchy

Must break down traditional abstractions and interfaces between systems and technologies to maximize efficiency

Part I: Power Distribution

- Want indefinite operation from environmentally scavenged energy
- Power generation & management crucial

Energy Scavenging Power Train

Domain

Thin-Film Battery Simulation

Percent Volume of Device Occupied by Power Source vs. Time

- Current sensor nodes are 80% -90% battery by volume
- Must reduce power consumption and increase battery integration

Courtesy: Dan Steingart

Small Battery Overview

- Conventional
 - Thick Electrodes (400µm each)
 - Liquid Electrolyte
 - Built for Capacity (small surface area)
- Superflat
 - Sputtered Electrodes
 - Solid Polymer Electrolytes
 - Built for Power (high surface area)
- A Flexible Approach
 - Paste Applied Porous Electrodes
 - Solid Polymer Electrolytes
 - Low Temperature
 - Built for Scaling

Courtesy: Dan Steingart

Modeling

System Power Modeling

Output: Current vs. Time

- 1. Power TOSsim (Python, Harvard)
 - Estimates energy needed based on different TinyOS hardware for a given program
 - Sleep states not well modeled
- 2. Measurements in various states
- 3. Estimate with designed power consumption & anticipated duty cycle

Battery Charge Modeling

Output: State-of-charge vs. Time

1. Energy Density Balance

1st order approximation based on known mAh/g, volume

Poor accuracy as battery size decreaes

2. DualFoil (Berkeley)

Comprehensive Fortran 1-D Solver

3. Empirical Models

Limited predictive ability (chemistry, form factor, etc)

Limited physical significance

Battery Life Simulation

Simulation setup: PowerTOSsim (Python) to DualFoil (Fortran) controlled via Matlab

But, how does the battery state influence network conditions, circuit performance?

Courtesy: Dan Steingart

No tie-in between electro-mechanical powertrain and power management circuitry.

Required:

- 1. Model the interaction between the battery state-of-charge and electronics
 - Can we implement adaptive power algorithms sensitive to battery potential output?
 - Simulation of electronic performance over network conditions, environmental conditions, and battery charge
- 2. Parameterized battery models

Part II: Communications Link

- Develop efficient network schemes suitable to ad-hoc networks
- Huge gains in efficiency can occur at higher network layers

Communication Link: Protocol Stack

Step 1: Design, modeling and analysis

Step 2: Simulation (Omnet++)

Step 3: Implementation (Berkeley motes)

The design included opportunistic routing, pseudoasynchronous MAC and adaptive duty cycling.

Courtesy: R. Shah

Opportunistic Routing: Simulation results

- The entire protocol stack was simulated in Omnet++
- To enable large size network simulations, only packet level errors were simulated

Courtesy: R. Shah

Adaptive Wakeup Rate Simulation

Number of nodes in forwarding region = 10 Traffic rate is changed periodically

Courtesy: R. Shah

Simulation Setup

Transmission times, Waiting times and Memory Usage

Courtesy: R. Shah

Part II Summary:

Protocol/MAC designed via analysis/simulation

No connection to physical layer models, so joint optimization not possible

How much power is used during network discovery, etc?

How does changing the modulation scheme or transmitted power effect overall network performance?

How does the adaptive wakeup rate perform with a physical battery model?

An important point...

Does cross-layer design (rate-adaptive MACs, etc) make systems susceptible to the "Law of Unintended Consequences"?

By increasing the scope of the models, we are better able to predict complicated interactions between layers.

Part III: MEMS/Circuitry Co-design

• MEMS technologies can increase performance and greatly reduce size & power consumption of sensor networks

CMOS/MEMS systems

Micro Electromechanical Systems (MEMS) allow previously impossible implementations, including

- 1. Small sensing (Analog Devices ADXL Accelerometer)
- 2. Low power wireless implementations
- 3. Miniature reference clock generation

Two examples: reference clock design and low power transceiver design

MEMS-Based Reference Clocks

Design 16MHz reference clocks using 0.13µm CMOS with custom SiGe MEMS

> R. Howe E. Quévy N. Pletcher J. Rabaey B. Otis

MEMS Design: Structure Choice

MEMS resonator = Mechanical Structure + Transducer == RLC equivalent network At the system level, we start from the requested network to co-design **structure** first, then **transducer**

MEMS Design: FEM Modeling/Optimization

Courtesy: Dr. E. Quevy **Structure Dimensions** Initial X + [K][X] = 0Layout **Fabrication Process** $\begin{bmatrix} M \end{bmatrix} \begin{vmatrix} \ddots \\ X \end{vmatrix} + \begin{bmatrix} C \end{bmatrix} \begin{vmatrix} X \\ X \end{vmatrix} + \begin{bmatrix} K \end{bmatrix} \begin{vmatrix} X \\ X \end{vmatrix}$ $= [F] . \cos(\omega t)$ in place **3D Synthesis** BLR Sense Electro Geometrical Modal Harmonic Parametric Model (3D) Analysis Analysis Analysis [K_r, M_r] @ f_o res 0 $[K_r, M_r]$ Material / Topology ANSYS 4.50E-011 **Characteristics** 4 00E-01 3.50E-011 - Thicknesses 3.00E-01 -Residual stress 2.50E-01 2.00E-01 -Temperature coefficients = 1.50E-01 -Design Rules 1.00E-01 func 100.6 100.8 101.0 101.2 101.4 100.2 Frequency (MHz) (dim, E, T°, ...) Spec-based **Finite-Element** Spice/Behavioral Structure Structure choice Modeling Modeling Layout (Analytical) (ANSYS) (Cadence) (Cadence Virtuoso)

MEMS Design: Electrical Modeling

Note: This part of the model may need to be fitted with experimental parameter extraction results on stand-alone structures to input accurate process variation in system level simulation

MEMS Design: Layout, DRC, extract

RF MEMS: path to ultra-small radios

Properties:

- High quality-factor (Q ~ 1000)
- Enables new transmit and receive architectures
- Defined lithographically, batch fab: can co-design with active devices

Agilent AIN FBAR

Differential ISM BAW Oscillator (2.4GHz)

- 115µA
- Max Swing: 0.9Vp-p
- Supply Pushing: 0.4MHz/V
- -120dBc/Hz @ 100kHz

BAW/CMOS Co-Design

Design Methodology

Sub-mW 2GHz Transceiver

 $V_{\rm quench}$ Super-regenerative transceiver ா Isolation OOK Super-Non-Linear PWM Simulation difficult due to high Amplifier Regenerative Detector Filter Demodulator Oscillator Q, long time constants Simulate circuit blocks, calculate Total Rx: 380µW Low Power Oscillator Amplifier system performance

Part III Summary:

- Silicon MEMS technology will become more pervasive in electronic systems
- Currently, no parametric SPICE models for these components
- RF MEMS devices provide very high f_{osc}* Q products:
 - Allows reduced transceiver power consumption
 - Greatly increases simulation difficulty
- Non-linear super-regenerative receiver difficult to simulate
- Simulating entire receive chain over an entire packet training sequence very time/CPU intensive

Part IV: EM/Circuit Co-design

•Eliminate traditional 50 Ω interface to increase performance

Antenna-Circuit Co-design

- Traditional design assumes 50Ω resistive load.
- Possible to design the antenna together with front-end circuits to eliminate matching networks.
- Antenna design requires solving fields equations but circuit simulator relies on circuit theory.
- No CAD tools support antennacircuit co-design.

Courtesy: Y. Chee

High Frequency Structure Simulator (HFSS)

- HFSS is a full 3-D EM simulator.
- Use to simulate antenna input impedance, radiation pattern and efficiency.
- Able to export S, Y or Z port parameters.

Courtesy: Y. Chee

Frequency (GHz)

Design Methodology

Courtesy: Y. Chee

Typically, there is a clean 50Ω handoff between RF circuit designers and microwave antenna designers

The co-design of electromagnetic transducers and integrated circuits can improve the efficiency of RF links

Part V: Low Power A/D Converter

- A/D forms the interface between physical world and abstract algorithms
- Specifications: 75dB DR, 50KS/s,15 μ W $\Sigma\Delta$ ADC

High-Level, equation-based system exploration to get fast tradeoff estimates (heuristic)

Courtesy: S. Gambini

Detailed behavioral simulation

Example:

Second-Order loop

Model: Finite OTA Gain ,finite output swing, nonlinearity, noise, incomplete settling.

Courtesy: S. Gambini

Design the building blocks

Use SPECTRE/SPICE to verify that block key performances match what assumed in the system simulations.

Back-Annotate and iterate

Note: "Reachability Problem" or how do we know at the previous level what we can do now? No rigorous way-relies on designer skill/understanding of the circuit/system behavior

Courtesy: S. Gambini

• Digital Programmability

Limit overdesign by adding onchip programmability

Example: Bias tuning

5-bit tuning range allows compensation for process variation and operation at variable sampling frequency and dynamic range

Simulated Performance (Simulink)

Signal Bandwidth	50Khz
Oversampling Ratio	128
Dynamic Range	75dB
Power	15µW
Consumption	
FOM	700e-6
(4KT*DR*Fs/Pd)	

Courtesy: S. Gambini

Part V Summary:

Analog CAD gap is prevalent

System/Circuit design interface requires tremendous designer intuition

Designer intuition/modeling ability are not necessarily related

Conclusions

- 1. Electronics are becoming vanishingly small and truly ubiquitous
- 2. The convergence of many different disciplines is needed for ultra-small, low power electronic systems

- Future chips will include transistors, EM elements, MEMS structures, biological sensors, thin-film batteries, adaptive algorithms.. all designed together
- 4. Seamless simulation between systems is necessary to allow crossdiscipline co-design (and protect against the "Law of Unintended Consequences")