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Introduction \—‘

Selection of the performance modeling method is one of the
key elements in AMS synthesis

* Fuzzy logic and neural network method

»+ Symbolic method

- Simulation-based methods
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Introduction \—‘

An SVM-based approach has been introduced recently

» An alternative to fuzzy-logic and neural networks
- Limited to classical 'good-bad’ analysis

* Full space regression model construction
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Support vector machines \—‘

Structured risk minimization: considers both training errors and

separation hyperplane

* Right choice of the kernel function can simplify the computational

cost of SVM.
1: Linear Kernel: k(z,2 ) =77
2: Polynomial Kernel: k(x, :rf) = (yZ - 7 o+ r)?
3: Radial Basis Function Kernel (RBF):
(z,0') = eap(—17 = T ||*),7 > 0
4: Sigmoid Kernel: k(z, :r.f) = tanh(yZ - 7 + )
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Support vector machines \—‘

Compared to traditional neural network models, SVM models
have:

» Superior generalization capability

» Higher execution speed

However, suitable modeling techniques are essential to
utilise the potential offered by SVMs.
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Linearly graded performance models \—‘

To provide effective and accurate modeling of AMS systems

* Partition the entire performance space into sub-

spaces

» Construct regression models of each sub-space
Reduces the complexity of performance space exploration.
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Linearly graded performance models
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Linearly graded performance models

- Design space

each design parameter represents a dimension

* Performance space

each performance parameter represents a dimension

* G6rading

Each performance parameter is automatically graded into sub-ranges.
Combined sub-ranges form hypercubes in the performance space and
are linked with corresponding subspaces in the design space.
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Linearly graded performance models
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Linearly graded performance models \—‘

+ Classification training

uses points in the design space and their corresponding classes

- Regression training

uses points in the design and performance spaces and their
corresponding classes

* Grouped models

each performance parameter has a set of models including the
classification models for classes and the regression models for each
of the class
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Model construction process

*Major operations

simulation
grading
Training
testing

*Balanced Data
Grading (BDG)
algorithm

* Training algorithm
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Model construction process \—‘

Grading with the BD& algorithm

* 6rading along a parameter dimension with approximately similar

amount of data material in the performance space

- Algorithm avoids sparse or over-concentrated distributions of data

The process starts with the user provided grading
requirements and calculates balanced grading vectors;
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Performance model construction process

SVM training: construction of the models
+ 6rid search

coarse grid search (CGS) with low grid resolution

refined grid search (RGS) with high grid resolution
- to enhance the model construction efficiency

- Cross-validation

- to enhance accuracy and generality (occurs also in neural networks)

Testing: validation of the models
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Case study - a 2" order Sigma Delta Modulator \—‘
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Results - kernel comparison

H

SVM method Sample Linear kernel | RBF kernel Sigmoid
parameters kernel
Stability - 82.98% 99.58% 99.05%
accuracy
Stability - 16:48:09 00:34:17 08:22:00
Classification GV time
SNR - 82.01% 98.77% 98.22%
accuracy
SNR - 22:30:40 00:53:54 17:13:37
CPU time
Regression SNR- 02:48:31 31:49:49 17:13:37
g CPU time
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Results - training
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Results - testing

H

Parameter Testingl Testing2
SNR 66.72% 78.73%
IB.T.I Classification g;?? S§Z‘¢
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Conclusion and further work \gﬂ

A new concept for performance analysis has been
infroduced: linearly graded performance models

- A suitable modeling process has been developed

+ Demonstrated by a case study of a difficult AMS
system: 2" order SDM.

* AMS performance optimization is possible - next step
towards a general AMS synthesis system.

* More work needed on grading algorithms

* More work to explore the trade-off between model
construction computational cost and prediction accuracy
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