Electronic Systems Design Group

BMAS, San Jose, 14-15 Sep 2006

Behavioral-level performance modeling of analog and mixed-signal system using support vector machines

Xianqiang Ren and Tom J Kazmierski University of Southampton, UK {xr03r,tjk}@ecs.soton.ac.uk

School of Electronics and Computer Science

Introduction

Selection of the performance modeling method is one of the key elements in AMS synthesis

- Fuzzy logic and neural network method
- Symbolic method
- Simulation-based methods

School of Electronics and Computer Science

Introduction

An SVM-based approach has been introduced recently

- An alternative to fuzzy-logic and neural networks
- Limited to classical 'good-bad' analysis
- Full space regression model construction

School of Electronics and Computer Science

Support vector machines

•Structured risk minimization: considers both training errors and separation hyperplane

Right choice of the kernel function can simplify the computational

cost of SVM.

1: Linear Kernel: $k(x, x') = \vec{x} \cdot \vec{x}$ 2: Polynomial Kernel: $k(x, x') = (\gamma \vec{x} \cdot \vec{x}' + r)^d$ 3: Radial Basis Function Kernel (RBF): $k(x, x') = exp(-\gamma ||\vec{x} - \vec{x}'||^2), \gamma > 0$ 4: Sigmoid Kernel: $k(x, x') = tanh(\gamma \vec{x} \cdot \vec{x}' + r)$

School of Electronics and Computer Science

Support vector machines

Compared to traditional neural network models, SVM models have:

- Superior generalization capability
- Higher execution speed

However, suitable modeling techniques are essential to utilise the potential offered by SVMs.

School of Electronics and Computer Science

Linearly graded performance models

- To provide effective and accurate modeling of AMS systems
- Partition the entire performance space into subspaces
- Construct regression models of each sub-space

Reduces the complexity of performance space exploration.

School of Electronics and Computer Science

15/09/2006

Linearly graded performance models

• Design space

each design parameter represents a dimension

Performance space

each performance parameter represents a dimension

Grading

Each performance parameter is automatically graded into sub-ranges. Combined sub-ranges form hypercubes in the performance space and are linked with corresponding subspaces in the design space.

School of Electronics and Computer Science

Linearly graded performance models

Classification training

uses points in the design space and their corresponding classes

Regression training

uses points in the design and performance spaces and their corresponding classes

Grouped models

each performance parameter has a set of models including the classification models for classes and the regression models for each of the class

School of Electronics and Computer Science University of Southampton, UK

Model construction process

Major operations

simulation grading training testing

- Balanced Data
 Grading (BDG)
 algorithm
- •Training algorithm

School of Electronics and Computer Science

Model construction process

Grading with the BDG algorithm

- Grading along a parameter dimension with approximately similar amount of data material in the performance space
- Algorithm avoids sparse or over-concentrated distributions of data

The process starts with the user provided grading requirements and calculates balanced grading vectors;

School of Electronics and Computer Science

Performance model construction process

SVM training: construction of the models

Grid search

coarse grid search (CGS) with low grid resolution refined grid search (RGS) with high grid resolution - to enhance the model construction efficiency

- Cross-validation
 - to enhance accuracy and generality (occurs also in neural networks)

Testing: validation of the models

School of Electronics and Computer Science

Results - kernel comparison

SVM method	Sample parameters	Linear kernel	RBF kernel	Sigmoid kernel
Classification	Stability - accuracy	82.98%	99.58%	99.05%
	Stability - CPU time	16:48:09	00:34:17	08:22:00
	SNR - accuracy	82.01%	98.77%	98.22%
	SNR - CPU time	22:30:40	00:53:54	17:13:37
Regression	SNR- CPU time	02:48:31	31:49:49	17:13:37
School of Electronics and Computer Science		· · · · · ·	University of	Southampton, UK 🐰

15/09/2006

J∮Ð

DR_55.2 SNR_58.3 SNR 45 DR 45 -11 f -11 -3 -12 -12 - 4 CGS RGS RGS RGS CGS RGS -5 -13 -13-43 NT1_0.41 -48^{INT1_0.29} INT1 0.35 INT1 0.5 -41 - 44 - 45 -44 -42 CG S RG S СGS RGS CGS RGS -45 RGS -43 l CGS - 46 -37^{IN T 2_0.56} NT2_0.71 INT2_0.84 INT2_1.5 -38 -23 - 38 - 39 -39 -24 CGS RGS CGS RGS cds RGS -40 - 40 -25 CG RG RGS CGS 49:24:57 66:52:47 Total tim e

-40

Computational cost

50:08:50 (classification) 49:27:57 (regression CGS) 190:44:11 (CGS only)

0.56 0.71 0.84

0.35

Approach Linearly graded

Full-space analysis

0.29

-50

School of Electronics and Computer Science

University of Southampton, UK

Results - testing

Parameter		Testing1	Testing2
SNR	Classification accuracy	66.72%	78.73%
DR		74.5%	62.7%
INT1		87.7%	97.1%
INT2		78%	99.6%
Stability		98.4%	100%
SNR_55.3	Regression accuracy (mean squared error dB)	-5	-26
SNR_45		-	-
DR_55.2		-11	-6
DR_45		-	-5
INT1_0.29		-	-29
INT1_0.35		-43	-47
INT1_0.41		-37	-50
INT1_0.5		-38	-
INT2_0.56		-28	-20
INT2_0.71		-28	-29
INT2_0.84		-26	-
INT2_1.5		-14	-
of Electronics			acity of Courthematon 11

School of Electronics and Computer Science

University of Southampton, UK

Conclusion and further work

- A new concept for performance analysis has been introduced: linearly graded performance models
- A suitable modeling process has been developed
- Demonstrated by a case study of a difficult AMS system: 2nd order SDM.
- AMS performance optimization is possible next step towards a general AMS synthesis system.
- More work needed on grading algorithms
- More work to explore the trade-off between model construction computational cost and prediction accuracy

School of Electronics and Computer Science