

AN XML BASED SIMULATION LANGUAGE
SUPPORTING MODEL KNOWLEDGE REPRESENTATION

CHEN LIU, WEI-PING WANG

System simulation Lab, School of Information System and Management,
National University of Defense Technology, Changsha 410073 , Hunan, China

liuchenchangsha@hotmail.com, luoyingliuchen@vip.sina.com

Abstract:
Knowledge representation of simulation models is the

core element to influence simulation development. This
paper summarizes the fundamental simulation model
formalism from the system point of view. It includes basic
model, composite model and scenario model. It also
presents rigorous formal specification. The executable
simulation language, which supports model knowledge
concise representation, is designed based on simulation
model formalism. The paper also discusses the
corresponding relationship between ESimL and simulation
model formalism and details the syntax and semantics of
elements in ESimL. Based on simulation model formal
specification, the abstract simulation algorithm is given and
ESimL virtual machine, which is capable of automatically
interpreting and executing simulation model represented by
ESimL, is designed. Finally the paper presents a chaos
system model, Lorenz system, specified by ESiml, the
simulation results can show the validation of the theory and
verification of ESimL.

Keywords:
Model knowledge representation; simulation model

specification; executable simulation language; simulation
virtual machine

1 Introduction

Simulation technology has been widely applied in
various fields, such as artificial intelligence, battle
simulation, embedded software development, weapon
system effectiveness evaluation, product design, etc.
Simulation technology has been used for designing,
development, evaluation or exploration. This effectively
saves the costs of product development, improves product
quality and people gain deeper understanding of research
systems, problems and routines.

Model is the core in simulation. Simulation is meant to
control the model’s execution, while models are the
cognitive abstract of research systems or problems. Models
should include system abstract information and simulation
control information in order to be operated by simulator.
Model knowledge representation is just to research on how
to represent this system abstract information, how to
represent participating simulation control information so as
to make simulation model representation more concise and
complete. Thus simulation model standardization and the
ability of fast building system simulation model to conduct
design, development and exploration can be achieved.

In the early stage of system simulation development,
people use advanced programming language or special
simulation language to conduct modeling and simulation.
Staff will have to be fluent in complex program syntax,
which significantly undermines efficiency. In large-scaled
simulation project, modeling and simulation process
consists of hundreds of complicated activities facing multi
domains. It requires efforts and cooperation from different
fields, different locations and different professional staff in
order to develop smoothly. Simulation technology
development has now moved from single-field oriented
application to multi-field collaborative simulation
development. The fundamental problem in collaborative
simulation lies on models’ representation standard, model
integration and reusability [1] [2].

The purpose of this research paper is to solve the
problem of simulation model knowledge representation and
to make simulation model easy to be developed and reused.
It uses the DEVS [3] [4] research results and applies system
point of view to explore simulation model’s basic
formalism. The paper also combines XML data exchange
standard to research an XML based language, ESimL, to
support model knowledge representation. ESimL will
declare a group of less quantity but relatively complete
elements and elements properties to describe abstract

characteristics, structures, and behavior to support building
system model. It can support modeler to maximum extent
to build simulation entity with the XML elements. At the
same time, ESimL attempts to create a flexible reference
standard to represent simulation in order to make
simulation model integration and reuse convenient.
Different simulation fields can also apply standard XML to
describe different simulation methods, such as Petri-Net,
Finite state automata and block models.

2 Formalism of simulation model

According to the view of a system, and with the study
of DEVS, we categorize simulation model into basic model,
composite model and scenario model.

2.1 Basic model formalism

Basic model is one kind of abstract system with the
same Attributes and behavior. Basic model is atomic unit,
which can not be divided, and can form more complex high
level composite model by composition. Basic model can be
specified by an 11 tuple.

BM=<n, pn, A, A’, s0, I, O, δ, ε, τ, λ>
Type constraint：

n∈ , pn∈ ;
State constraints：

A={ai | i∈ }, A’ ⊆ A;
S={si | i∈ }, si =(a0,a1…,an);
s0∈S;
Q={(s, e) | s∈S, 0 ≤ e ≤τ(s)};

Interaction constraints:
I={Ii | i∈ }, X={xi | i∈ },ηin: I→X ;
(x,i), x∈ηin(i), i∈I;
O={Oi | i∈ }; Y={yi | i∈ },ηout: O→Y;
(y,o), y∈ηout(i), o∈O;

Behavior constraints：
δ：Q×X× I→S;
ε：S→S;
τ：S→ ＋

0，∞;
λ：S→Y×O

Among which, n, pn, A, A’, s0, I, O，are the static
specification of basic model, δ, ε, τ, λ are the dynamic
behavior specification. The meaning of these elements is
given as following.

N∈ , n is the unique name of basic model. is
name space.

Pn∈ , pn is the name of the model’s super model.
Basic model can inherit the attributes, interfaces and

behavior from other basic model.
A={ai | i∈ }, is the attributes set.
A’⊆ A, is the user-setting attributes set which allow

the user configure the initial conditions of basic model
instance.

s0 is the initial state of basic model. The state of basic
model is a vector composed of all attributes value
s=(a0,a1…,an), The states of all the time sequence form the
state set S={si | i∈ }, s0∈S.

Q={(s, e) | s∈S, 0 ≤ e ≤τ(s)}, is the total state set. The
variable e implies the elapse time of basic model from the
last transition, 0 ≤ e ≤τ(s), τ(s) is the time segment between
tow transitions.

I={Ii | i∈ }, is the input interface set. An interface
can be specified as Ii=<n, ec, tm>, n is the unique name of
the input interface; ec is the event type received from the
input interface; tm is the mode of event transmission,
tm∈{ware，wareless}. Simulation model can interact with
other models by receiving events from the input interfaces.

X={xi | i∈ }, is the input events set. (x, i) is the input
vector, with x∈X, i∈I, imply that input event is received
from the input interface i.

O={Oi | i∈ }, is the output interface set. Simulation
model can interact with other models by sending events to
the output interfaces.

Y={yi | i∈ }, is the output events set. (y, o) is the
output vector, y∈Y, o∈O.

δ: Q× X× I→S, is the external transition function,
which is used to define the operations when receiving input
events. The input parameter are the total state q and input
vector (x, i), the output result is the updated state after
external transition. Its operational semantic is:

'),,(ss ixq ⎯⎯⎯ →⎯δ
ε: S→S, is the internal transition function, which is

used to define the operations when the advancing time is
reached. The input parameter is the state s, the output result
is the updated state after internal transition. Its operational
semantic is:

')(ss s⎯⎯→⎯ε
τ: S→ ＋

0，∞, is the time-advancing function, ＋

0，∞ is
the positive Integer set. It is used to define the next time of
internal transition. The input parameter is the state s, output
is the lasting time ∆t at current state, ∆t=τ(s). When the
state of the model is changed, the function τ will be invoked.
If the model don’t receive external input event during the
time segment [t, t+∆t], then the internal event will be
generated at the time when e==∆t, and trigger the internal
transition ε.

λ: S→Y×O, is the output function, which is used to
output the states when states are changed. The output result

is the vector (y, o).
The execution process of basic model is illustrated in

Figure 1. When model receives input event from input
interface, the external transition function is triggered, and
the states are changed. Time advance function control the
time of internal transition function, when the elapsed time
e== ta(s), then change to state δint (s), then the next internal
transition time is advanced to time now + ta(s). When the
states are changed, output function λ(s) will be invoked and
send events to the output interfaces.

S

λ

δ ε

τ

X Y

R

input

output

invoking

I O

 n, pn
 A, A’
 s0

Figure 1: The execution mechanism of basic model

2.2 Composite model formalism

Composite model is a kind of abstract system with the
same structure and composed by other basic model or
composite model. The behavior of composite model is
performed by the sub-models. Composite model can be
composed with other models as a basic model to construct
higher level composite model. Composite model can be
specified by a 10 tuple:

CM=< n, A’, I, O, M, EIC, EOC, IC, HC, Select >
Type constraint:

n∈ ;
State constraints:

A’={a’i | i∈ }，A’⊆∪mi.A’;
Γ: A’ →∪mi.A’;

Interaction constraints:
I={Ii | i∈ }, X={xi | i∈ },ηin: I→X ;
(x,i), x∈ηin(i), i∈I;
O={Oi | i∈ }; Y={yi | i∈ },ηout: O→Y;
(y,o), y∈ηout(i), o∈O;

Structure constraints:
M={mi | i∈ }, mi=<idi, n, pn, Ai, A’ i, s0i, Ii, Oi, δi,

εi, τi, λi>;
EIC⊆ CM× I×M×{mi.I};
EOC⊆ M×{mi.O}×CM×O;
IC⊆ M×{mi.O}×M×{mi.I};
HC⊆ M×M;

Conflict constraint:
Select: 2M-Ø→M

n is the unique name of composite model.
A’={a’i | i∈ }, is the user-setting attributes set which

allow the user configure the initial conditions of composite
model instance.Γ: A’ →∪mi.A’, is a mapping function
which can map the initial attributes of composite model to
it’s sub-models.

I, O are the input and output interface set. The
definition is same as basic model.

M＝{mi | i∈ }, is the sub model instances set. Each
model instance has the same structure as basic model, it can
be specified as mi=<idi, n, pn, Ai, A’ i, s0i, Ii, Oi, δi, εi, τi, λi>.
idi is the unique identifier of each model instance.

EIC⊆ CM× I×M×{mi.I}, is the set of links which
connect from the input interfaces of the composite model to
the input interfaces of the sub-model instances.

EOC⊆ M×{mi.O}×CM×O, is the set of links which
connect from the output interfaces of the sub-model
instances to the output interfaces of the composite models.

IC⊆ M×{mi.O}×M×{mi.I}, is the set of links which
connect from the output interfaces to the input interfaces of
sub-model instances.

EIC, EOC, IC define the interaction relation explicitly
by connections, which can be looked as the message
transmission channel. Each eic, eoc, ic have the same
formal structure <id, msrc, ifsrc, msink, ifsink >, id is the unique
identifier of the link, msrc is the link source model instance;
ifsrc is the link source interface; msink is the link sink model
instance, ifsink is the link sink interface.

HC⊆ M×M, is the set of links which represent the
owner relationship. Each hc has the formal structure <id,
msrc, msink >, msrc is the model instance own the instance
msink.

Select: 2M-Ø→M, is the tie-breaking function, which is
used to select one sub-model instance to process the
simultaneous internal events.

The following figure is the black-box view and
white-box view of composite model.

I1

m1 mj

mi

Ii Oi

 n: name

 A’:user-setting attributes

White-box view

O1

Black-box view

Figure 2: Composite model view

2.3 Scenario model formalism

Scenario model is one kind of abstract system with the
information of models and simulation. Scenario model
define the models anticipating simulation and the
simulation setting, which can be regarded as one composite
model instance with the simulation configuration.

SM=<Tb, Te, Ce, Batch, cm>
Simulation constraints:

Tb∈
Te∈ ;
Ce∈{true, false}
Batch∈

Model constrant:
cm =< id, n, A’, I, O, M, EIC, EOC, IC, HC, Select

>;
In which, Tb is beginning time of simulation; Te is end

time of simulation; Ce is end condition of simulation; Batch
is the simulation times of a scenario.

cm =< n, A’, I, O, M, EIC, EOC, IC, HC, Select >, is a
composite model instance which contains the models
configuration of current simulation.

3 ESimL

According to the basic formalism of simulation model,
combined with XML language, an Executable Simulation
Language (ESimL) has been raised. Some other simulation
languages are also based on XML such as SRML [5] [6] and
SML [7] 8]. ESimL is a simulation language based on XML
and script language, which supports model representation
and execution. It uses a group of XML tags to represent
simulation model’s static structure and infuses script
language to describe simulation model behavior. The
corresponding relationship between ESimL elements and
simulation model formalism is summarized in Table 1
below:

Table 1. Relationship between ESimL elements and
simulation model formalism

Simulation
model formal
specification

ESimL elements

BM ItemClass element
I EventSink elements set
O EventDispatcher elements set
A Property elements set
δ Script element with

function eventSinkName(Event event)
ε Script element with

function eventSinkName(Event event)
λ Script element with simulator API

SendEvent(String eventDispatcherName, Event
event)
PostEvent(String eventDispatcherName, Event

event)
BroadcastEvent(Event event, Boolean
direction)

τ Script element with simulator API
ScheduleEvent(String eventSinkName, Event
event)
PostEvent() and BroadcastEvent()

CM ItemClass element
I EventSink elements set
O EventDispatcher elements set
M, EIC, IC,
EOC, HC

Item elements set with link element

Select Simultaneous events will be processed according
as the priority of model instances

SM Simulation element
Basic model BM and composite model CM are

declared by ItemClass element. Scenario model SM is
declared by Simulation element. Input and output interfaces
of basic model and composite model are declared by
EventSink and EventDispatcher elements. Basic model’s
property A is declared by Property element. Composite
model’s sub-model sets and various connecting
relationships M, EIC, IC, EOC, HC are declared
collectively by Item element and Item’s sub element Link.
The above are all model’s static attributes description,
which has the same meaning in Part 2’s formal specification.
Basic model’s dynamic behavior attributes specification δ, ε,
λ, τ is conducted by script language in Script element.

δ, ε transition functions, implementation formalism in
javascript language is displayed in the following code.
Function is the javascript function declaration.
EventSinkName is the transition function name which must
be identical with the name of one of EventSink elements
defined in ItemClass. Event is the parameter of the
transition function, which is the received event. Transition
function can update model’s states by the reference of
external event or internal event.

function OnEventSinkName(event){
var x=event.x;
var y=event.time;
…

}
λ, τ functions are implemented with the API offered by

ESimL virtual machine. SendEvent() is used to send
synchronous event to the output interface, PostEvent() is
used to send asynchronous event to the output interface,
BroadcastEvent() is used to send synchronous or
asynchronous event among the composite models at
different levels. ScheduleEvent() is used to schedule the
next internal event by the model itself , PostEvent() and
BroadcastEvent() can also perform the time advancing
behavior when they send asynchronous events.

The architecture of ESimL schema is illustrated in
Figure 3. ESimL schema is composed of ESimL,

EventClass, ItemClass, Simulation, Script, Property,
EventDispatcher, EventSink, Item, ItemPrototype,
PropertyValue, Link and Event, 13 elements all together.

ESimL is the root element of ESimL, which can
comprise zero or more ItemClass, EventClass and
Simulation as its sub-elements. ESimL virtual machine can
load ESimL file and parse the definition of ItemClass,
EventClass and Simulation, then generate model instances
and events, drive the simulation. EventClass element is
used to define the event class which is the data format used
for interaction among model instances. All events used in
the ESimL must be one type of defined event class.
ItemPrototype element is used to define the prototype of
one ItemClass. A prototype is one kind of ItemClass with
the same property value. Item can also be instantiated from
an ItemPrototype. PropertyValue element is used to
initialize the property value. Link element is used to define
the interaction relationship between model instances. Event
can define the event instance in a simulation.

Figure 3: The architecture of ESimL schema

4 ESimL virtual machine

ESiml virtual machine (EVM) is used to interpret and
execute the simulation model represented by ESimL. EVM
comprises root simulator and basic simulator. Root
simulator takes charge of controlling the whole simulation
according to scenario model. Basic simulator takes charge
of executing the basic model and composite model.

4.1 Root simulator algorithm

1while（simNo ≠Batch）do
2 when receive（START, Tb）
3 t←Tb
4 send（START, t） to cm
5 while（t ≠Te ∧ Ce ≠ true）do
6 t←tNcm
7 “internal transition”
8 send（TRANSITION, t）to cm
9 end while
10 end
11 simNo++
12end while

While simulation times are less than Batch, continue
next one until simulation run times are identical with Batch.
When receive initialization signal(START，Tb), start a
simulation, update current time t←Tb , Tb is simulation
begin time; Send initialization signal to the simulator of
composite model cm, cm will initialize its sub-models.
While simulation end condition is not fulfilled, advance to
next time t←tNcm, send internal transition signal to cm.

4.2 Basic simulator algorithm

The tasks of basic simulator are to process the basic
and composite model’s actions of initialization, external
transition, internal transition and output. Correspondently
basic simulator will receive 4 kinds of signals, which are
(START, t), (TRANSITION, t), (x, i, t) and (y, o, t).

(1) Initialization
1when receive (START, t)
2 tL ← t
3 if M == Ø
4 s ←s0
5 tN ← t +τ(s)
6 else
7 ∀ m∈M : send (START, t) to child m
8 tN ←min { tN ∪ tNm | m ∈M}
9 end if
10end

When receiving initialization signal (START, t),

initialize the last transition time tL ← t. If current model is
basic model (M == Ø), then initialize the state s ←s0, and
the next transition time tN ← t +τ(s). Otherwise, current
model is the composite model, then simulator will send
initialization signal to all sub-models and calculate the next
transition time tN ←min { tN ∪ tNm | m ∈M}.

(2) External transition

1when receive (x, i, t)
2 if t∉ [tL, tN] ERROR end if
3 if M == Ø
4 e ← t - tL
5 s ←δ(s, e, x)
6 o←∏O(λ(s))
7 y←∏Y(λ(s))
8 send (y, o, t) to parent
9 tL← t
10 tN ← t +τ(s)
11 else
12 ∀ m∈∏M (Self ZY EIC ZY M)
13 ∀ i∈∏m.I (i ZY EIC ZY m.I)
14 send (x, i, t) to m
15 tL ←max { tL | m ∈M }
16 tN ←min { tN | m ∈M }
17 end if
18end

When receiving external signal(x, i, t), simulator will
execute external transition action. If t∉ [tL, tN], that implies
some exceptions occur, simulation will terminate. If current
model is the basic model, calculate the elapse time from last
transition, e ← t - tL; invoke external transition and update
the state, s ←δ(s, e, x); calculate output vector (y, o),
o←∏O(λ(s)), y←∏Y(λ(s)), and send (y, o) to parent
simulator, which will translate output signal to other
model’s input signal; update tL and tN, tL← t, tN ← t +τ(s). If
current model is the composite model, then find the
destination sub-models ∏M (i ZY EIC ZY M) and their
input interfaces ∏m.I (i ZY EIC ZY m.I), m∈∏M (i
ZY EIC ZY M), update external signals (x, i, t), i∈∏m.I (i
ZY EIC ZY m.I), and send the signal to all sub-model m;
update the time tL ←max { tL | m ∈M }, tN ←min { tN | m
∈M }.

(3) Internal transition
1when receive (TRANSITION, t)
2 if t ≠ tN ERROR end if
3 if M == Ø
4 e ← t - tL
5 s ←ε (s)
6 o←∏O(λ(s))
7 y←∏Y(λ(s))
8 send (y, o, t) to parent
9 tL← t
10 tN ← t + τ(s)
11 else
12 m ← select (M)
13 send(TRANSITION, t) to child m
14 tL ←max { tL | m ∈M }
15 tN ←min { tN ∪ tNm | m ∈M }
16 end if
17end

When receiving internal transition signal
(TRANSITION, t), simulator will execute internal
transition action. If t ≠ tN, that implies some exceptions
occur, simulation will terminate. If current model is the
basic model, calculate the elapse time from last transition, e

← t - tL; invoke internal transition and update the state, s ←
ε (s); calculate output vector (y, o), o←∏O(λ(s)),
y←∏Y(λ(s)), and send (y, o) to parent simulator, which will
translate output signal to other model’s input signal; update
tL and tN, tL← t, tN ← t +τ(s). If current model is the
composite model, select one sub-model by tie-breaking
function to execute internal transition, m ← select (M), and
send internal transition signal (TRANSITION, t) to m;
update tL and tN, tL ←max { tL | m ∈M }, tN ←min { tN | m
∈M }.

(4) Output
1when receive (y, o, t) from child m
2 ∀ o’∈∏O (o ZY EOC ZY Self.O)
3 send (y, o’, t) to Self
4 ∀ m’∈∏M (m ZY IC ZY M)
5 ∀ i∈∏I (o ZY IC ZY m’.I)
6 x←y
7 send (x, i, t) to m’
8end

Output algorithm is only for composite model, which
is responsible for the output signal transmission of
sub-models. When receiving sub-models’ output signal (y, o,
t), simulator will execute output action. Find the output
interfaces ∏O (o ZY EOC ZY Self.O) of the current
composite model by the links set EOC, then send the output
signal (y, o’, t), o’∈∏O (o ZY EOC ZY Self.O); Find the
destination sub-models ∏M (m ZY IC ZY M) and their
input interfaces ∏I (o ZY IC ZY m’.I), m’∈∏M (m
ZY IC ZY M) by the links set IC, update the input signal
(x, i, t), i∈∏I (o ZY IC ZY m’.I), then send the signal to
m’.

5 Simulation Case Study

Use ESimL to build Lorenz system model [9]. Values of
the parameters are σ=10，λ=24，b=2，initial value xi(0)=1.0.

3213

2132

121

)1(

)(

bxxxx

xxxx

xxx

−=

−−+=

−=

⋅

⋅

⋅

λ

σ

To build this differential equation model, we need to
build relevant addition model, subtract model, constant
model and integrator model. We also have to define the
interaction data formats and then construct these model
instances according to the equation and define the
simulation scenario to begin simulation finally. The
followings are part of the main ESimL code to approve its
description ability.

The code for interaction data formats definition:
<EventClass Name = "Number">

<Property Name = "Number" DataType = "Double"/>

</EventClass>
The code for integrator model definition:

<ItemClass Name="IntegratorBlock">
<Property Name="InitValue" DataType ="Double"/>
<Property Name="DeltaValue" DataType ="Double"/>
<Property Name="Step" DataType ="Double"/>
<Property Name="Result" DataType ="Double"/>
<EventSink Name = "dValue" EventClass="Number" LinkFixed =

"True"/>
<EventSink Name = "Tick" EventClass="Tick" LinkFixed = "True"/>
<EventDispatcher Name = "CurrentValue" EventClass="Number"/>
<Script Type="text/javascript"><![CDATA[

This.Step = 0.001;
var event = new Event("Tick");
event.Time = This.Step;
Simulation.ScheduleEvent("Tick",event);
function OndValue(e){

This.DeltaValue = e.Number;
}
function OnTick(e){

This.Result = This.Result + This.DeltaValue * This.Step;
var event = new Event("Number");
event.Number = This.Result;
event.Time = Simulation.CurrentTime;
Simulation.SendEvent("CurrentValue",event);

event = new Event("Tick");
event.Time = Simulation.CurrentTime + This.Step;
Simulation.ScheduleEvent("Tick",event);

}
]]></Script>

</ItemClass>
The code for simulation scenario definition:

<Simulation Name = "Lorenz" StartTime = "0" EndTime = "50" Batches =
"1">

<Item ItemClass = " Lorenz Model" ItemID = "10">
</Item>

</Simulation>
Visual simulation model and simulation results are

displayed in Figure 4 below:

Figure 4: Lorenz system model and simulation result

References

[1] Andreas Tolk. Avoiding another Green Elephant – A
Proposal for the Next Generation HLA based on the
Model Driven Architecture. 2002 Fall Simulation

Interoperability Workshop, Orlando, Florida,
September 2002.

[2] Andreas Tolk. Composable Mission Spaces and M&S
Repositories - Applicability of Open Standards. 2004
Spring Simulation Interoperability Workshop
Washington, D.C., April 2004

[3] Zeigler, B.P., Theory of System Modeling and
Simulation . New York: Academic Press, 2000.

[4] Ki Jung Hong, Tag Gon Kim, and In Sup Kwon.
DEVSIF: RELATIONAL ALGEBRAIC DEVS
INTERMEDIATE FORMAT.2002.

[5] Steven W. Reichenthal. SRML - Simulation Reference
Markup Language. W3C Note. 2003.
<http://www.w3.org/TR/SRML/>

[6] Steven W. Reichenthal. SRML: A Foundation for
Representing BOMs and Supporting Reuse. SIW Fall
Conference, 2002.

[7] SML, Simulation Modeling Language. Available
online via http://www.threadtec.com/sml [accessed
August 1, 2002].

[8] E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M.
Charnes, eds.. NEXT GENERATION SIMULATION
ENVIRONMENTS FOUNDED ON OPEN SOURCE
SOFTWARE AND XML-BASED STANDARD
INTERFACES. Proceedings of the 2002 Winter
Simulation Conference, 2002.

[9] Fishwick, P. A., Simulation Model Design and
Execution, Prentice-Hall Inc, 1995.

