

A SystemC/Simulink Co-Simulation Framework for Continuous/Discrete-Events Simulation

F. Bouchhima¹, M. Brière¹, G. Nicolescu¹, M. Abid², E. M. Aboulhamid³ ¹Ecole Polytechnique de Montréal, Montréal, Canada ²National Engineer School of Sfax, Sfax, Tunisia ³Université de Montréal, Montréal, Canada

Continuous/Discrete systems

- Applications to various domains
 - Defense, medical, communications, automotive, ...
- Main characteristics
 - Complexity, Heterogeneity
- Main design challenges
 - Global specification and validation

Continuous/Discrete systems design

- Collaboration between different teams
- Incremental refinements through different abstraction levels with specific execution models
- Validation requires joint execution of heterogeneous execution models
 - Co-Simulation technique

Challenges for Continuous/Discrete co-simulation

- Defining new tools facilitating cooperation between different teams
 - Exploiting powerful existing tools (Simulink, SystemC, ...)
 - Taking into account implementation choices
 - Enabling easy specification, automatic generation for cosimulation interfaces

Contributions and objectives

- Fasten design of execution models for \triangleright continuous/discrete co-simulation
- Conclusion
- Definition of continuous/discrete framework: CODIS (**CO**ntinuous/**DI**screte **S**imulation)
- Find applications to illustrate the co-simulation framework powerful

Outline

- Global simulation for continuous/discrete systems
- Synchronization models for continuous/discrete systems co-simulation
- CODIS framework
- Conclusion

Continuous/Discrete systems - heterogeneous execution models -

Concept Model	Time	Communication means	Processes activation rules
Discrete	Advances discretely	Set of events	Processes are sensitive to events
Continuous	Advances by integration steps (IS)	Piecewise- Continuous signals	Processes are executed at each IS

> Events exchanged between the two models

- Sampling events
- Update signal events
- State events

Continuous/Discrete systems

- heterogeneous execution models -

BMAS'06 - M. Brière

Full synchronization mode

Each discrete step and/or state event occurrence

Predictable events mode

Each update/sampling events and/or state event occurrence

<u>Unpredictable events mode (= events-driven mode)</u> Each update/sampling events and/or state event occurrence

CODIS Conclusio

Continuous/Discrete systems - synchronization models -

Synchronizat
CODIS
Conclusion

Synchronization model	Synchronization step	Advantages	Inconvenient
Full synchronization mode	Each discrete step and/or state event occurrence	General	Synchronization overhead
Predictable events mode	Each update/sampling events and/or state event occurrence	Improve performances	The prediction of update/sample events is required
Unpredictable events mode (≡ events-driven mode)	Each update/sampling events and/or state event occurrence	Non-periodic update/sample events	Rollback may be required

Challenges for accurate global execution

- Considering the state events generated by the continuous simulator
- Detection of the next event of the discrete simulator (scheduled event)
- Detection of the end of the discrete simulation cycle and the time step sending

Generic architecture for continuous/discrete co-simulation

Outline

- Global simulation for continuous/discrete systems
- Synchronization models for continuous/discrete systems co-simulation
- CODIS framework
- Conclusion

CODIS framework

- COntinuous/Discrete Simulation
- Implementation of the synchronization models
- First prototype enabling Simulink/SystemC simulation
- Integrate easily discrete SystemC components
- Integrate easily continuous Simulink components

CODIS framework - simulation flow -

Input flow

Generation of continuous model interfaces

- Simulink co-simulation library blocks
 - State-event detection and signalling
 - Synchronization with sampling and update events
 - Integration step adjustment
 - Communication

Generation of discrete model interfaces

- Based on a SystemC co-simulation library \triangleright
 - State events management blocks
 - Communication blocks
- Automatic generation of co-simulation interfaces by a code generator that has as input user-defined parameters
 - Data types
 - Number and type of ports
 - Synchronization model

New tasks added in the SystemC scheduler

CODIS - COntinuous/Discrete Simulation -

- SystemC/Simulink accurate simulation
 - Easy integration, generic library elements

CODIS - applications -

- Control applications
 - Bottle filling station, robot arm manipulator
- Mixed signal application
 - Σ/Δ converter
- > Wireless application
 - Radar system

CODIS - application - bottle filling station

- Diagram presentation
 - Discrete part models the job flow using SystemC components
 - Continuous part models the raw material flow using Simulink components

CODIS - application - bottle filling station

- Simulation results \triangleright
 - Full synchronization mode (state events and signals update events are • not periodic)

Discrete model (SystemC vcd trace)

VCD loaded successfull 2] facilities found. 40] regions found.	y.	Page Fetch	Disc Shift From: 0 sec To: 1620180 m	Maximum Tin 1620180 m Current Tim 0 sec
Signals	arriv	al		
Time		433 sec	867 mec	

Configuration job arrival rate: 180 s setup: 60 s inflow rate: 0.025 l/s max. outflow rate: 0.033 l/s min. outflow rate: 0.025 l/s

Performances analysis

- Inter-simulators communication overhead
 - 20% of the total simulation time
- Overhead caused by the Simulink integration step adjustment
 - maximum 5% of total simulation time
- SystemC synchronization overhead
 - maximum 0.2% of the total simulation time

Conclusions

- The design of continuous/discrete systems requires cosimulation based validation
- Challenges for continuous/discrete co-simulation
 - Definition of global execution models respecting different synchronization models
 - Co-simulation interfaces automatic generation
- > CODIS
 - Co-simulation framework enabling generation of global execution models
 - SystemC/Simulink co-simulation

BACKUP

BMAS'06 - M. Brière

25 _

Continuous/Discrete systems - synchronization models -

- Full synchronization mode
 - Synchronization each discrete model step and/or state event occurrence
 - Ceneral
 - 😑 Synchronization overhead

Continuous/Discrete systems

- synchronization models -
- Prediction events mode
 - Synchronization each update/sampling events and/or state event occurrence
 - 🙂 Improve performances
 - Requires prediction for update/sampling events

Continuous/Discrete systems

- synchronization models -
- Unpredictable events mode
 - Synchronization each update/sampling events and/or state event occurrence
 - Contract Accept non-periodic update/sampling events, efficient when no state events occurs
 - Rollback for discrete model is required when state events occur

