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Abstract: 
Knowledge representation of simulation models is the 

core element to influence simulation development. This 
paper summarizes the fundamental simulation model 
formalism from the system point of view. It includes basic 
model, composite model and scenario model. It also 
presents rigorous formal specification. The executable 
simulation language, which supports model knowledge 
concise representation, is designed based on simulation 
model formalism. The paper also discusses the 
corresponding relationship between ESimL and simulation 
model formalism and details the syntax and semantics of 
elements in ESimL. Based on simulation model formal 
specification, the abstract simulation algorithm is given and 
ESimL virtual machine, which is capable of automatically 
interpreting and executing simulation model represented by 
ESimL, is designed. Finally the paper presents a chaos 
system model, Lorenz system, specified by ESiml, the 
simulation results can show the validation of the theory and 
verification of ESimL. 
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1 Introduction 

Simulation technology has been widely applied in 
various fields, such as artificial intelligence, battle 
simulation, embedded software development, weapon 
system effectiveness evaluation, product design, etc. 
Simulation technology has been used for designing, 
development, evaluation or exploration. This effectively 
saves the costs of product development, improves product 
quality and people gain deeper understanding of research 
systems, problems and routines. 

Model is the core in simulation. Simulation is meant to 
control the model’s execution, while models are the 
cognitive abstract of research systems or problems. Models 
should include system abstract information and simulation 
control information in order to be operated by simulator. 
Model knowledge representation is just to research on how 
to represent this system abstract information, how to 
represent participating simulation control information so as 
to make simulation model representation more concise and 
complete. Thus simulation model standardization and the 
ability of fast building system simulation model to conduct 
design, development and exploration can be achieved. 

In the early stage of system simulation development, 
people use advanced programming language or special 
simulation language to conduct modeling and simulation. 
Staff will have to be fluent in complex program syntax, 
which significantly undermines efficiency. In large-scaled 
simulation project, modeling and simulation process 
consists of hundreds of complicated activities facing multi 
domains. It requires efforts and cooperation from different 
fields, different locations and different professional staff in 
order to develop smoothly. Simulation technology 
development has now moved from single-field oriented 
application to multi-field collaborative simulation 
development. The fundamental problem in collaborative 
simulation lies on models’ representation standard, model 
integration and reusability [1] [2]. 

The purpose of this research paper is to solve the 
problem of simulation model knowledge representation and 
to make simulation model easy to be developed and reused. 
It uses the DEVS [3] [4] research results and applies system 
point of view to explore simulation model’s basic 
formalism. The paper also combines XML data exchange 
standard to research an XML based language, ESimL, to 
support model knowledge representation. ESimL will 
declare a group of less quantity but relatively complete 
elements and elements properties to describe abstract 



 

 

characteristics, structures, and behavior to support building 
system model. It can support modeler to maximum extent 
to build simulation entity with the XML elements. At the 
same time, ESimL attempts to create a flexible reference 
standard to represent simulation in order to make 
simulation model integration and reuse convenient. 
Different simulation fields can also apply standard XML to 
describe different simulation methods, such as Petri-Net, 
Finite state automata and block models. 

2 Formalism of simulation model 

According to the view of a system, and with the study 
of DEVS, we categorize simulation model into basic model, 
composite model and scenario model. 

2.1 Basic model formalism 

Basic model is one kind of abstract system with the 
same Attributes and behavior. Basic model is atomic unit, 
which can not be divided, and can form more complex high 
level composite model by composition. Basic model can be 
specified by an 11 tuple. 

BM=<n, pn, A, A’, s0, I, O, δ, ε, τ, λ> 
Type constraint： 

n∈ , pn∈ ;  
State constraints： 

A={ai | i∈  }, A’ ⊆ A; 
S={si | i∈  }, si =(a0,a1…,an); 
s0∈S; 
Q={(s, e) | s∈S, 0 ≤ e ≤τ(s)}; 

Interaction constraints: 
I={Ii | i∈ }, X={xi | i∈  },ηin: I→X ; 
(x,i), x∈ηin(i), i∈I; 
O={Oi | i∈ }; Y={yi | i∈  },ηout: O→Y; 
(y,o), y∈ηout(i), o∈O; 

Behavior constraints： 
δ：Q×X× I→S; 
ε：S→S; 
τ：S→ ＋

0，∞; 
λ：S→Y×O 

Among which, n, pn, A, A’, s0, I, O，are the static 
specification of basic model, δ, ε, τ, λ are the dynamic 
behavior specification. The meaning of these elements is 
given as following. 

N∈ , n is the unique name of basic model. is 
name space. 

Pn∈ , pn is the name of the model’s super model. 
Basic model can inherit the attributes, interfaces and 

behavior from other basic model. 
A={ai | i∈  }, is the attributes set. 
A’⊆ A, is the user-setting attributes set which allow 

the user configure the initial conditions of basic model 
instance. 

s0 is the initial state of basic model. The state of basic 
model is a vector composed of all attributes value 
s=(a0,a1…,an), The states of all the time sequence form the 
state set S={si | i∈  }, s0∈S. 

Q={(s, e) | s∈S, 0 ≤ e ≤τ(s)}, is the total state set. The 
variable e implies the elapse time of basic model from the 
last transition, 0 ≤ e ≤τ(s), τ(s) is the time segment between 
tow transitions. 

I={Ii | i∈  }, is the input interface set. An interface 
can be specified as Ii=<n, ec, tm>, n is the unique name of 
the input interface; ec is the event type received from the 
input interface; tm is the mode of event transmission, 
tm∈{ware，wareless}. Simulation model can interact with 
other models by receiving events from the input interfaces. 

X={xi | i∈ }, is the input events set. (x, i) is the input 
vector, with x∈X, i∈I, imply that input event is received 
from the input interface i.  

O={Oi | i∈  }, is the output interface set. Simulation 
model can interact with other models by sending events to 
the output interfaces. 

Y={yi | i∈  }, is the output events set. (y, o) is the 
output vector, y∈Y, o∈O. 

δ: Q× X× I→S, is the external transition function, 
which is used to define the operations when receiving input 
events. The input parameter are the total state q and input 
vector (x, i), the output result is the updated state after 
external transition. Its operational semantic is: 

'),,( ss ixq ⎯⎯⎯ →⎯δ  
ε: S→S, is the internal transition function, which is 

used to define the operations when the advancing time is 
reached. The input parameter is the state s, the output result 
is the updated state after internal transition. Its operational 
semantic is: 

')( ss s⎯⎯→⎯ε  
τ: S→ ＋

0，∞, is the time-advancing function, ＋

0，∞ is 
the positive Integer set. It is used to define the next time of 
internal transition. The input parameter is the state s, output 
is the lasting time ∆t at current state, ∆t=τ(s). When the 
state of the model is changed, the function τ will be invoked. 
If the model don’t receive external input event during the 
time segment [t, t+∆t], then the internal event will be 
generated at the time when e==∆t, and trigger the internal 
transition ε. 

λ: S→Y×O, is the output function, which is used to 
output the states when states are changed. The output result 



 

 

is the vector (y, o). 
The execution process of basic model is illustrated in 

Figure 1. When model receives input event from input 
interface, the external transition function is triggered, and 
the states are changed. Time advance function control the 
time of internal transition function, when the elapsed time 
e== ta(s), then change to state δint (s), then the next internal 
transition time is advanced to time now + ta(s). When the 
states are changed, output function λ(s) will be invoked and 
send events to the output interfaces. 
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Figure 1: The execution mechanism of basic model 

2.2 Composite model formalism 

Composite model is a kind of abstract system with the 
same structure and composed by other basic model or 
composite model. The behavior of composite model is 
performed by the sub-models. Composite model can be 
composed with other models as a basic model to construct 
higher level composite model. Composite model can be 
specified by a 10 tuple: 

CM=< n, A’, I, O, M, EIC, EOC, IC, HC, Select > 
Type constraint: 

n∈ ; 
State constraints: 

A’={a’i | i∈  }，A’⊆∪mi.A’; 
Γ: A’ →∪mi.A’; 

Interaction constraints: 
I={Ii | i∈ }, X={xi | i∈  },ηin: I→X ; 
(x,i), x∈ηin(i), i∈I; 
O={Oi | i∈ }; Y={yi | i∈  },ηout: O→Y; 
(y,o), y∈ηout(i), o∈O; 

Structure constraints: 
M={mi | i∈  }, mi=<idi, n, pn, Ai, A’ i, s0i, Ii, Oi, δi, 

εi, τi, λi>; 
EIC⊆ CM× I×M×{mi.I}; 
EOC⊆ M×{mi.O}×CM×O; 
IC⊆ M×{mi.O}×M×{mi.I}; 
HC⊆ M×M; 

Conflict constraint: 
Select: 2M-Ø→M 

n is the unique name of composite model. 
A’={a’i | i∈ }, is the user-setting attributes set which 

allow the user configure the initial conditions of composite 
model instance.Γ: A’ →∪mi.A’, is a mapping function 
which can map the initial attributes of composite model to 
it’s sub-models. 

I, O are the input and output interface set. The 
definition is same as basic model. 

M＝{mi | i∈ }, is the sub model instances set. Each 
model instance has the same structure as basic model, it can 
be specified as mi=<idi, n, pn, Ai, A’ i, s0i, Ii, Oi, δi, εi, τi, λi>. 
idi is the unique identifier of each model instance.  

EIC⊆ CM× I×M×{mi.I}, is the set of links which 
connect from the input interfaces of the composite model to 
the input interfaces of the sub-model instances.  

EOC⊆ M×{mi.O}×CM×O, is the set of links which 
connect from the output interfaces of the sub-model 
instances to the output interfaces of the composite models.  

IC⊆ M×{mi.O}×M×{mi.I}, is the set of links which 
connect from the output interfaces to the input interfaces of 
sub-model instances.  

EIC, EOC, IC define the interaction relation explicitly 
by connections, which can be looked as the message 
transmission channel. Each eic, eoc, ic have the same 
formal structure <id, msrc, ifsrc, msink, ifsink >, id is the unique 
identifier of the link, msrc is the link source model instance; 
ifsrc is the link source interface; msink is the link sink model 
instance, ifsink is the link sink interface. 

HC⊆ M×M, is the set of links which represent the 
owner relationship. Each hc has the formal structure <id, 
msrc, msink >, msrc is the model instance own the instance 
msink. 

Select: 2M-Ø→M, is the tie-breaking function, which is 
used to select one sub-model instance to process the 
simultaneous internal events.  

The following figure is the black-box view and 
white-box view of composite model. 
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Figure 2: Composite model view 



 

 

2.3 Scenario model formalism 

Scenario model is one kind of abstract system with the 
information of models and simulation. Scenario model 
define the models anticipating simulation and the 
simulation setting, which can be regarded as one composite 
model instance with the simulation configuration. 

SM=<Tb, Te, Ce, Batch, cm> 
Simulation constraints: 

Tb∈  
Te∈ ;  
Ce∈{true, false} 
Batch∈  

Model constrant: 
cm =< id, n, A’, I, O, M, EIC, EOC, IC, HC, Select 

>; 
In which, Tb is beginning time of simulation; Te is end 

time of simulation; Ce is end condition of simulation; Batch 
is the simulation times of a scenario. 

cm =< n, A’, I, O, M, EIC, EOC, IC, HC, Select >, is a 
composite model instance which contains the models 
configuration of current simulation.  

3 ESimL 

According to the basic formalism of simulation model, 
combined with XML language, an Executable Simulation 
Language (ESimL) has been raised. Some other simulation 
languages are also based on XML such as SRML [5] [6] and 
SML [7] 8].  ESimL is a simulation language based on XML 
and script language, which supports model representation 
and execution. It uses a group of XML tags to represent 
simulation model’s static structure and infuses script 
language to describe simulation model behavior. The 
corresponding relationship between ESimL elements and 
simulation model formalism is summarized in Table 1 
below: 

Table 1. Relationship between ESimL elements and 
simulation model formalism 

Simulation 
model formal 
specification 

ESimL elements 

BM ItemClass element 
I EventSink elements set 
O EventDispatcher elements set 
A Property elements set 
δ Script element with  

function eventSinkName(Event event)  
ε Script element with 

function eventSinkName(Event event)  
λ Script element with simulator API 

SendEvent(String eventDispatcherName, Event 
event)  
PostEvent(String eventDispatcherName, Event 

event) 
BroadcastEvent(Event event, Boolean 
direction) 

τ Script element with simulator API 
ScheduleEvent(String eventSinkName, Event 
event)  
PostEvent() and BroadcastEvent() 

CM ItemClass element 
I EventSink elements set 
O EventDispatcher elements set 
M,  EIC, IC, 
EOC, HC 

Item elements set with link element 

Select Simultaneous events will be processed according 
as the priority of model instances 

SM Simulation element 
Basic model BM and composite model CM are 

declared by ItemClass element. Scenario model SM is 
declared by Simulation element. Input and output interfaces 
of basic model and composite model are declared by 
EventSink and EventDispatcher elements. Basic model’s 
property A is declared by Property element. Composite 
model’s sub-model sets and various connecting 
relationships M, EIC, IC, EOC, HC are declared 
collectively by Item element and Item’s sub element Link. 
The above are all model’s static attributes description, 
which has the same meaning in Part 2’s formal specification. 
Basic model’s dynamic behavior attributes specification δ, ε, 
λ, τ is conducted by script language in Script element.  

δ, ε transition functions, implementation formalism in 
javascript language is displayed in the following code. 
Function is the javascript function declaration. 
EventSinkName is the transition function name which must 
be identical with the name of one of EventSink elements 
defined in ItemClass. Event is the parameter of the 
transition function, which is the received event. Transition 
function can update model’s states by the reference of 
external event or internal event. 

function OnEventSinkName(event){ 
var x=event.x; 
var y=event.time; 
… 

} 
λ, τ functions are implemented with the API offered by 

ESimL virtual machine. SendEvent() is used to send 
synchronous event to the output interface, PostEvent() is 
used to send asynchronous event to the output interface,  
BroadcastEvent() is used to send synchronous or 
asynchronous event among the composite models at 
different levels. ScheduleEvent() is used to schedule the 
next internal event by the model itself , PostEvent() and 
BroadcastEvent() can also perform the time advancing 
behavior when they send asynchronous events. 

The architecture of ESimL schema is illustrated in 
Figure 3. ESimL schema is composed of ESimL, 



 

 

EventClass, ItemClass, Simulation, Script, Property, 
EventDispatcher, EventSink, Item, ItemPrototype, 
PropertyValue, Link and Event, 13 elements all together. 

ESimL is the root element of ESimL, which can 
comprise zero or more ItemClass, EventClass and 
Simulation as its sub-elements. ESimL virtual machine can 
load ESimL file and parse the definition of ItemClass, 
EventClass and Simulation, then generate model instances 
and events, drive the simulation. EventClass element is 
used to define the event class which is the data format used 
for interaction among model instances. All events used in 
the ESimL must be one type of defined event class. 
ItemPrototype element is used to define the prototype of 
one ItemClass. A prototype is one kind of ItemClass with 
the same property value. Item can also be instantiated from 
an ItemPrototype. PropertyValue element is used to 
initialize the property value. Link element is used to define 
the interaction relationship between model instances. Event 
can define the event instance in a simulation.  

 

Figure 3: The architecture of ESimL schema 

4 ESimL virtual machine  

ESiml virtual machine (EVM) is used to interpret and 
execute the simulation model represented by ESimL. EVM 
comprises root simulator and basic simulator. Root 
simulator takes charge of controlling the whole simulation 
according to scenario model. Basic simulator takes charge 
of executing the basic model and composite model. 

4.1 Root simulator algorithm 

1while（simNo ≠Batch）do 
2 when receive（START, Tb） 
3  t←Tb 
4  send（START, t） to cm 
5  while（t ≠Te ∧  Ce ≠ true）do 
6   t←tNcm 
7   “internal transition” 
8   send（TRANSITION, t）to cm 
9  end while 
10 end 
11 simNo++ 
12end while 

 

While simulation times are less than Batch, continue 
next one until simulation run times are identical with Batch. 
When receive initialization signal(START，Tb), start a 
simulation, update current time t←Tb , Tb is simulation 
begin time; Send initialization signal to the simulator of 
composite model cm, cm will initialize its sub-models. 
While simulation end condition is not fulfilled, advance to 
next time t←tNcm, send internal transition signal to cm. 

4.2 Basic simulator algorithm 

The tasks of basic simulator are to process the basic 
and composite model’s actions of initialization, external 
transition, internal transition and output. Correspondently 
basic simulator will receive 4 kinds of signals, which are 
(START, t), (TRANSITION, t), (x, i, t) and (y, o, t). 

(1) Initialization 
1when receive (START, t)
2 tL ← t 
3 if M == Ø 
4  s ←s0 
5  tN ← t +τ(s) 
6 else 
7  ∀ m∈M : send (START, t) to child m 
8  tN ←min { tN ∪ tNm | m ∈M} 
9 end if 
10end 

 
When receiving initialization signal (START, t), 

initialize the last transition time tL ← t. If current model is 
basic model (M == Ø), then initialize the state s ←s0, and 
the next transition time tN ← t +τ(s). Otherwise, current 
model is the composite model, then simulator will send 
initialization signal to all sub-models and calculate the next 
transition time tN ←min { tN ∪ tNm | m ∈M}. 

(2) External transition 



 

 

1when receive (x, i, t) 
2 if t∉ [ tL, tN] ERROR end if 
3 if M == Ø 
4  e ← t - tL 
5  s ←δ(s, e, x)  
6  o←∏O(λ(s)) 
7  y←∏Y(λ(s)) 
8  send (y, o, t) to parent  
9  tL← t 
10  tN ← t +τ(s) 
11 else 
12  ∀ m∈∏M (Self ZY EIC ZY  M) 
13   ∀ i∈∏m.I (i ZY  EIC ZY  m.I) 
14    send (x, i, t) to m 
15  tL ←max { tL | m ∈M } 
16  tN ←min { tN | m ∈M } 
17 end if 
18end  

When receiving external signal(x, i, t), simulator will 
execute external transition action. If t∉ [ tL, tN], that implies 
some exceptions occur, simulation will terminate. If current 
model is the basic model, calculate the elapse time from last 
transition, e ← t - tL; invoke external transition and update 
the state, s ←δ(s, e, x); calculate output vector (y, o), 
o←∏O(λ(s)), y←∏Y(λ(s)), and send (y, o) to parent 
simulator, which will translate output signal to other 
model’s input signal; update tL and tN, tL← t, tN ← t +τ(s). If 
current model is the composite model, then find the 
destination sub-models ∏M (i ZY EIC ZY  M) and their 
input interfaces ∏m.I (i ZY  EIC ZY  m.I), m∈∏M (i 
ZY EIC ZY  M), update external signals (x, i, t), i∈∏m.I (i 
ZY  EIC ZY  m.I), and send the signal to all sub-model m; 
update the time tL ←max { tL | m ∈M }, tN ←min { tN | m 
∈M }. 

(3) Internal transition 
1when receive (TRANSITION, t) 
2 if t ≠ tN ERROR end if 
3 if M == Ø 
4  e ← t - tL 
5  s ←ε (s) 
6  o←∏O(λ(s)) 
7  y←∏Y(λ(s)) 
8  send (y, o, t) to parent 
9  tL← t 
10  tN ← t + τ(s) 
11 else 
12  m ← select (M) 
13  send(TRANSITION, t) to child m 
14  tL ←max { tL | m ∈M } 
15  tN ←min { tN ∪ tNm | m ∈M } 
16 end if 
17end  

When receiving internal transition signal 
(TRANSITION, t), simulator will execute internal 
transition action. If t ≠ tN, that implies some exceptions 
occur, simulation will terminate. If current model is the 
basic model, calculate the elapse time from last transition, e 

← t - tL; invoke internal transition and update the state, s ← 
ε (s); calculate output vector (y, o), o←∏O(λ(s)), 
y←∏Y(λ(s)), and send (y, o) to parent simulator, which will 
translate output signal to other model’s input signal; update 
tL and tN, tL← t, tN ← t +τ(s). If current model is the 
composite model, select one sub-model by tie-breaking 
function to execute internal transition, m ← select (M), and 
send internal transition signal (TRANSITION, t) to m; 
update tL and tN, tL ←max { tL | m ∈M }, tN ←min { tN | m 
∈M }. 

(4) Output 
1when receive (y, o, t) from child m 
2 ∀ o’∈∏O (o ZY EOC ZY  Self.O) 
3  send (y, o’, t) to Self 
4 ∀ m’∈∏M (m ZY IC ZY  M) 
5  ∀ i∈∏I (o ZY IC ZY  m’.I) 
6   x←y 
7   send (x, i, t) to m’ 
8end  

Output algorithm is only for composite model, which 
is responsible for the output signal transmission of 
sub-models. When receiving sub-models’ output signal (y, o, 
t), simulator will execute output action. Find the output 
interfaces ∏O (o ZY EOC ZY  Self.O) of the current 
composite model by the links set EOC, then send the output 
signal (y, o’, t), o’∈∏O (o ZY EOC ZY  Self.O); Find the 
destination sub-models ∏M (m ZY IC ZY  M) and their 
input interfaces ∏I (o ZY IC ZY  m’.I), m’∈∏M (m 
ZY IC ZY  M) by the links set IC, update the input signal 
(x, i, t), i∈∏I (o ZY IC ZY  m’.I), then send the signal to 
m’. 

5 Simulation Case Study 

Use ESimL to build Lorenz system model [9]. Values of 
the parameters are σ=10，λ=24，b=2，initial value xi(0)=1.0. 
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To build this differential equation model, we need to 
build relevant addition model, subtract model, constant 
model and integrator model. We also have to define the 
interaction data formats and then construct these model 
instances according to the equation and define the 
simulation scenario to begin simulation finally. The 
followings are part of the main ESimL code to approve its 
description ability. 

The code for interaction data formats definition: 
<EventClass Name = "Number"> 

<Property Name = "Number" DataType = "Double"/> 



 

 

</EventClass> 
The code for integrator model definition: 

<ItemClass Name="IntegratorBlock"> 
<Property Name="InitValue" DataType ="Double"/> 
<Property Name="DeltaValue" DataType ="Double"/> 
<Property Name="Step" DataType ="Double"/> 
<Property Name="Result" DataType ="Double"/> 
<EventSink Name = "dValue" EventClass="Number"  LinkFixed = 

"True"/> 
<EventSink Name = "Tick" EventClass="Tick"  LinkFixed = "True"/> 
<EventDispatcher Name = "CurrentValue" EventClass="Number"/> 
<Script Type="text/javascript"><![CDATA[ 

This.Step = 0.001; 
var event = new Event("Tick"); 
event.Time = This.Step; 
Simulation.ScheduleEvent("Tick",event); 
function OndValue(e){ 

This.DeltaValue = e.Number; 
} 
function OnTick(e){ 

This.Result = This.Result + This.DeltaValue * This.Step; 
var event = new Event("Number"); 
event.Number = This.Result; 
event.Time = Simulation.CurrentTime; 
Simulation.SendEvent("CurrentValue",event); 
    
event = new Event("Tick"); 
event.Time = Simulation.CurrentTime + This.Step; 
Simulation.ScheduleEvent("Tick",event);  

} 
]]></Script> 

</ItemClass> 
The code for simulation scenario definition: 

<Simulation Name = "Lorenz" StartTime = "0" EndTime = "50" Batches = 
"1"> 

<Item ItemClass = " Lorenz Model" ItemID = "10"> 
</Item> 

</Simulation> 
Visual simulation model and simulation results are 

displayed in Figure 4 below: 

 
Figure 4: Lorenz system model and simulation result 
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