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Abstract 

Mixed-signal, Mixed-technology simulation has evolved 
to meet the challenges of increasing hardware 
complexity. Embedded software adds a new dimension 
to this challenge. Meaningful system simulation must 
accurately model software timing, not just algorithmic 
behavior. This paper answers that challenge by 
developing an instruction set modeling approach to 
integrate software execution into the simulation. The 
basis of the ICSM is to resolve the model accuracy to the 
instruction boundaries, i.e., to accurately model the state 
of the CPU, data memory and I/O at the conclusion of 
each instruction.  In comparison to clock-cycle accuracy, 
this instruction-cycle accuracy is simpler to model and 
faster to compute. The instruction-cycle simulation 
model (ICSM) approach is exemplified by specific 
ICSM’s of Freescale’s HCS12 and SGS-Thomson’s ST7 
Lite. 

 
The paper presents a structural overview of the micro-
controller model and then focuses on the CPU. Key 
elements of the ICSM include a database structure to store 
the instruction set, signals to represent the CPU registers, 
and algorithms for decoding the binary software, accessing 
data via the full set of addressing modes, executing the 
instructions, synchronizing software timing to the 
simulation, and storing results. Other features include 
exception handling for resets and interrupts. The text 
explains how the model data structures and algorithms are 
derived from product literature – datasheets and reference 
manuals. Models are implemented in VHDL-AMS and in a 
mix of MAST® and C language. The paper presents a 
validation of the models and illustrates their operation in 
system simulation applications from the domains of power 
electronics and automotive electronics. 

1. INTRODUCTION  

This paper introduces the concept of an instruction-cycle 
simulation model (ICSM) for modeling embedded software 
in mixed-technology systems. Precise simulation of the 
system must account for micro-controller timing, a critical 

factor that cannot be incorporated into a simple algorithmic 
model of the software. The ICSM models the software by 
executing the CPU instructions in sequentially and with 
timing resolved to the instruction boundaries. It computes 
the state of the micro-controller at the conclusion of each 
instruction and interfaces to the system hardware the 
micro-controller I/O ports. The ICSM is an instruction set 
simulation model [1] that omits cycle-accurate details 
within the instruction boundaries. It is linked to the system 
simulation by coding it in the native language of the 
simulator. This paper presents examples of an SGS-
Thomson ST7 Lite processor that has been has been 
modeled in MAST and C for Synopsys’ Saber [2] and a 
Freescale HCS12 that has been modeled in VHDL-AMS 
for Mentor’s SystemVision [3]. 

Section 2 provides a structural overview of the full micro-
controller model. Sections 3 and 4 present the key elements 
of the CPU model generically and with device-specific 
details for the two examples. The presentation highlights 
the modeling considerations specific to full mixed-
technology system simulation. Section 5 discusses model 
validation and presents specific simulation applications to 
electronic power conversion and automotive throttle 
control. The conclusions in Section 6 discuss directions for 

 
Figure 1 ICSM Structural Overview 



 
Figure 2 Portion of Memory Map 

future exploration of this modeling approach. 

2. OVERVIEW OF THE MICRO-
CONTROLLER MODEL 

Figure 1 shows a top level schematic of a micro-controller 
including the CPU, memory, a data-port and a few selected 
peripherals. The CPU and memory are the core elements. 
Each micro-controller family offers a range of 
configurations with variations in the peripherals. For any 
simulation, it makes sense to include only those peripherals 
used by the system under study. Therefore, these 
peripherals are modeled as independent modules 
interconnected at the schematic level. These modules share 
memory access with the CPU. 

The modules are all synchronized to the system clock 
shown at the output of the clock generation module 
(CGM). Memory is modeled as an integer array with 
simple utility functions for converting the data to and from 
bit vectors. The register map documented in the product 
literature is incorporated by declaring mnemonic constants 
for the memory addresses as illustrated in Figure 2. The 
model does not attempt to accurately reproduce memory 
transactions as would be required for a cycle-accurate 

model. Instead the ICSM accesses the memory as needed 
to compute the MCU state at the instruction boundaries. 

The memory is programmed to load the software object 
code at the start of each simulation. The model reads the 
standardized S19 format so that it can execute software 
generated using any commercial compiler or IDE. This 
also guarantees that the model will execute the exact code 
that would be burned into a physical prototype. 

The clock timing, memory configuration, peripheral 

functionality, register structure, and instruction set are all 
well documented in the product literature for each micro-
controller. Models of the peripherals are relatively straight 
forward. The focus of this paper is on the CPU. 

 

3. THE ICSM MODEL OF THE CPU 
 
The essence of the ICSM approach is shown in Figure 3. 
This is the flow of operations that defines the CPU. The 
figure depicts a classical von Neumann computer 
architecture with a step inserted to synchronize timing at 
the instruction boundaries. Timing can be computed by 
counting explicit clock pulses or by multiplying the clock 
period by a pre-stored cycle count. Both approaches have 
been used successfully. The  explicit clock pulse counter is 
computationally less efficient (in terms of simulator speed) 
but is more flexible. 
  
 
The ICSM models a set of signals that constitute a software 
debugger at the CPU instruction level. The CPU signals 
include all of the registers listed in Figure 3 along with a 
text-base reconstruction of the instruction in assembly 

language format. This is presented in the waveform viewer 
as a text string that identifies the sequence of instructions 
executed during the simulation (See Figure 5.4). 

3.1.  Decode Instruction 

The instruction decoder interprets the hex representation of 
each instruction from program memory. This is always a 
stream of bytes that can vary in length from one to, usually 
no more than, six. It’s generally convenient to store a 
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limited sequence of bytes in a local array and to refill that 
buffer as needed from memory. The instruction decoder 
keeps count of the number of bytes read for each 
instruction not only to refill the buffer but to set a pointer 
to the next instruction. This pointer is the preliminary 
update to the program counter. The instruction decoder 
algorithm accounts for the device-specific structure of the 
instruction stream which is generically in the form of: 

[pre-byte,] opcode, [post-byte, [post-byte,…]] 

where the square brackets indicate optional bytes. The 
bytes identify the instruction to be executed and the 
mechanism to be used for accessing data. The decoder uses 
these bytes to index an internal database of instruction 
descriptors derived from the product documentation. The 
instruction descriptors provide all the information the 
model needs to execute the instructions. At startup, the 
program entry point is saved in the program counter. The 
CPU extracts the instruction stream starting at that address 
and decodes the bytes to determine all the information 
needed to execute the first instruction. At each succeeding 
instruction, the instruction stream is read starting at the 
updated program counter value. 

3.2.  Get Data Addresses, Get Data 

Micro-controllers support a menu of mechanisms or modes 
for addressing memory. Inherent instructions require no 
data from memory but others may access (read or write) 
one or two bytes. Immediate addressing includes the data 
in the instruction stream. Direct modes provide the 
memory addresses in the instruction stream. Indirect modes 
provide pointers. The data addresses are themselves stored 
as data. Finally, there is typically a menu of indexed 
addressing modes which generate the addresses by adding 
or subtracting integer offsets to the contents of a specified 
CPU register. The offsets are programmed into the 
instruction streams. The classes of addressing modes are 
generic but the mechanisms for storing addressing 
information, especially indexing offsets are specific to each 
micro-controller. They must, therefore, be programmed 
explicitly for each MCU. Once an address is computed, it 
is a simple matter to get data from memory before 
execution or store results afterwards. 

3.3.  Execute Instruction 

By separating the execution of the instruction from getting 
the data, storing the data or synchronizing timing, the 
ICSM focuses the execution on the computation of results. 
This computation is complex even by itself since it 
includes both primary and secondary effects. The primary 
effect is to update a CPU register or a data value as in 

computing the sum in an ADD instruction. Secondary 
effects include condition codes and program counter 
revisions as in the carry bit generated by an ADD or a 
jump generated by a branching instruction. Certain 
addressing modes call for post-incrementation of index 
registers which must also be computed when the 
instruction is executed. 

The execute instruction module is readily implemented as a 
VHDL case construct (or switch in C) keyed to the 
instruction type. To keep the code compact, condition bits 
can be updated using separate functions called at the 
conclusion of the module using the results of the 
instruction execution to guide the condition code 
generation. 

3.4.  Store Results 

The model can execute the instruction at any time after it is 
decoded so long as these results are not stored until the 
specified number of clock cycles have elapsed. Therefore, 
the ICSM separates the task of storing results from that of 
executing the instructions. Storing results is a straight 
forward process except for the added complication of 
asynchronous resets or high priority interrupts. If such an 
event takes place before an instruction is scheduled to 
complete, the MCU never completes the instruction. The 
ICSM models this behavior by inserting a simple test 
before storing the results. If a reset or similar event is 
detected (e.g., by a separate VHDL process), the model 
skips the store results step and responds to that reset event. 

3.5.  Program Counter, Stack Operations, And 
Interrupts 

Program flow is dictated by the sequence of addresses 
written to the program counter. Sequential execution of 
instructions is guaranteed by keeping track of bytes read by 
the instruction decoder. The execute instructions module 
updates the program counter to account for branching, 
subroutine entry and return instructions. Stack operations 
are handled by the get data (POP) and store results (PUSH) 
modules. 

Interrupts are processed by a separate module, not shown 
in Figure 3. This module detects interrupts when they 
occur, sets a flag at that time and processes the interrupts 
after results are stored. In case of multiple interrupts, the 
module is programmed to process the highest  priority as 
documented in the MCU datasheet. The interrupt module 
pushes the CPU state onto the stack and revises the 
program counter to force execution from the start of the 
ISR. The previous instruction sequence is resumed when 



the return from interrupt is executed, at which time the 
CPU state is popped from the stack. 

4. THE INSTRUCTION SET DATABASE 

Figure 4 shows the description of an add instruction as 
published in the HCS12 reference manual. The instruction 
set database is a tabular representation of this information. 
The database stored as a disk file or coded directly into the 
model. A directly coded database saves time during the 
simulation and is easily implemented as an array of 
descriptors indexed to the opcode. The instruction decoder 
indexes the database (using pre-byte and opcode values) 
and then uses the stored description to guide further 
decoding of the post-bytes. 

Figure 5 shows a sample entry for the ADDD instruction. 
The data is stored internally in order to avoid extra disk 
accesses during the simulation. Each entry provides 
information taken from the data sheet. The vector of cycle 
counts correspond to the distinct indexing modes indicated 
in Figure 4.1. Specific cycle counts are determined by 
counting the “Access Details” characters used in the HC12 
reference manual to classify the individual clock cycles. 
The reference manual lists a variety of add instructions 
referenced to different CPU registers and distinct in terms 
of whether or not a prior carry bit is included. To avoid 
redundancy in the execute instruction module, the model 

classifies all of these different opnames as “ADD” optypes. 

5. MODEL VALIDATION AND 
APPLICATIONS 

The ICSM is easily validated by comparing simulation 
results to either an existing software debugger or to a 
hardware evaluation board. A thorough test of each 
instruction must account for all addressing modes and all 
possible condition bit transitions. A single test can exercise 
a number of similar instructions as in the example shown 
in Figure 6. 

Applications of the ICSM have been published separately 
and demonstrate its role in detecting and correcting timing 
bottlenecks as well as other hardware/software 
interactions. 

 
Figure 4 HCS12 Instruction Description [4] 

 
Figure 5 ICSM Instruction Descriptor 



 while (true) { 
     if (V_rms > Vref)  fsw_ctl = 1 
     else                    fsw_ctl = 0 
}  

Figure 7 shows a resonant power converter schematic. The 
load voltage is regulated by  modulating the switching 
frequency following a simple algorithm in the form.  

Figure 8 shows the application of simulation results to an 
MCU evaluation. Clock speeds below 3.5 MHz are shown 
to degrade performance by introducing excess ringing in 
the load voltage amplitude. Performance can be improved 
at the lower clock speeds by software revisions to complete 
calculations within a single switching cycle. Satisfactory 
operation at a lower clock frequency translate into product 
cost reductions that can be critically important to 
profitability. 

 Figure 9 shows the schematic of an electronic throttle 
controlled by an HC12 MCU. The step response of the 

; IMM addressing 
    ADDB #$1F   ; B <- $1F, SXHINZVC = 11010000 
    ADCB #$E5   ; B <- $04, SXHINZVC = 11110001 
    ADCB #$1F   ; B <- $24, SXHINZVC = 11110000 
   
  ; DIR 
    ADDB 3      ; B <- $24+mem($03) = $23, 
                       ; SXHINZVC = 11110001 
    ADCB 3      ; B <- $23+C+mem($03) = $23,  
                       ; SXHINZVC = 11110001  
   
  ; EXT 
    ADDB $0800  ; B <- $23+mem($0800) = $93,  
                           ; SXHINZVC = 11011010 
    ADCB $0800  ; B <- $93+C+mem($0800) = $03,  
                           ; SXHINZVC = 11010001 
   
  ; IDX 5 bit offset (0 <= |offset| < 16=$10) 
    ADDB 5, X   ; B <- $03+mem(X+5=$0800) = $73,  
                        ; SXHINZVC = 11010000 
    ADCB 5, X   ; B <- $73+C+mem(X+5=$0800) = $E3, 
                       ;  SXHINZVC = 11011010 

Figure 6 Portion of an ADD Instruction Test 

 
Figure 7 Resonant Power Converter with ST7 MCU 

 
Figure 9 Electronic Throttle Schematic 
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Figure 8 MCU Clock Speed Evaluation 



throttle for an embedded PID controller is plotted in Figure 
10. Figure 11 shows an example in which the simulation is 
used to detect rounding errors due to the use of fixed point 
arithmetic. Embedded software relies on fixed-point 
computation to simultaneously reduce delays and program 
size. 

6. CONCLUSIONS 

This paper has introduced the ICSM approach to accurately 
model embedded software. The ICSM is an instruction set 
model of a micro-controller that eliminates non-critical of 
details required for cycle accurate modeling while 
retaining all of the details needed to simulate mixed-
technology system behavior. The ICSM is coded in the 
native modeling language of the system simulator and 
synchronized to simulation time at the MCU instruction 
boundaries. Specific MCU models have been 
independently generated in MAST/C and in VHDL-AMS. 
Future development of the ICSM approach can take 
advantage of commonalities among MCU’s to produce a 
generic template that can more readily be customized to 
specific processors.                         .       
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Figure 10 Throttle Waveforms 

 
 
 

 
Figure 11 Debugging the Software 


