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Introduction

● Why we need oscillator macromodels?

■ Oscillators are used widely – transmitters, microprocessors

■ Simulations of oscillators are usually diff icult  and expensive

■ Phase characterist ics of oscillators under perturbations are 

of signif icant interests, but diff icult  to simulate using 

conventional methods

● Advantages of oscillator macromodels

■ Fast without compromise of accuracy

■ Plugged into simulators – SPICE

■ Capture the phase characterist ics under perturbations
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Introduction (continued)

● Why we need nonlinear oscillator macromodels?

■ Oscillator is inherently a nonlinear system

■ Linear perturbation anaylsis doesn't  apply to oscillators 

■ Linear models often fail to accruately predict phase 

deviat ions under perturbations

● Nonlinear oscillator macromodels

■ Based on the oscillator phase noise analysis by Demir, 

Mehotra, and Roychowdhury

■ Successfully capture nonlinear dynamics of oscillators – 

inject ion locking, cycle slipping, …
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Linear Perturbation Analysis

ẋ= f x  x s  t 

Unperturbed oscillator Perturbed oscillator

ẋ= f x b  t 

Linear perturbation analysis

ẋ= f x b  t  x s  t w  t 

x p  t =?

ẇ  t ≈ ∂ f
∂ x

w  t b  t 

If w(t ) always small

w(t ) can be made to grow UNBOUNDED despite b(t ) remaining small

“Phase noise in oscillators: a unifying theory and numerical methods for characterizat ion” Demir , A.  
 Mehrot ra, A.   Roychowdhury, J., IEEE Trans on Circuits and Systems, pp.655- 674 (47), 1999
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Nonlinear Perturbation Analysis

ẋ− f x =b 1 t  b  t 

b 1 t =v 1
T  t t  b  t  u 1 t t 

neglect the amplitude perturbation in our discussions

ẋ− f x =b 1 t 

Perturbation Projection Vector (PPV)

 t  Phase deviations

Solution of perturbed oscillator x p  t =x s  t t 

̇  t =v 1
T  t t  b  t 

“Phase noise in oscillators: a unifying theory and numerical methods for characterizat ion” Demir , A.  
 Mehrot ra, A.   Roychowdhury, J., IEEE Trans on Circuits and Systems, pp.655- 674 (47), 1999
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Nonlinear Oscillator Macromodel

̇  t =v 1
T  t t  b  t 

Nonlinear macromodel based on those equat ions
(X. Lai and J. Roychowdhury, ICCAD 2004):

● Steps of building the macromodel:
■ Simulate the full- sized unperturbed oscillator to get 

unperturbed solution and PPV
■ Solve the nonlinear differential equation for α (t)
■ Get the perturbed solution

● Advantages of the macromodel
■ Reduction of system dimension
■ Speed- up of simulat ions 
■ Information of phase deviations

x p  t =x s  t t 
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Implementing the macromodel using Verilog- AMS

̇  t =v 1
T  t t  b  t 

Implement an oscillator under perturbat ion as a Verilog- AMS 
module

module oscillator(in, out);
inout in, out;
electrical in, out, alpha;
......

ddt(V(alpha)) = PPV($abstime+V(alpha))*V(in);

Time derivative operator in Verilog- AMS
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Implementing the macromodel using Verilog- AMS
(continued)

$table_model is perfect  for the job!
Usage:

• Store PPV waveform into a f ile,  ppv.table
• $table_model($abstime+V(alpha) % period,           
              “ppv.table”, “L”)

ddt(V(alpha)) = PPV($abstime+V(alpha))*V(in);

periodic waveform, no analyt ical form 
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Implementing the macromodel using Verilog- AMS
(continued)

Set up two branches:
branch (alpha) alpha1;
branch (alpha) alpha2;
...
perturbed_time=($abstime+V(alpha))%period;
ppv=$table_model(perturbed_time,“ppv.table”,”L”);

I(alpha1) <+ -ppv*V(in); 
I(alpha2) <+ ddt(V(alpha));

̇  t =v 1
T  t t  b  t 

KCL at node alpha will force I(alpha1) +  I(alpha2) =  0, so as $abstime 
proceeds, this nonlinear differential equation is solved at each t ime 
step
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Implementing the macromodel using Verilog- AMS
(continued)

`include "discipline.h"
`include "constants.h"

// nonlinear macromodel implemented in Verilog-AMS
module oscillator(in, out);
// define nodes   
inout      in, out;
electrical in, out, alpha;

// define variables and parameter  
real phase, ppv, period, omega,
     perturbed_time;
   
parameter real freq=1.0e9 from(0:inf);

// define branches
branch (alpha) alpha1;
branch (alpha) alpha2;
   
analog
begin
    @(initial_step)
    begin
    //set up initial condition for eq(9)  
    V(alpha) <+ 0;
    omega =  2.0*`M_PI*freq;
    period = 1.0/freq;
    end

    // real perturbed time is given by
    // $abstime + V(alpha)
    // but our ppv table has only one period
    // so take the modulus of period
    
    

perturbed_time = ($abstime+V(alpha)) % period;

    // look up table to get ppv value
    // $table_model(arg1, arg2, arg3)
    // arg1: input (independent) variable
    // arg2: name of the file storing the table
    // arg3: interpolation method, L-linear

           
   ppv =  $table_model(perturbed_time,
           "osc_ppv.table", "L");
    
    // right hand side of eq(9)
    // ppv:  v1(t+alpha(t))
    // V(in):b(t) 
    I(alpha1) <+ -ppv*V(in);
    
    // left hand side of eq(9) 
    I(alpha2) <+  ddt(V(alpha));
        
    // KCL at alpha forces 
    //       I(alpha1) + I(alpha2) = 0 
    // so that eq(9) is solved at each time point
    
    phase = V(alpha)*omega; // output only

    // look up table to generate output
    V(out) <+ $table_model(perturbed_time,
              "osc_output.table", "L");
end
endmodule
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Simulation Results

-

b(t)

i=
f(

v)

−C
dv t 
dt

=
v t
R

i t f v tbt 

L
di t 
dt

=v t

Simulate using Freescale's in- house 
circuit  simulator, Mica, to get  steady 
state solut ion and PPV waveform

Oscillat ing freq: 1.0GHz, mag: 600mV
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Simulation Results (continued)

-

b(t)

i=
f(

v)

b0sin  t

perturbation

Full SPICE simulation (t ime domain)

Macromodel (phase domain)
x p  t =x s  t t 
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Simulation Results (continued)

Perturbation frequency: 1.02 GHz

Perturbation amplitude: 100 uA

Perturbation frequency: 0.98 GHz

Perturbation amplitude: 50 uA

Injection locking
(lines) macromodel (symbols) full SPICE simulation

See Lai and Roychowdhury, ICCAD 2004 for detailed discussions about inject ion locking
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Simulation Results (continued)

Perturbation frequency: 1.1 GHz

Perturbation amplitude: 100uA

Perturbation frequency: 0.95 GHz

Perturbation amplitude: 50uA

Injection unlocking
(lines) macromodel (symbols) full SPICE simulation
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Simulation Results (continued)

3 stage ring oscillator (used in Freescale products)

300 mosfets
2000 passive components

Control block

Vdd

Apply a sinusoidal perturbation

1.16 GHz

Nearly impossible to study the phase deivations using t ime domain 
methods (SOI f loating body effect)
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Simulation Results (continued)

qualitat ively matches full SPICE simulation

SPICE simulation hasn't reached the real 
steady state yet!

System reduction: 1709 to 1
Speed- up: 969sec to 9sec

100X speed- up
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Conclusions

● The nonlinear oscillator macromodel can be implemented 
in Verilog- AMS very compactly

● The macromodel implemented in Verilog- AMS can be 
readily plugged into SPICE to perform simulations with 
other blocks

● The macromodel is able to capture the nonlinear locking 
dynamics of oscillators

● The macromodel can provide signif icant system reduction 
and speed up over full SPICE representation without loss 
of accurary
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