

Presentation Outline

- Clock and Data Recovery (CDR) Overview
- Oversampling CDR Architectures
 - Eye-Tracking Data Recovery Architecture
 - Previous Results
- Multiple-Rotating-Clock-Phase Architecture
- Description of Verilog-A Blocks
- Jitter Tolerance Test Bench
 - Simulation Methodology
- Simulation Results
- Conclusion
- Questions

	Session 4 Paper 4
IEEE International Rehavioral Modeling and Simulation Conference, RMAS05, San, Jose CA, Sentember 22-23, 2005	02 / 24

3x-oversampling CDR Circuits

- Tracks the center of the data eye, avoids data edges
- Samples at the center of the data eye
- 0.7 UI-pp Jitter Tolerance, 2.5Gb/s, 50 mW/ch, 0.18um-SiGe
- Variable Interval Oversampling Edge-Tracking Architecture [8]
 - Tracks the rising and falling data edges
 - Samples at the center of the two data edges
 - 0.65 UI-pp Jitter Tolerance, 5 Gb/s, ¼ rate, ~500 mW, 0.35um CMOS
- Blind Oversampling (Phase Picking) Architecture [9], [10]
 - Oversamples each bit blindly by an odd multiple of baud rate
 - Detect data transitions using an XOR gate / memory
 - Choose the best sample by center-picking or a majority vote
 - ~500 mW/0.35um CMOS/ 6.4 Gb/s

Algorithmic/All-Digital core

Carleton

All-Digital core

Mixed-signal Core

Please see references at the end of the paper; the above is a subset of techniques	Session 4 Paper 4
IEEE International Behavioral Modeling and Simulation Conference, BMAS05, San Jose CA, September 22-23, 2005	05/24

IEEE International Behavioral Modeling and Simulation Conference, BMAS05, San Jose CA, September 22-23, 2005

09/24

Eye-Tracking Architecture [7]

- One rotating clock phase
- Three data phases

[7]

Multiple-Rotating-Clock-Phase Architecture

Three rotating clock phase

IEEE International Behavioral Modeling and Simulation Conference, BMAS05, San Jose CA, September 22-23, 2005

11/24

MRCP Architecture Block Diagram

- Since this is a new architecture, how can one model its 'behavior'? The behavior is not really known until a 'circuit' is put together
- Stay close to circuit blocks till the architecture is verified !

IEEE International Behavioral Modeling and Simulation Conference, BMAS05, San Jose CA, September 22-23, 2005

13/24

Phase-Rotator Verilog-A Code @ (cross(V(clk) - threshold, +1)) begin Carleton UNIVERSI if (V(inc) >= threshold && V(dec) < threshold && V(reset) < threshold) begin countl = countl - 1 : if (countl < 1) begin countl = `MAX PHASES; // ----- Phase change (decision only) ouputs start here end countc = countc - 1 ; V(posc) <+ **transition** (countc, tdel_rot, tr_rot, tf_rot); if (countc < 1) begin V(pose) <+ transition (counte, tdel rot, tr rot, tf rot); countc['] = `MAX PHASES; V(posl) <+ transition (countl, tdel rot, tr rot, tf rot); end counte = counte - 1 ; end // -----end analog statements if (counte < 1) begin undef MAX PHASES counte = `MAX PHASES; endmodule end end // ----- End of INC operation Jitter else if (V(dec) >= threshold && V(inc) < threshold && V(reset) < threshold) begin Center Frequency Phase countl = countl + 1;if (countl > `MAX_PHASES) begin Early countl = 1: Phase ϕ_{N-1} end countc = countc + 1: ф₁ if (countc > MAX PHASES) begin INC countc = 1; DEC end counte = counte + 1 ; ϕ_{2} if (counte > `MAX PHASES) begin counte = 1 : end end // ----- End of DEC operation Late Phase Session 4

IEEE International Behavioral Modeling and Simulation Conference, BMAS05, San Jose CA, September 22-23, 2005

14/24

Paper 4

Functional Simulation

Parameters

- PRBS Length = $2^{11} 1$
- Rise-time/Fall-Time = 100 ps
- CK-Q Delay = 75ps
- Gate Delay = 50 ps
- Number of Phases = 8
- Update period = 16 bits
- Phase Separation = 0.25 UI
- Data Rate = 2.5 Gbps
- Clock Frequency = 2.5 GHz

Techniques

- Top-level variables
- Configurable supplies, voltage swings, variable length PRBS, and patience

Paper 4

[16] for top-level flip-flop and gate parameters, [7] and [13] for DR parameters

Session 4

Effect of Improperly Biased DLL Cells

• Since the data detection window is rotating randomly, the effect of improperly biased cells is dithered out to some extent

Carleton

UNIVERSI

Jitter on Local Frequency Source

- Okay, so a source with 0.1 UI-pp jitter is a bad source !
- Jitter tolerance will be degraded from its nominal value

Conclusions

- A Multiple-Rotating-Clock-Phase DR Architecture is proposed.
- The architecture is an extension of the eye-tracking architecture
- The data detection interval is set up by three rotating clock phases supplied by a DLL.

- The local clock is free-running and blind to the incoming data.
- The MRCP-DR architecture has a predictable jitter tolerance.
- The MRCP-DR architecture is tolerant of phase skews in the DLL.
- The MRCP-DR architecture is tolerant of jitter on local clock.
- The DR-core is all-digital and hence is portable
- Verilog-A test benches provide the ability to run what-if analyses at the early system-design stage.

Session 4 Paper 4	
22 / 24	IEEE International Behavioral Modeling and Simulation Conference, BMAS05, San Jose CA, September 22-23, 2005

Important References

[6	 R. Walker, "Clock and Data Recovery for Serial Digital Communications," <i>ISSCC Short Course</i>, Feb. 2002 N. William of Wild 2.5, Clifford Data Data Data Digital Communications, and the second data data data data data data data da) Carleton
[/	SFI-5 Interface with Digital Eye-Tracking," <i>IEEE J. Solid-State Circuits</i> , vol. 39, no. 4, Apr. 2004, pp. 613-621	UNIVERSITY
8]] S-H. Lee, MS. Hwang, et al., "A 5-Gb/s 0.25-μm CMOS Jitter-Toler- ant Variable-Interval Oversampling Clock/Data Recovery Circuit," IEEE J. Solid-State Circuits, vol. 37, no. 12, Dec. 2002, pp. 1822-1830	
[9] S. Kim, K. Lee, D-K. Jeong, D. D. Lee, A. G. Nowatzyk, "An 800 Mbps multi-channel CMOS serial link with 3x oversampling," <i>IEEE Proc. CICC</i> '95, pp. 451-455	
[1	 O] C-K. K. Yang, R. Farjad-Rad, M. A. Horowitz, "A 0.5-μm CMOS 4.0 Gbit/s serial link transceiver with data recovery using oversampling," <i>IEEE J. Solid-State Circuits</i>, vol. 33, no. 5, May 1998, pp. 713-722 	
[1	1] Cadence Verilog-A Language Reference, ver. 5.1, January 2004	
[1	2] Matlab User Manuals, ver. 7.0 R14, 2005, Mathworks Inc.	
[1	3] S. I. Ahmed, Tad A. Kwasniewski, "An All-Digital Data Recovery Cir- cuit Optimization Using Matlab/Simulink," <i>International Symposium</i> on Circuits & Systems, ISCAS 2005, May 23-26 th , Kobe, Japan	
[1	4] S. I. Ahmed, Tad A. Kwasniewski, "Overview of Oversampling Clock and Data Recovery Circuits," <i>Canadian Conference on Electrical and</i> <i>Computer Engineering, IEEE CCECE05</i> , Saskatoon, May 2005.	
[1	5] S. I. Ahmed. Kent Orthner. Tad A. Kwasniewski, "Behavioral Test	
L-	Benches for Digital Clock and Data Recovery Circuits using Verilog-	
	A," Custom Integrated Circuits Conference, CICC 2005, Sept. 18-21,	
	2005, San Jose, California, in press	
[1	6] M. Usama, Tad A. Kwasniewski, "Design and Comparison of CMOS	
	Current Mode Logic Latches," International Symposium on Circuits & Systems, ISCAS 2004, vol. 4, pp. 353-356	
		Session 4 Paper 4

Thank you for your attention

Questions/Comments

{siahmed, tak}@doe.carleton.ca

