
Verification of Digitally Calibrated Analog Systems

with Verilog-AMS Behavioral Models

Robert O. Peruzzi, Ph. D.

Agere Systems, Allentown, PA

Peruzzi@IEEE.com

Member, IEEE

ABSTRACT
This paper describes the use of behavioral models to

verify the design of digitally calibrated analog/mixed-

signal systems, too large for either a circuit simulator or a

traditional digital simulator. An important goal of using

models in this way is to reduce the likelihood of human

error resulting in integrated circuit imperfections. A

specific example of a calibrated gain stage, with a full set

of behavioral models illustrates the modeling and

simulation approach.

1. INTRODUCTION
As the size and complexity of integrated circuits

increases, it becomes a critical task to find and eliminate

occurrences of human error in the design and integration

of the constituent subcircuits. This paper is intended to be

a practical discussion of how to create and use behavioral

models to verify mixed analog/digital systems that use

digital signal processing to calibrate the analog signal

path. Behavioral models make it possible to simulate such

a system in its entirety. Without behavioral models, one is

limited to creating a family of overlapping test benches in

an attempt to simulate all of the interfaces.

1.1. Why Calibration
A trend in integrated circuits is to combine analog and

digital circuitry on the same die. A concurrent trend is to

shrink the dimensions of device geometries for digital

circuitry in order to increase speed as well as to lower

cost by decreasing area. Power supply voltages decrease

because of physical limitations of the finer geometries as

well as to decrease power dissipation. Analog design

challenges resulting from these trends include reduced

headroom and increased susceptibility to noise.

Using open loop analog is a solution to the headroom

problem. A mixed analog/digital calibration system

replaces analog feedback.

The calibrator converts an analog quantity (voltage,

current or time interval) to digital and uses it to calculate

some decision criterion. It makes the decision to increase

or decrease some controlling parameter (voltage, current,

capacitance etc.) to adjust the measured analog quantity.

It applies the amount of increase or decrease digitally by

means of a D/A converter or switch. The calibrator re-

measures the analog quantity of interest and the process

repeats until the measured quantity is within acceptable

limits.

Calibration executes at start up and periodically thereafter

and provides feedbacks that mitigates offset, gain,

frequency, or filter corner frequency errors, reduces drift

with temperature, power supply voltage and aging.

1.2. Why Behavioral Modeling
Digital calibration of analog circuitry is well known and

accepted [1-4], but an entire integrated circuit may be

difficult to verify by simulation. A traditional circuit

simulator might possibly simulate a system comprising

the core analog circuit, A/D converter, signal processing

digital circuitry, D/A converter, and analog switches.

However, a typical calibrated system shares its A/D

converter and signal processing digital circuitry between

multiple core analog building blocks. It becomes

impractical if not impossible to verify the entire system

with a traditional circuit simulator.

Reducing the likelihood of human error is an important

motivation for using behavioral modeling to verify the

circuit. Errors inevitably occur when there are

opportunities for miscommunication between designers.

In a large design team, especially one that is widely

distributed functionally and geographically, the risk of

human error is high. In particular, the following is a list of

types of design errors:

1.2.1 Faulty Calibration Algorithm
There may be a fundamental flaw in the semantics of the

calibration plan. An example of a gross error would be

failing to power up the target before applying the test

0-7803-9742-8/06/$20.00 © 2006 IEEE. 7

signal. An example of a subtle error would be a counter

wrapping around to zero on overflow, causing wildly

unexpected results. A simulation platform that allows

runtime-efficient testing of many cases can expose such a

flaw.

1.2.2 Bus Bit Order Errors
A common miscommunication is reversal of bit ordering.

A digital subcircuit may produce output DATA [7:0], and

the analog destination expects DATA [1:8]. Human errors

occur despite the best intentions and diligence,

methodology documents, design rules, checklists and

daylong public design reviews.

1.2.3 Digital Control Signal Polarity Errors
Another miscommunication error is polarity reversal.

Confusion can result between the meaning of enable and

power-down signals, and their active-high and active-low

nature. Again, failures occur despite rules and safeguards.

1.2.4 Digital Signal Integrity Errors
Timing violations in digital circuitry such as setup time or

hold time can result in inconsistent states on signals

passed to an analog circuit. These can be a nightmare to

debug in the field or laboratory because errors can appear

at only certain clock rates, power supplies or

temperatures. Using a reasonably pessimistic digital

simulator will catch timing violations, with either static

timing analysis or transient analysis. Errors can occur

when the complete set of digital verifications are not

performed on a block of digital circuitry appearing in a

mixed-signal schematic.

1.2.5 Bias Current Errors
Different team members may design the analog signal

path and its bias generator. A common

miscommunication error occurs when the signal path

designer assumes the wrong current polarity, or

magnitude. Another type of error occurs when multiple

designers inadvertently connect to the same bias current

source.

1.2.6 Reference Voltage Errors
Similarly, a designer may connect to a different reference

voltage than intended. Another error scenario occurs

when a designer attempts to draw current from an un-

buffered voltage reference.

To solve these problems, this paper describes modeling

strategies and provides Verilog-AMS examples that can

expose these types of faults.

The remainder of this paper comprises three sections.

Section 2 presents an ideal analog gain stage with digital

calibration and describes its constituent blocks. Section 3

begins by describing the AMS models representing the

subcircuits of the calibrated gain stage, referring to the

model listings in the appendix. Section 3 also discusses

how the models overcome certain difficulties with the

AMS simulator, and gives suggestions for using multiple

model views of circuit blocks for flexible use in

verification. Section 4 concludes with a summary of how

the models address each of the error modes listed in

section 1.2. The appendix is a code listing of the AMS

models, somewhat condensed for space.

2. A CALIBRATED ANALOG CIRCUIT
An example of a digitally calibrated gain stage is in Figure

1. This fictional system is not practical or realizable as

shown, but is a useful vehicle to demonstrate modeling

techniques.

The circuit comprises

An amplifier with digitally controlled coarse

gain, current controlled fine gain, current

controlled offset, and other digital features

An analog multiplexer to select normal input or

calibration voltage input

An analog switch to connect or not connect the

signal output to the ADC input multiplexer

An ADC with multiplexed input

Digital signal processing logic controls all the

switches and multiplexers, the ADC and the

DACs, and generate the DAC words.

DACs to create the gain control and offset

control currents and a DAC to create the

calibration test voltage.

Figure 1: A digitally calibrated analog gain stage.

In normal operation, the signal path is from Signal_in

through the amplifier to Signal_out, with the I_Gain and

I_Offset DACs operating, and the ADC and the V_Cal

DAC powered down. As illustrated in Figure 1 the gain

ADC

DAC

Signal_in

V_Cal

I_Gain

I_Offset

Signal_out

Amplifier with digital and current
controlled Gain and current
controlled Offset correction.

Digital

Control block
and ADC are
shared among
all calibrations

Analog / Mixed Signal

CONTROL

DAC

DAC

dgain[1:0]

8

stage is in calibration mode. The amplifier input connects

to V_Cal, and Signal_out connects to the ADC.

For verification simulations, the CONTROL subcircuit

may be represented by either behavioral or RTL Verilog

models or gate level netlists, with or without parasitics.

Verilog AMS models represent the amplifier, analog

switches, ADC and DAC.

3. AMS MODELS AND DESCRIPTIONS
Verilog AMS models for the amplifier, switches, ADC

and DACs, somewhat abridged, are listed in the appendix.

This section presents and discusses the models.

3.1 Model Overviews
This section describes each of the models. The

documentation found in [5] is an excellent reference for

further understanding the modeling approach and code

syntax.

3.1.1 Amplifier
The complete Verilog-AMS model for the amplifier

shown at the top of Figure 1 is in Listing 1 in the

Appendix. The device is off when input pdn is low. Two

dgain bits control coarse gain. Currents i_gain and

i_offset calibrate fine gain and offset. The frequency

compensation requirement is different for certain settings

of dgain under control of the dcomp bit. A 2.5 Volt power

supply, 15-uA bias current and 0.6-V reference are

required. In the “initial begin” section the compiler

directive variable cal_sim controls the use of gain and

offset errors.

 “// I Power down pin…” defines behavior for states 1

(real en_step = 1.0) and 0 (en_step = 0.0) of the pdn

input, and also defines behavior in case of error

conditions when pdn = X or Z, providing coverage for

error mode 1.2.4 “digital signal integrity”. The bus

variable logic_ok has bits to monitor the integrity of

every digital input. Skipping ahead to segment “// I.A” in

the analog section, the discontinuous product “en_step *

noFault_step” gets smoothed by the transition function

into the continuous real variable en, which scales the

output to zero when powered down or when there’s a

power supply, bias or logic fault.

Regarding transition(), sometimes you can get away

without smoothing when the testbench is small and the

transient simulation is short. The likelihood of analog

convergence errors increases with the size of the circuit

under test – as does the difficulty in finding and fixing the

cause of non-convergence.

Secondly, a real variable changing in the digital section of

an AMS model does not necessarily trigger an analog

solution point. In a short transient simulation, the max

timestep sometimes will camouflage the time interval

between the digital real variable change and its effect in

the analog environment. Use of the transition filter

explicitly defines an analog solution point

“// II. Digitally controlled nominal gain…” defines the

nominal amplifier gain. The case statement includes all

legal values of dgain and the default detects signal

integrity faults. The ngain_step is smoothed to ngain in

the analog section.

 “ //III. Digitally controlled compensation for low gain”
The effect of frequency compensation is not easy to

model behaviorally, and if one did model its effect, the

model would not convey verification information in a

useful format. A better approach is to design and simulate

the amplifier using the circuit simulator, then knowing the

effect of the dcomp input when properly programmed,

verify the controllability and integrity of dcomp.

Whenever dcomp changes, an INFO message displays the

value of dcomp. If there is a dcomp fault, the model

displays an ERROR message and shuts down the

amplifier. Shutting down the amplifier because the

compensation control bit is floating may not be physically

accurate but the objective here is to call attention to a

connectivity fault.

 “ // IV. Monitor vdd”
Two instances of the “@(above…)” function trigger if

the power supply is over or under 2.4 V at time zero, or if

the power supply crosses 2.4 V at any time in the

simulation. Power supply greater than 2.4 V sets

power_ok and allows normal operation. Two more

instances of “@(above…)” could add an upper limit to

the power supply. One may check connectivity to ground

in the same way. Skip ahead to “// IV.A” in the analog

section. The vdd pin terminates resistively to gnd and a

power supply current is assigned when powered up. A

collection of AMS models written in this manner can help

tally total power supply current under various operating

modes. Measure currents with the circuit simulator and

assign currents in the AMS model.

“ // V. Monitor bias current”
Two instances of the “@(above…)” function trigger if

the bias current is not within tolerance, and set the

corresponding bit of the bias_ok variable. Incorrect

current will clear the bias_ok bit, causing the output to

shut down and the display of an ERROR message. The

currents terminate through an arbitrary 100 Ohms to gnd

in the analog section.

9

“ // VII. Continuously check for errors”
Variable all_ok is the logical AND of the power, bias and

logic integrity monitor variables, and controls the real

variable noFault_step.

“ // analog begin”
With the AMS simulator, all currents and voltages

terminate to ground by default (through minimum

resistance or conductance) if not explicitly terminated. In

this model, i_gain and i_offset are explicitly, if arbitrarily,

terminated to gnd through 100 Ohms. Factors are

calculated to correct gains from 0.98 to 1.02 V/V, and

offsets from -20 to 20 mV. After calibration, effective

gain approaches nominal gain and effective offset

approaches zero.

This model modifies the ideal linear gain equation (after

gain and offset errors and corrections) to allow for hard

limiting to vdd and gnd, bandwidth limiting to an

arbitrarily selected bandwidth of 1 GHz, and 100 Ohms

output impedance (1 GOHM output impedance when

powered down).

3.1.2 Two-Pole Switch
The Verilog-AMS model (abridged for space) for the

two-pole switch at the input of the amplifier in Figure 1 is

in Listing 2 in the Appendix. When sel1 (select 1) is low,

there is a low impedance path between in0 and out, and a

high impedance between in1 and out. When sel1 is high,

in1 connects to out with low impedance.

The model checks the signal integrity of sel1, and both

paths are high impedance if there is a fault. Power and

ground connections do not appear in this model for the

sake of brevity.

The modeling strategy for this idealized model is to make

the switch resistance either the maximum or the minimum

resistance for Verilog AMS, and to exponentially

transition between the base-10 logarithms of these

extremes. This approach allows continuous, fast

transitions without convergence problems.

3.1.3 One-Pole Switch
The model listing for the single-pole switch between

Signal_out and the ADC does not appear in the appendix

for brevity. It uses the same strategy as used in the two-

pole model. That is, “enable” controls the impedance

between in and out.

3.1.4 Three-Pole Switch
Figure 1 shows a three to one multiplexer connecting to

the ADC, but there may be significantly more inputs in a

typical calibrated analog system. A model for a three-pole

switch is in Listing 3. The model uses the same controlled

impedance approach as the previous two switches. The

model listing is included in appendix because it illustrates

a different type of error verification. Two control bits are

enough to control four inputs, but there are only three.

The case statement will flag an error if sel = 1’b11,

separate from the signal integrity check that sel <= 2’b11.

3.1.5 ADC
Listing four is an abridged model of an ideal ADC.

Comments replace segments of code previously

discussed. The A/D conversion code executes totally in

the digital section of the model.

3.1.6 Current and Voltage DACs
Listing five is an abridged model of a current output DAC

with level sensitive digital input. Notice the clock level

evaluation code in the “initial begin” section. This is

necessary for accurate level sensitive switch modeling. As

in the gain_stage model, the real variables are set

according to the digital word in the digital domain, and a

transition function in the analog domain drives the output.

With a level sensitive DAC, the output will follow the

digital input if it changes while the clock is high, and will

wait for a high clock level if the digital inputs change

while the clock is low. The code for a voltage-output

DAC is similar.

3.2 Difficulties Overcome

3.2.1 Digital/Analog Simulator Control Sharing
The Verilog-AMS simulator uses a continuous-time

analog simulation engine as well as an event-driven

discrete-time digital simulation engine. Controlling and

maintaining communication between the two simulators

presents a difficulty overcome by these models. The

method described above of using a “_step” variable to

trigger an analog evaluation from a digital event provides

a communication path from the digital solver to the

analog solver. Conversely, triggering a digital even from

the analog domain is done using the “@(above…)

function shown in the gain_stage model and description.

3.2.2 Wide Frequency Difference
In normal operation, the analog signal path may be high

frequency, but operate at nearly DC during calibration

mode. This puts another demand on the simulator, in

controlling the maximum time step between analog

evaluations. Using the “_step” variables and transition()

and @(above…) functions overcomes this difficulty by

explicitly setting evaluation points.

3.3 Simpler Model Versions or Views
It is possible to have several levels of model detail

available for each block. The listings in the appendix

10

correspond to the most detailed view, used to verify

control and calibration of the analog signal path.

In a larger system, the digital circuitry downstream from

the analog front end may be ready for verification before

the analog front-end design is complete. Owners of the

downstream digital circuitry may have no design or

verification responsibility for the analog blocks or their

calibration, but use the analog blocks as part of their test

platform. Such users may substitute a simpler model

view, in which nominal analog performance takes place

as if after successful calibration.

One approach to accommodating the need for simpler

models is to maintain multiple model views of the analog

blocks, using a tool such as the Cadence Hierarchy Editor

to assemble a test platform with the desired level of detail.

Another approach uses a single edition of the model

source code, but delineates the more detailed model code

between `ifdef, `elseif and `endif compiler directives.

4. CONCLUSIONS
These models can identify all six classes of design flaw.

This section reviews the error modes listed in sections

1.2.1 to 1.2.6, pointing out how the models expose these

types of errors.

4.1 Faulty Calibration Algorithm
If calibration never takes place because of a gross error

such as failure to power-up, or some other sequencing

fault in the algorithm, the gain and offset errors would

still be evident in Signal_out. Simulating calibration with

several sets of initial errors of both polarities, and both

small and extreme magnitude are necessary. For

completeness, also try error magnitudes too large for

complete correction and ensure the calibration routine

fails “gracefully”. Try with zero error too, making sure

the calibration routine does not degrade a perfect

situation.

4. 2 Bus Bit Order Errors
The modeling strategy makes it straightforward to expose

any bus bit order errors. For instance, reversal of the

dgain input bits to the gain_stage causes the amplitude of

Signal_out to be different from the expected. Behaviors

depending on bit ordering appear in each model.

4. 3 Digital Control Signal Polarity Errors
Behaviors depending on digital control signal polarity are

part of each model. Verify by comparing observed output

to the expected output. In the case of the dcomp input to

gain_stage, the INFO message in the log file will show if

the resulting block input has the expected polarity.

4.4 Digital Signal Integrity Errors
Digital integrity errors show up in the simulation log file

and stop normal simulation output. All the models are

written such that logic input faults become evident.

4.5 Bias Current Errors
The models do not allow incorrect bias current levels or

polarities. Whenever the current is outside of limits, the

model shuts down and an ERROR message indicates the

incorrect bias.

4.6 Reference Voltage Errors
In the same manner, the models do not allow incorrect

voltage references without shutting down and displaying

an ERROR message. Drawing current from a reference

with a source resistance causes a voltage drop, which is

detectable.

REFERENCES
[1] Bailey, James; Franck, Stephen, US Patent 20,050,270,092,

Calibration technique for variable-gain amplifiers.

[2] Matsuzawa,A., "Is the Golden Age of Analog Circuit Design

Over?", ISSCC 2004 Panel.

www.ssc.pe.titech.ac.jp/materials/ISSCC04_panel_matsu_home

page.pdf

[3] Moon, Un-Ku. Song, Bang-Sup. “Background digital

calibration techniques for pipelined ADCs”, IEEE Transactions

on Circuits and Systems II: Express Briefs, Vol. 44, No. 2, Feb

1997, pp 102.

[4] Pastre, Marc, Kayal, Maher. Methodology for the Digital

Calibration of Analog Circuits and Systems with Case Studies

Series: The International Series in Engineering and Computer

Science , Vol. 870, 2006.

[5] Kundert, Kenneth S., Zinke, Olaf, The Designer’s Guide to

Verilog AMS, Kluwer Academic Publishers, 2004.

11

APPENDIX: Verilog-AMS Models

__

Listing 1. Amplifier Model

`include "constants.vams"
`include "disciplines.vams"
module gain_stage (vin, pdn, dgain, dcomp, i_gain,
i_offset, ibias, vref, vdd, gnd, vout);
input vin, pdn, dgain, dcomp, i_gain, i_offset, ibias,

vref, vdd, gnd;
input [1:0] dgain;
electrical ibias, , i_gain, i_offset, vin, vout, vdd,

gnd;
logic [1:0] dgain;
logic pdn, dcomp;

 // Nominal gain from digital control
real ngain_step, ngain;

 // Arbitrary errors to test calibration
real gain_err, os_err;

 // Correction factors from calibration
real gain_corr, os_corr;

 // Effective gain and offset
real egain, eos;

 // For power down control
real en_step, en;

 // For verifying input integrity
reg power_ok;
reg [1:2] bias_ok;
reg [1:3] logic_ok;
wire all_ok;
real noFault_step;

 // Internal versions of the output
electrical out_raw, out_clip, out_bw;
real BW, ROUT;

 initial begin
 power_ok = 1'b1;
 bias_ok = 2'b11;
 logic_ok = 3'b111;
 // All step variables passed to transition filter
 // must be initialized
 noFault_step = 1.0;
 en_step = 0.0;
 ngain_step = 1.0;
 BW = 2 * 3.414 * 1e9;
 `ifdef cal_sim // If running calibration test
 gain_err = 1.01; // 1% arbitrary gain error
 os_err = 0.01; // 10 mV arbitrary offset error
 `else // No errors otherwise
 gain_err = 1.0;
 os_err = 0.0;
 `endif
end // end of initial begin section

 // I. Power down pin (Also see I.A)
always @(pdn) begin

 logic_ok[1] = 1'b1;
if (pdn == 1'b1)

 en_step = 1.0;
else if (pdn == 1'b0)

 en_step = 0.0;
else begin // React to fault condition on

pdn
 en_step = 0.0;
 logic_ok[1] = 1'b0;
 $display(
 "ERROR : %g : %m : Bad logic: pdn = %1b ",
 $realtime, pdn);

end
end

 // II. Digitally controlled nominal gain: ngain
 // Here assigned as step, smoothed in analog
 // section with transition filter. (See II.A)
always @(dgain) begin

 logic_ok[2] = 1'b1;
case (dgain)

 2'b00: ngain_step = 1.0;
 2'b01: ngain_step = 2.0;
 2'b10: ngain_step = 4.0;
 2'b11: ngain_step = 8.0;

default begin // Fault condition on dgain bits
 logic_ok[2] = 1'b0;
 ngain_step = 1.0;
 $display(
 "ERROR : %g : %m : Bad logic: dgain = %2b ",
 $realtime, dgain);

end
endcase

end
 // III. Digitally controlled compensation for low
gain
 // Behavior is too subtle to model physically
 // Verify path connectivity with INFO messages
always @(dcomp) begin

 logic_ok[3] = 1'b1;
if (dcomp <= 1'b1) begin

 $display(
"INFO : %g : %m : You have written: dcomp = %1b
",
 $realtime, dcomp);

end
else begin

 logic_ok[3] = 1'b0;
 $display(
 "ERROR : %g : %m : Bad logic: dcomp = %1b ",
 $realtime, dcomp);

end
end

12

Listing 1. Amplifier Model (Cont.)

// IV. Monitor vdd (See IV.A)
always @(above (V(vdd) - 2.4)) begin

 power_ok = 1'b1;
 $display (
 "INFO : %g : %m : VDD ON. vdd = %g",
 $realtime,V(vdd));
end
always @(above (2.4 - V(vdd))) begin

 power_ok = 1'b0;
 $display (
 "INFO : %g : %m : VDD OFF. vdd = %g",
 $realtime, V(vdd));
end

 // V. Monitor bias current (See V.A)
always @(above(abs(V(ibias) - 1.5e-3) - 0.1e-3))

// |err| > tol.
 bias_ok[1] = 1'b0;
always @(above(0.1e-3 - abs(V(ibias) - 1.5e-3)))

// |err| < tol.
 bias_ok[1] = 1'b1;
 // Respond to incorrect current
always @(negedge bias_ok[1]) begin
if (bias_ok[1] == 1'b0)

 $display(
 "ERROR : %g : %m : Bad bias current: ibias = %g",
 $realtime, V(ibias)/100.0);
end

 // VI. Monitor reference voltage
 // Expected voltage is 0.6 +/- 0.03
 // When |err| > tolerance:
always @(above(abs(V(vref) - 0.6) - 0.03))

 bias_ok[2] = 1'b0;
// When |err| < tolerance:

always @(above(0.03 - abs(V(vref) - 0.6)))
 bias_ok[2] = 1'b1;
 // Respond to incorrect voltage
always @(negedge bias_ok[2]) begin
if (bias_ok[2] == 1'b0)

 $display(
"ERROR : %g : %m : Bad ref. voltage: vref = %g",
 $realtime, V(vref));
end

 // VII. Continuously check for errors
assign all_ok = & {power_ok, bias_ok, logic_ok};

 // VIII. If no errors... (Also see I.A)
always @(all_ok) begin
if (all_ok == 1'b1) noFault_step = 1.0;
else noFault_step = 0.0;

end

analog begin
 // I.A Continuous scale factor disables the output
 // when powered down or during a fault condition
 en = transition(en_step * noFault_step, 0.0, 1n,
1n);

 // II.A Smooth steps on ngain
 ngain = transition(ngain_step, 0.0, 1n, 1n);
 // Terminate i_gain and i_offset
 V(i_gain) <+ I(i_gain) * 100.0;
 V(i_offset) <+ I(i_offset) * 100.0;
 // Develop correction factors
 gain_corr = I(i_gain) * 4e3 + 0.96; // 0.98 to 1.02
V/V
 os_corr = I(i_offset) * 4e3 - 0.04; // -20 to 20 mV
 // Effective gain: nominal gain, error and correction
 egain = ngain * gain_err * gain_corr;
 // Effective offset, including error and correction
 eos = os_err + os_corr;

 // Signal path: Linear gain equation
 V(out_raw) <+ (V(vin) * egain + eos) * en;
 // Hard limit to ground and power supply

if (V(out_raw) > V(vdd))
 V(out_clip) <+ V(vdd);

else if (V(out_raw) < V(gnd))
 V(out_clip) <+ V(gnd);

else
 V(out_clip) <+ V(out_raw);
 // Bandwidth limited
 V(out_bw) <+ (V(out_clip)-ddt(V(out_bw)/BW));
 // Output resistance
 ROUT = 100 * (1.0 - en) * 1e9;
 // Final output
 I(vout, out_bw) <+ V(vout, out_bw) / ROUT;

 // IV.A Typical power supply currents from circuit
 // simulation. Assigned here as a "book keeping"
aid.
 // 1 nA leakage plus 1 mA when enabled
 I(vdd, gnd) <+ V(vdd, gnd) / 2.5e9 + 1e-3 * en;

 // V.A Develop bias current voltage over 100 Ohms
 V(ibias) <+ I(ibias) * 100.0;

end // end of analog begin

endmodule

13

__

Listing 2. Two-Pole Switch Model

module switch2p (in1, in0, sel1, out);
inout in1, in0, out;
input sel1;
electrical in1, in0, out;
logic sel1;
// Internal variables

real OPEN_LOG = 27; // log10(open resistance)

real CLOSE_LOG = -4; // log10(close resistance)

real R1_LOG, R1, R0_LOG, R0;

 initial begin
 R1_LOG = OPEN_LOG;
 R0_LOG = CLOSE_LOG;
end

always @(sel1) begin
if (sel1 == 1'b1) begin

 R1_LOG = CLOSE_LOG;
 R0_LOG = OPEN_LOG;

end
else if (sel1 == 1'b0) begin

 R1_LOG = OPEN_LOG;
 R0_LOG = CLOSE_LOG;

end
else begin

 R1_LOG = OPEN_LOG;
 R0_LOG = OPEN_LOG;
 $display(
 "ERROR : %g : %m : Bad logic: sel1 = %1b ",
 $realtime, sel1);

end
end

analog begin
 R1 = exp(transition(R1_LOG, 0.0, 10e-9, 10e-9));
 R0 = exp(transition(R0_LOG, 0.0, 10e-9, 10e-9));
 I(in1, out) <+ V(in1, out) / R1;
 I(in0, out) <+ V(in0, out) / R0;
end

endmodule
__

Listing 3. Three-Pole Switch Model

…
module switch3p (in2, in1, in0, sel, out);
inout in2, in1,in0, out;
input [1:0] sel;
electrical in2, in1,in0, out;
logic [1:0] sel;
real OPEN_LOG = 27; // log10(open resistance)

real CLOSE_LOG = -4; // log10(close resistance)

real R2_LOG, R2, R1_LOG, R1, R0_LOG, R0;

 initial begin
 R2_LOG = OPEN_LOG;
 R1_LOG = OPEN_LOG;
 R0_LOG = CLOSE_LOG;
end

always @(sel) begin
if (sel <= 2'b11) begin
case (sel)

 2'b00: begin
 R2_LOG = OPEN_LOG;
 R1_LOG = OPEN_LOG;
 R0_LOG = CLOSE_LOG;

end
 2'b01: begin
 R2_LOG = OPEN_LOG;
 R1_LOG = CLOSE_LOG;
 R0_LOG = OPEN_LOG;

end
 2'b10: begin
 R2_LOG = CLOSE_LOG;
 R1_LOG = OPEN_LOG;
 R0_LOG = OPEN_LOG;

end
default begin

 R2_LOG = OPEN_LOG;
 R1_LOG = OPEN_LOG;
 R0_LOG = OPEN_LOG;
 $display(
 "ERROR : %g : %m : Illegal value: sel = %2b ",
 $realtime, sel);

end
endcase

end
else begin

 R2_LOG = OPEN_LOG;
 R1_LOG = OPEN_LOG;
 R0_LOG = OPEN_LOG;
 $display(
 "ERROR : %g : %m : Bad logic: sel = %2b ",
 $realtime, sel);

end
end

analog begin
 R2 = exp(transition(R2_LOG, 0.0, 10e-9, 10e-9));
 R1 = exp(transition(R1_LOG, 0.0, 10e-9, 10e-9));
 R0 = exp(transition(R0_LOG, 0.0, 10e-9, 10e-9));
 I(in2, out) <+ V(in2, out) / R2;
 I(in1, out) <+ V(in1, out) / R1;
 I(in0, out) <+ V(in0, out) / R0;
end

endmodule
__

14

__

Listing 4. 8-Bit ADC Model

…
`define NUM_ADC_BITS 8
`define tconv #1
module adc8 (vin, clk, pdn, ibias, vref, vdd, gnd,
dout);
input vin, clk, pdn, ibias, vref vdd gnd;
output [`NUM_ADC_BITS-1:0] dout;
electrical vin, ibias, , vdd, gnd;
logic clk, pdn;
wire [`NUM_ADC_BITS-1:0] dout;

 // Internal Variables
 // For verifying input integrity, pdn control etc.
…
 // ADC Variables
parameter real vmax = 2.2;
parameter real vmin = 0.2;
real sample, vmid, lsb, voffset;
reg [0:`NUM_ADC_BITS-1] vd;
integer i, ii, binvalue;
reg [`NUM_ADC_BITS-1:0] dout_raw;

initial begin
 … input integrity, power etc. initialization
 … step variable initialization
 vmid = (vmax - vmin) / 2.0;
 lsb = (vmax - vmin) / (1 << `NUM_ADC_BITS) ;
 voffset = vmin;

for (i = `NUM_ADC_BITS-1; i >= 0; i = i-1) begin
 vd[i] = 0 ;

end
end

 // I. Power down pin (Also see I.A)
 …
 // II. ADC Action
always @(negedge clk) begin

 binvalue = 0;
 sample = V(vin) - voffset;

for (ii = `NUM_ADC_BITS -1 ; ii>=0 ; ii = ii -1)
begin
 vd[ii] = 1'b0;

if (sample > vmid) begin
 vd[ii] = 1'b1;
 sample = sample - vmid;
 binvalue = binvalue + (1 << ii);

end
else begin

 vd[ii] = 1'b0;
end

 sample = sample * 2.0;
end

 // Complement MSB
 #1 dout_raw[`NUM_ADC_BITS-1] <=
~vd[`NUM_ADC_BITS-1];

for (i = `NUM_ADC_BITS-2; i >= 0; i = i-1) begin
 dout_raw[i] <= vd[i];

end
end
assign dout = dout_raw & ~pdn & all_ok;

 // III. Catch any illegal clock states
always @(clk) begin

 logic_ok[2] = 1'b1;
if (clk <= 1'b1)

 ; // Do nothing

else begin
 logic_ok[2] = 1'b0;
 $display(
 "ERROR : %g : %m : Bad logic: clk = %1b ",
 $realtime, clk);

end
end

 // IV. Monitor vdd (See IV.A)
 …

 // V. Monitor and respond to bias current (See V.A)
 …

 // VI. Monitor and respond to reference voltage
 …
 // VII. Continuously check for errors
…
 analog begin
 // I.A Smooth en_step to en
 …
 // IV.A Assign power supply currents
 …
 // V.A Develop bias current
 …
end

endmodule
__

Listing 5. 7-Bit Current DAC Model

…
module daci7 (dbits, clk, pdn, io, ibias, vref, vdd,
gnd);
input [6:0] dbits;
input clk, pdn, ibias, vref, vdd, gnd;
output io;
logic [6:0] dbits;
logic clk, pdn;
electrical ibias, , vdd, gnd, io;

 // Internal Variables
 // For verifying input integrity, pdn control etc.
…
 // DAC variables
real ilsb, ios, idac, i_ibias, dac_step, dac_scale;

15

Listing 5. 7-Bit Current DAC Model (Cont.)

initial begin
 … input integrity, power etc. initialization
 … step variable initialization
// Level sensitive latch initialization
 #1 ;

if (clk == 1'b1) begin
if (dbits <= 7'b1111111) // i.e. if no x's

 dac_step = dbits;
else // No error messages at startup

 dac_step = 0.0;
end

end // end of initial begin section
 // I. Power down pin (Also see I.A)
 …
 // II. Level sensitive DAC action (See section II.A)
always @ (dbits) begin

 logic_ok[2] = 1'b1;
wait (clk == 1'b1) begin
if (dbits <= 7'b1111111) // i.e. if no x's

 dac_step = dbits;
else begin

 … bad logic response

end
end

 end

 // III. Catch any illegal clock states
…

 // IV. Monitor vdd (See IV.A)
 …
 // V. Monitor bias current and ref. voltage
 …
 // VII. Continuously check for errors
 …
 // VIII. Zero output if error. (Also see I.A)
 …
 analog begin
 // I.A Smooth en_step to en
 …
 // II.A DAC
 //Derive DAC constants from ibias
i_ibias = I(ibias) * 1.0; // Can't use I(ibias) to
calculate
ios = 2.5 * i_ibias;
ilsb = 10.0/(2.0 * 127.0) * i_ibias;
 // DAC action
 dac_scale = transition(dac_step, 0.0, 10e-9, 10e-
9);
 idac = ilsb * dac_scale + ios;
 // P-channel output current
 I(vdd,io) <+ idac * en;
 // IV.A Assign power supply currents
 …
 // V.A Develop bias current
 …
end

endmodule

16

