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ABSTRACT
This paper describes the use of behavioral models to

verify the design of digitally calibrated analog/mixed-

signal systems, too large for either a circuit simulator or a

traditional digital simulator. An important goal of using

models in this way is to reduce the likelihood of human

error resulting in integrated circuit imperfections. A 

specific example of a calibrated gain stage, with a full set 

of behavioral models illustrates the modeling and

simulation approach.

1. INTRODUCTION 
As the size and complexity of integrated circuits

increases, it becomes a critical task to find and eliminate

occurrences of human error in the design and integration

of the constituent subcircuits. This paper is intended to be

a practical discussion of how to create and use behavioral

models to verify mixed analog/digital systems that use

digital signal processing to calibrate the analog signal

path. Behavioral models make it possible to simulate such

a system in its entirety. Without behavioral models, one is

limited to creating a family of overlapping test benches in

an attempt to simulate all of the interfaces.

1.1. Why Calibration 
A trend in integrated circuits is to combine analog and

digital circuitry on the same die. A concurrent trend is to

shrink the dimensions of device geometries for digital

circuitry in order to increase speed as well as to lower

cost by decreasing area. Power supply voltages decrease 

because of physical limitations of the finer geometries as 

well as to decrease power dissipation. Analog design

challenges resulting from these trends include reduced 

headroom and increased susceptibility to noise.

Using open loop analog is a solution to the headroom

problem. A mixed analog/digital calibration system

replaces analog feedback. 

The calibrator converts an analog quantity (voltage, 

current or time interval) to digital and uses it to calculate

some decision criterion. It makes the decision to increase 

or decrease some controlling parameter (voltage, current,

capacitance etc.) to adjust the measured analog quantity.

It applies the amount of increase or decrease digitally by

means of a D/A converter or switch. The calibrator re-

measures the analog quantity of interest and the process

repeats until the measured quantity is within acceptable

limits.

Calibration executes at start up and periodically thereafter

and provides feedbacks that mitigates offset, gain,

frequency, or filter corner frequency errors, reduces drift

with temperature, power supply voltage and aging.

1.2. Why Behavioral Modeling 
Digital calibration of analog circuitry is well known and 

accepted [1-4], but an entire integrated circuit may be 

difficult to verify by simulation. A traditional circuit

simulator might possibly simulate a system comprising

the core analog circuit, A/D converter, signal processing

digital circuitry, D/A converter, and analog switches.

However, a typical calibrated system shares its A/D 

converter and signal processing digital circuitry between

multiple core analog building blocks. It becomes

impractical if not impossible to verify the entire system

with a traditional circuit simulator.

Reducing the likelihood of human error is an important

motivation for using behavioral modeling to verify the

circuit. Errors inevitably occur when there are

opportunities for miscommunication between designers.

In a large design team, especially one that is widely

distributed functionally and geographically, the risk of 

human error is high. In particular, the following is a list of

types of design errors:

1.2.1 Faulty Calibration Algorithm 
There may be a fundamental flaw in the semantics of the

calibration plan. An example of a gross error would be 

failing to power up the target before applying the test
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signal. An example of a subtle error would be a counter

wrapping around to zero on overflow, causing wildly

unexpected results. A simulation platform that allows

runtime-efficient testing of many cases can expose such a 

flaw.

1.2.2 Bus Bit Order Errors
A common miscommunication is reversal of bit ordering.

A digital subcircuit may produce output DATA [7:0], and

the analog destination expects DATA [1:8]. Human errors 

occur despite the best intentions and diligence,

methodology documents, design rules, checklists and 

daylong public design reviews.

1.2.3 Digital Control Signal Polarity Errors 
Another miscommunication error is polarity reversal.

Confusion can result between the meaning of enable and

power-down signals, and their active-high and active-low

nature. Again, failures occur despite rules and safeguards. 

1.2.4 Digital Signal Integrity Errors 
Timing violations in digital circuitry such as setup time or 

hold time can result in inconsistent states on signals

passed to an analog circuit. These can be a nightmare to 

debug in the field or laboratory because errors can appear 

at only certain clock rates, power supplies or

temperatures. Using a reasonably pessimistic digital

simulator will catch timing violations, with either static 

timing analysis or transient analysis. Errors can occur 

when the complete set of digital verifications are not

performed on a block of digital circuitry appearing in a 

mixed-signal schematic.

1.2.5 Bias Current Errors 
Different team members may design the analog signal

path and its bias generator. A common

miscommunication error occurs when the signal path

designer assumes the wrong current polarity, or

magnitude. Another type of error occurs when multiple

designers inadvertently connect to the same bias current

source.

1.2.6 Reference Voltage Errors 
Similarly, a designer may connect to a different reference 

voltage than intended. Another error scenario occurs

when a designer attempts to draw current from an un-

buffered voltage reference. 

To solve these problems, this paper describes modeling

strategies and provides Verilog-AMS examples that can

expose these types of faults.

The remainder of this paper comprises three sections.

Section 2 presents an ideal analog gain stage with digital

calibration and describes its constituent blocks. Section 3

begins by describing the AMS models representing the

subcircuits of the calibrated gain stage, referring to the

model listings in the appendix. Section 3 also discusses

how the models overcome certain difficulties with the

AMS simulator, and gives suggestions for using multiple

model views of circuit blocks for flexible use in

verification. Section 4 concludes with a summary of how 

the models address each of the error modes listed in 

section 1.2. The appendix is a code listing of the AMS

models, somewhat condensed for space. 

2. A CALIBRATED ANALOG CIRCUIT 
An example of a digitally calibrated gain stage is in Figure

1. This fictional system is not practical or realizable as 

shown, but is a useful vehicle to demonstrate modeling

techniques.

The circuit comprises

An amplifier with digitally controlled coarse

gain, current controlled fine gain, current

controlled offset, and other digital features

An analog multiplexer to select normal input or 

calibration voltage input

An analog switch to connect or not connect the

signal output to the ADC input multiplexer

An ADC with multiplexed input 

Digital signal processing logic controls all the

switches and multiplexers, the ADC and the

DACs, and generate the DAC words. 

DACs to create the gain control and offset 

control currents and a DAC to create the

calibration test voltage.

Figure 1: A digitally calibrated analog gain stage. 

In normal operation, the signal path is from Signal_in

through the amplifier to Signal_out, with the I_Gain and 

I_Offset DACs operating, and the ADC and the V_Cal

DAC powered down. As illustrated in Figure 1 the gain
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stage is in calibration mode. The amplifier input connects 

to V_Cal, and Signal_out connects to the ADC. 

For verification simulations, the CONTROL subcircuit 

may be represented by either behavioral or RTL Verilog 

models or gate level netlists, with or without parasitics. 

Verilog AMS models represent the amplifier, analog 

switches, ADC and DAC. 

3. AMS MODELS AND DESCRIPTIONS 
Verilog AMS models for the amplifier, switches, ADC 

and DACs, somewhat abridged, are listed in the appendix. 

This section presents and discusses the models. 

3.1 Model Overviews 
This section describes each of the models. The 

documentation found in [5] is an excellent reference for 

further understanding the modeling approach and code 

syntax.

3.1.1 Amplifier 
The complete Verilog-AMS model for the amplifier 

shown at the top of Figure 1 is in Listing 1 in the 

Appendix. The device is off when input pdn is low. Two 

dgain bits control coarse gain. Currents i_gain and 

i_offset calibrate fine gain and offset. The frequency 

compensation requirement is different for certain settings 

of dgain under control of the dcomp bit. A 2.5 Volt power 

supply, 15-uA bias current and 0.6-V reference are 

required. In the “initial begin” section the compiler 

directive variable cal_sim controls the use of gain and 

offset errors. 

 “// I Power down pin…” defines behavior for states 1 

(real en_step = 1.0) and 0 (en_step = 0.0) of the pdn 

input, and also defines behavior in case of error 

conditions when pdn = X or Z, providing coverage for 

error mode 1.2.4 “digital signal integrity”. The bus 

variable logic_ok has bits to monitor the integrity of 

every digital input. Skipping ahead to segment “// I.A” in 

the analog section, the discontinuous product “en_step * 

noFault_step” gets smoothed by the transition function 

into the continuous real variable en, which scales the 

output to zero when powered down or when there’s a 

power supply, bias or logic fault. 

Regarding transition(), sometimes you can get away 

without smoothing when the testbench is small and the 

transient simulation is short. The likelihood of analog 

convergence errors increases with the size of the circuit 

under test – as does the difficulty in finding and fixing the 

cause of non-convergence.

Secondly, a real variable changing in the digital section of 

an AMS model does not necessarily trigger an analog 

solution point. In a short transient simulation, the max 

timestep sometimes will camouflage the time interval 

between the digital real variable change and its effect in 

the analog environment. Use of the transition filter 

explicitly defines an analog solution point 

“// II. Digitally controlled nominal gain…” defines the 

nominal amplifier gain. The case statement includes all 

legal values of dgain and the default detects signal 

integrity faults. The ngain_step is smoothed to ngain in 

the analog section. 

 “ //III. Digitally controlled compensation for low gain”
The effect of frequency compensation is not easy to 

model behaviorally, and if one did model its effect, the 

model would not convey verification information in a 

useful format. A better approach is to design and simulate 

the amplifier using the circuit simulator, then knowing the 

effect of the dcomp input when properly programmed, 

verify the controllability and integrity of dcomp. 

Whenever dcomp changes, an INFO message displays the 

value of dcomp. If there is a dcomp fault, the model 

displays an ERROR message and shuts down the 

amplifier. Shutting down the amplifier because the 

compensation control bit is floating may not be physically 

accurate but the objective here is to call attention to a 

connectivity fault. 

 “ // IV. Monitor vdd”
Two instances of the “@(above…)” function trigger if 

the power supply is over or under 2.4 V at time zero, or if 

the power supply crosses 2.4 V at any time in the 

simulation. Power supply greater than 2.4 V sets 

power_ok and allows normal operation. Two more 

instances of “@(above…)” could add an upper limit to 

the power supply. One may check connectivity to ground 

in the same way. Skip ahead to “// IV.A” in the analog 

section. The vdd pin terminates resistively to gnd and a 

power supply current is assigned when powered up. A 

collection of AMS models written in this manner can help 

tally total power supply current under various operating 

modes. Measure currents with the circuit simulator and 

assign currents in the AMS model. 

“ // V. Monitor bias current”
Two instances of the “@(above…)” function trigger if 

the bias current is not within tolerance, and set the 

corresponding bit of the bias_ok variable. Incorrect 

current will clear the bias_ok bit, causing the output to 

shut down and the display of an ERROR message. The 

currents terminate through an arbitrary 100 Ohms to gnd 

in the analog section.
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“ // VII. Continuously check for errors”
Variable all_ok is the logical AND of the power, bias and 

logic integrity monitor variables, and controls the real 

variable noFault_step.

“ // analog begin”
With the AMS simulator, all currents and voltages 

terminate to ground by default (through minimum 

resistance or conductance) if not explicitly terminated. In 

this model, i_gain and i_offset are explicitly, if arbitrarily, 

terminated to gnd through 100 Ohms. Factors are 

calculated to correct gains from 0.98 to 1.02 V/V, and 

offsets from -20 to 20 mV. After calibration, effective 

gain approaches nominal gain and effective offset 

approaches zero. 

This model modifies the ideal linear gain equation (after 

gain and offset errors and corrections) to allow for hard 

limiting to vdd and gnd, bandwidth limiting to an 

arbitrarily selected bandwidth of 1 GHz, and 100 Ohms 

output impedance (1 GOHM output impedance when 

powered down). 

3.1.2 Two-Pole Switch 
The Verilog-AMS model (abridged for space) for the 

two-pole switch at the input of the amplifier in Figure 1 is 

in Listing 2 in the Appendix. When sel1 (select 1) is low, 

there is a low impedance path between in0 and out, and a 

high impedance between in1 and out. When sel1 is high, 

in1 connects to out with low impedance. 

The model checks the signal integrity of sel1, and both 

paths are high impedance if there is a fault. Power and 

ground connections do not appear in this model for the 

sake of brevity.

The modeling strategy for this idealized model is to make 

the switch resistance either the maximum or the minimum 

resistance for Verilog AMS, and to exponentially 

transition between the base-10 logarithms of these 

extremes. This approach allows continuous, fast 

transitions without convergence problems. 

3.1.3 One-Pole Switch 
The model listing for the single-pole switch between 

Signal_out and the ADC does not appear in the appendix 

for brevity. It uses the same strategy as used in the two-

pole model. That is, “enable” controls the impedance 

between in and out. 

3.1.4 Three-Pole Switch 
Figure 1 shows a three to one multiplexer connecting to 

the ADC, but there may be significantly more inputs in a 

typical calibrated analog system. A model for a three-pole 

switch is in Listing 3. The model uses the same controlled 

impedance approach as the previous two switches. The 

model listing is included in appendix because it illustrates 

a different type of error verification. Two control bits are 

enough to control four inputs, but there are only three. 

The case statement will flag an error if sel = 1’b11, 

separate from the signal integrity check that sel <= 2’b11. 

3.1.5 ADC 
Listing four is an abridged model of an ideal ADC. 

Comments replace segments of code previously 

discussed. The A/D conversion code executes totally in 

the digital section of the model. 

3.1.6 Current and Voltage DACs 
Listing five is an abridged model of a current output DAC 

with level sensitive digital input. Notice the clock level 

evaluation code in the “initial begin” section. This is 

necessary for accurate level sensitive switch modeling. As 

in the gain_stage model, the real variables are set 

according to the digital word in the digital domain, and a 

transition function in the analog domain drives the output. 

With a level sensitive DAC, the output will follow the 

digital input if it changes while the clock is high, and will 

wait for a high clock level if the digital inputs change 

while the clock is low. The code for a voltage-output 

DAC is similar. 

3.2 Difficulties Overcome 

3.2.1 Digital/Analog Simulator Control Sharing 
The Verilog-AMS simulator uses a continuous-time 

analog simulation engine as well as an event-driven 

discrete-time digital simulation engine. Controlling and 

maintaining communication between the two simulators 

presents a difficulty overcome by these models. The 

method described above of using a “_step” variable to 

trigger an analog evaluation from a digital event provides 

a communication path from the digital solver to the 

analog solver. Conversely, triggering a digital even from 

the analog domain is done using the “@(above…) 

function shown in the gain_stage model and description. 

3.2.2 Wide Frequency Difference 
In normal operation, the analog signal path may be high 

frequency, but operate at nearly DC during calibration 

mode. This puts another demand on the simulator, in 

controlling the maximum time step between analog 

evaluations. Using the “_step” variables and transition() 

and @(above…) functions overcomes this difficulty by 

explicitly setting evaluation points. 

3.3 Simpler Model Versions or Views 
It is possible to have several levels of model detail 

available for each block. The listings in the appendix 
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correspond to the most detailed view, used to verify 

control and calibration of the analog signal path. 

In a larger system, the digital circuitry downstream from 

the analog front end may be ready for verification before 

the analog front-end design is complete. Owners of the 

downstream digital circuitry may have no design or 

verification responsibility for the analog blocks or their 

calibration, but use the analog blocks as part of their test 

platform. Such users may substitute a simpler model 

view, in which nominal analog performance takes place 

as if after successful calibration. 

One approach to accommodating the need for simpler 

models is to maintain multiple model views of the analog 

blocks, using a tool such as the Cadence Hierarchy Editor 

to assemble a test platform with the desired level of detail. 

Another approach uses a single edition of the model 

source code, but delineates the more detailed model code 

between `ifdef, `elseif and `endif compiler directives. 

4. CONCLUSIONS 
These models can identify all six classes of design flaw. 

This section reviews the error modes listed in sections 

1.2.1 to 1.2.6, pointing out how the models expose these 

types of errors. 

4.1 Faulty Calibration Algorithm 
If calibration never takes place because of a gross error 

such as failure to power-up, or some other sequencing 

fault in the algorithm, the gain and offset errors would 

still be evident in Signal_out. Simulating calibration with 

several sets of initial errors of both polarities, and both 

small and extreme magnitude are necessary. For 

completeness, also try error magnitudes too large for 

complete correction and ensure the calibration routine 

fails “gracefully”. Try with zero error too, making sure 

the calibration routine does not degrade a perfect 

situation.

4. 2 Bus Bit Order Errors 
The modeling strategy makes it straightforward to expose 

any bus bit order errors. For instance, reversal of the 

dgain input bits to the gain_stage causes the amplitude of 

Signal_out to be different from the expected. Behaviors 

depending on bit ordering appear in each model. 

4. 3 Digital Control Signal Polarity Errors 
Behaviors depending on digital control signal polarity are 

part of each model. Verify by comparing observed output 

to the expected output. In the case of the dcomp input to 

gain_stage, the INFO message in the log file will show if 

the resulting block input has the expected polarity. 

4.4 Digital Signal Integrity Errors 
Digital integrity errors show up in the simulation log file 

and stop normal simulation output. All the models are 

written such that logic input faults become evident.  

4.5 Bias Current Errors 
The models do not allow incorrect bias current levels or 

polarities. Whenever the current is outside of limits, the 

model shuts down and an ERROR message indicates the 

incorrect bias. 

4.6 Reference Voltage Errors 
In the same manner, the models do not allow incorrect 

voltage references without shutting down and displaying 

an ERROR message. Drawing current from a reference 

with a source resistance causes a voltage drop, which is 

detectable.
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APPENDIX: Verilog-AMS Models 

______________________________________________

Listing 1. Amplifier Model 

`include "constants.vams" 
`include "disciplines.vams" 
module gain_stage (vin, pdn, dgain, dcomp, i_gain, 
i_offset, ibias, vref, vdd, gnd, vout); 
input vin, pdn, dgain, dcomp, i_gain, i_offset, ibias, 

vref, vdd, gnd; 
input  [1:0] dgain; 
electrical ibias, , i_gain, i_offset, vin, vout,  vdd, 

gnd;
logic [1:0] dgain; 
logic pdn, dcomp; 

    // Nominal gain from digital control 
real ngain_step, ngain; 

    // Arbitrary errors to test calibration 
real gain_err, os_err; 

    // Correction factors from calibration 
real gain_corr, os_corr; 

    // Effective gain and offset 
real egain, eos; 

    // For power down control 
real en_step, en; 

    // For verifying input integrity
reg power_ok; 
reg [1:2] bias_ok; 
reg [1:3] logic_ok; 
wire all_ok; 
real noFault_step; 

    // Internal versions of the output 
electrical out_raw, out_clip, out_bw;
real BW, ROUT; 

  initial begin
    power_ok = 1'b1; 
    bias_ok = 2'b11; 
    logic_ok = 3'b111; 
      // All step variables passed to transition filter 
      // must be initialized 
    noFault_step = 1.0; 
    en_step = 0.0; 
    ngain_step = 1.0; 
    BW = 2 * 3.414 * 1e9; 
    `ifdef cal_sim   // If running calibration test
      gain_err = 1.01; // 1% arbitrary gain error
      os_err = 0.01;  // 10 mV arbitrary offset error
    `else      // No errors otherwise
      gain_err = 1.0; 
      os_err = 0.0; 
    `endif 
end       // end of initial begin section

 //  I. Power down pin  (Also see I.A) 
always @(pdn) begin

    logic_ok[1] = 1'b1; 
if (pdn == 1'b1) 

      en_step = 1.0; 
else if (pdn == 1'b0) 

      en_step = 0.0; 
else begin    // React to fault condition on 

pdn
      en_step = 0.0; 
      logic_ok[1] = 1'b0; 
        $display( 
          "ERROR : %g : %m : Bad logic: pdn = %1b ", 
        $realtime, pdn); 

end
end

  // II. Digitally controlled nominal gain: ngain 
  // Here assigned as step, smoothed in analog 
  // section with transition filter. (See II.A)
always @(dgain) begin

    logic_ok[2] = 1'b1; 
case (dgain) 

      2'b00: ngain_step = 1.0; 
      2'b01: ngain_step = 2.0; 
      2'b10: ngain_step = 4.0; 
      2'b11: ngain_step = 8.0; 

default begin // Fault condition on dgain bits
        logic_ok[2] = 1'b0; 
        ngain_step = 1.0; 
          $display( 
         "ERROR : %g : %m : Bad logic: dgain = %2b ", 
          $realtime, dgain); 

end
endcase

end
  // III. Digitally controlled compensation for low 
gain
  // Behavior is too subtle to model physically 
  // Verify path connectivity with INFO messages  
always @(dcomp) begin

    logic_ok[3] = 1'b1; 
if (dcomp <= 1'b1) begin

      $display( 
"INFO : %g : %m : You have written: dcomp = %1b 
",
      $realtime, dcomp); 

end
else begin 

      logic_ok[3] = 1'b0; 
      $display( 
       "ERROR : %g : %m : Bad logic: dcomp = %1b ", 
      $realtime, dcomp); 

end
end
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Listing 1. Amplifier Model (Cont.) 

// IV. Monitor vdd (See IV.A)
always @(above (V(vdd) - 2.4)) begin

    power_ok = 1'b1; 
      $display ( 
        "INFO : %g : %m : VDD ON. vdd = %g", 
      $realtime,V(vdd)); 
end
always @(above (2.4 - V(vdd))) begin

    power_ok = 1'b0; 
      $display ( 
        "INFO : %g : %m : VDD OFF. vdd = %g", 
      $realtime, V(vdd)); 
end

  // V. Monitor bias current (See V.A) 
always @(above(abs(V(ibias) - 1.5e-3) - 0.1e-3)) 

// |err| > tol.
    bias_ok[1] = 1'b0; 
always @(above(0.1e-3 - abs(V(ibias) - 1.5e-3))) 

// |err| < tol.
    bias_ok[1] = 1'b1; 
  // Respond to incorrect current 
always @(negedge bias_ok[1]) begin
if (bias_ok[1] == 1'b0) 

      $display( 
  "ERROR : %g : %m : Bad bias current: ibias = %g", 
      $realtime, V(ibias)/100.0); 
end

  // VI. Monitor reference voltage 
  // Expected voltage is 0.6 +/- 0.03 
       // When  |err| > tolerance: 
always @(above(abs(V(vref) - 0.6) - 0.03)) 

     bias_ok[2] = 1'b0; 
// When  |err| < tolerance: 

always @(above(0.03 - abs(V(vref) - 0.6)))   
     bias_ok[2] = 1'b1; 
  // Respond to incorrect voltage 
always @(negedge bias_ok[2]) begin
if (bias_ok[2] == 1'b0) 

      $display( 
"ERROR : %g : %m : Bad ref. voltage: vref = %g", 
      $realtime, V(vref)); 
end

    // VII. Continuously check for errors 
assign all_ok = & {power_ok, bias_ok, logic_ok}; 

    // VIII. If no errors... (Also see I.A) 
always @(all_ok) begin
if (all_ok == 1'b1) noFault_step = 1.0; 
else noFault_step = 0.0; 

end

analog begin
    // I.A Continuous scale factor disables the output 
    // when powered down or during a fault condition 
  en = transition(en_step * noFault_step, 0.0, 1n, 
1n);

    // II.A Smooth steps on ngain  
    ngain = transition(ngain_step, 0.0, 1n, 1n); 
    // Terminate i_gain and i_offset 
    V(i_gain) <+ I(i_gain) * 100.0; 
    V(i_offset) <+ I(i_offset) * 100.0; 
    // Develop correction factors 
 gain_corr = I(i_gain) * 4e3 + 0.96; // 0.98 to 1.02 
V/V
 os_corr = I(i_offset) * 4e3 - 0.04; // -20 to 20 mV 
   // Effective gain: nominal gain, error and correction 
    egain = ngain * gain_err * gain_corr; 
    // Effective offset, including error and correction 
    eos = os_err + os_corr; 

    // Signal path:  Linear gain equation 
    V(out_raw) <+ (V(vin) * egain + eos) * en; 
    // Hard limit to ground and power supply 

if (V(out_raw) > V(vdd)) 
      V(out_clip) <+ V(vdd); 

else if (V(out_raw) < V(gnd)) 
      V(out_clip) <+ V(gnd); 

else
      V(out_clip) <+ V(out_raw); 
    // Bandwidth limited 
    V(out_bw) <+ (V(out_clip)-ddt(V(out_bw)/BW));
    // Output resistance 
    ROUT = 100 * (1.0 - en) * 1e9; 
    // Final output 
    I(vout, out_bw) <+ V(vout, out_bw) / ROUT; 

 // IV.A  Typical power supply currents from circuit 
 // simulation. Assigned here as a "book keeping" 
aid.
 // 1 nA leakage plus 1 mA when enabled 
    I(vdd, gnd) <+ V(vdd, gnd) / 2.5e9 + 1e-3 * en; 

 // V.A Develop bias current voltage over 100 Ohms 
    V(ibias) <+ I(ibias) * 100.0; 

end // end of analog begin

endmodule
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______________________________________________

Listing 2. Two-Pole Switch Model 

module switch2p ( in1, in0, sel1, out); 
inout in1, in0, out; 
input sel1; 
electrical in1, in0, out; 
logic sel1; 
// Internal variables

real OPEN_LOG = 27; // log10(open resistance)

real CLOSE_LOG = -4;  // log10(close resistance)

real R1_LOG, R1, R0_LOG, R0; 

  initial begin
    R1_LOG = OPEN_LOG; 
    R0_LOG = CLOSE_LOG; 
end

always @(sel1) begin
if (sel1 == 1'b1) begin

      R1_LOG = CLOSE_LOG; 
      R0_LOG = OPEN_LOG; 

end
else if (sel1 == 1'b0) begin

      R1_LOG = OPEN_LOG; 
      R0_LOG = CLOSE_LOG; 

end
else begin 

      R1_LOG = OPEN_LOG; 
      R0_LOG = OPEN_LOG; 
      $display( 
        "ERROR : %g : %m : Bad logic: sel1 = %1b ", 
      $realtime, sel1); 

end
end

analog begin 
    R1 = exp(transition(R1_LOG, 0.0, 10e-9, 10e-9)); 
    R0 = exp(transition(R0_LOG, 0.0, 10e-9, 10e-9)); 
    I(in1, out) <+ V(in1, out) / R1; 
    I(in0, out) <+ V(in0, out) / R0; 
end

endmodule
______________________________________________

Listing 3. Three-Pole Switch Model 

…
module switch3p  ( in2, in1, in0, sel, out); 
inout in2, in1,in0, out; 
input [1:0] sel; 
electrical in2, in1,in0, out; 
logic [1:0] sel; 
real OPEN_LOG = 27; // log10(open resistance)

real CLOSE_LOG = -4; // log10(close resistance)

real R2_LOG, R2, R1_LOG, R1, R0_LOG, R0; 

 initial begin
    R2_LOG = OPEN_LOG; 
    R1_LOG = OPEN_LOG; 
    R0_LOG = CLOSE_LOG; 
end

always @(sel) begin
if (sel <= 2'b11) begin
case (sel) 

        2'b00: begin
          R2_LOG = OPEN_LOG; 
          R1_LOG = OPEN_LOG; 
          R0_LOG = CLOSE_LOG; 

end
        2'b01: begin
          R2_LOG = OPEN_LOG; 
          R1_LOG = CLOSE_LOG; 
          R0_LOG = OPEN_LOG; 

end
        2'b10: begin
          R2_LOG = CLOSE_LOG; 
          R1_LOG = OPEN_LOG; 
          R0_LOG = OPEN_LOG; 

end
default begin

          R2_LOG = OPEN_LOG; 
          R1_LOG = OPEN_LOG; 
          R0_LOG = OPEN_LOG; 
          $display( 
         "ERROR : %g : %m : Illegal value: sel = %2b ", 
          $realtime, sel); 

end
endcase

end
else begin 

      R2_LOG = OPEN_LOG; 
      R1_LOG = OPEN_LOG; 
      R0_LOG = OPEN_LOG; 
      $display( 
        "ERROR : %g : %m : Bad logic: sel = %2b ", 
      $realtime, sel); 

end
end

analog begin
    R2 = exp(transition(R2_LOG, 0.0, 10e-9, 10e-9)); 
    R1 = exp(transition(R1_LOG, 0.0, 10e-9, 10e-9)); 
    R0 = exp(transition(R0_LOG, 0.0, 10e-9, 10e-9)); 
    I(in2, out) <+ V(in2, out) / R2; 
    I(in1, out) <+ V(in1, out) / R1; 
    I(in0, out) <+ V(in0, out) / R0; 
end

endmodule
______________________________________________
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______________________________________________

Listing 4.  8-Bit ADC Model 

…
`define NUM_ADC_BITS   8 
`define tconv #1 
module adc8 (vin, clk, pdn, ibias, vref, vdd, gnd, 
dout);
input vin, clk, pdn, ibias, vref  vdd  gnd; 
output  [`NUM_ADC_BITS-1:0] dout; 
electrical vin, ibias, , vdd, gnd; 
logic clk, pdn; 
wire [`NUM_ADC_BITS-1:0] dout; 

  // Internal Variables 
    // For verifying input integrity, pdn control etc. 
…
    // ADC Variables 
parameter real  vmax = 2.2; 
parameter real  vmin = 0.2; 
real sample, vmid, lsb, voffset; 
reg [0:`NUM_ADC_BITS-1] vd; 
integer i, ii, binvalue; 
reg [`NUM_ADC_BITS-1:0] dout_raw; 

initial begin 
    … input integrity, power etc. initialization 
    … step variable initialization 
    vmid = (vmax - vmin) / 2.0; 
    lsb  = (vmax - vmin) / (1 << `NUM_ADC_BITS) ; 
    voffset = vmin; 

for (i = `NUM_ADC_BITS-1; i >= 0; i = i-1) begin
      vd[i] = 0 ; 

end
end

  // I. Power down pin  (Also see I.A) 
  … 
  // II. ADC Action 
always @(negedge clk) begin

    binvalue = 0; 
    sample = V(vin) - voffset; 

for ( ii = `NUM_ADC_BITS -1 ; ii>=0 ; ii = ii -1 ) 
begin
      vd[ii] = 1'b0; 

if (sample > vmid ) begin
        vd[ii] = 1'b1; 
        sample = sample - vmid; 
        binvalue = binvalue + ( 1 << ii ); 

end
else begin 

       vd[ii] = 1'b0; 
end

      sample = sample * 2.0; 
end

 // Complement MSB 
    #1 dout_raw[`NUM_ADC_BITS-1]  <=
~vd[`NUM_ADC_BITS-1];

for (i = `NUM_ADC_BITS-2; i >= 0; i = i-1) begin
         dout_raw[i]  <=   vd[i]; 

end
end
assign dout = dout_raw & ~pdn & all_ok; 

 // III. Catch any illegal clock states 
always @(clk) begin

    logic_ok[2] = 1'b1; 
if (clk <= 1'b1)

      ; // Do nothing

else begin 
      logic_ok[2] = 1'b0; 
      $display( 
        "ERROR : %g : %m : Bad logic: clk = %1b ", 
      $realtime, clk); 

end
end

   // IV. Monitor vdd (See IV.A) 
  … 

  // V. Monitor and respond to bias current (See V.A) 
  … 

  // VI. Monitor and respond to reference voltage 
 … 
  // VII. Continuously check for errors 
…
  analog begin
    // I.A Smooth en_step to en 
    … 
    // IV.A  Assign power supply currents
    … 
    // V.A Develop bias current 
   …
end

endmodule
______________________________________________

Listing 5.  7-Bit Current DAC Model 

…
module daci7 (dbits, clk, pdn, io, ibias, vref, vdd, 
gnd);
input  [6:0] dbits; 
input clk, pdn, ibias, vref, vdd, gnd; 
output io; 
logic  [6:0] dbits; 
logic clk, pdn; 
electrical ibias, , vdd, gnd, io; 

  // Internal Variables 
    // For verifying input integrity, pdn control etc. 
…
    // DAC variables 
real ilsb, ios, idac, i_ibias, dac_step, dac_scale; 
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Listing 5.  7-Bit Current DAC Model (Cont.) 

initial begin 
    … input integrity, power etc. initialization 
    … step variable initialization 
// Level sensitive latch initialization 
    #1 ; 

if (clk == 1'b1) begin
if (dbits <= 7'b1111111) // i.e. if no x's 

        dac_step = dbits; 
else // No error messages at startup

        dac_step = 0.0; 
end

end // end of initial begin section 
  // I. Power down pin  (Also see I.A) 
  … 
  // II. Level sensitive DAC action (See section II.A) 
always @ (dbits) begin

    logic_ok[2] = 1'b1; 
wait (clk == 1'b1) begin
if (dbits <= 7'b1111111) // i.e. if no x's

        dac_step = dbits; 
else begin 

        … bad logic response 

end
end

  end 

 // III. Catch any illegal clock states 
…

  // IV. Monitor vdd (See IV.A) 
     … 
  // V. Monitor bias current and ref. voltage 
     … 
  // VII. Continuously check for errors 
      … 
  // VIII. Zero output if error. (Also see I.A) 
      … 
  analog begin
    // I.A Smooth en_step to en 
    … 
    // II.A DAC
      //Derive DAC constants from ibias 
i_ibias = I(ibias) * 1.0; // Can't use I(ibias) to 
calculate
ios = 2.5 * i_ibias; 
ilsb = 10.0/(2.0 * 127.0) * i_ibias; 
      // DAC action 
  dac_scale = transition(dac_step, 0.0, 10e-9, 10e-
9);
  idac = ilsb * dac_scale + ios; 
      // P-channel output current 
  I(vdd,io) <+ idac * en;
    // IV.A  Assign power supply currents
    … 
    // V.A Develop bias current 
   …
end

endmodule
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