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ABSTRACT
The paper proposes a new combined terminal and model or-
der reduction method for compact modeling of interconnect
circuits. The new method extends the existing SVDMOR
method [3] by using higher order moment information for
terminal responses during the terminal reduction and by ap-
plying separate SVD low-rank approximations on input and
output terminals respectively. This is in contrast to SVD-
MOR method where input and output terminal responses
are SVD approximated at the same time, which can lead
to large error when the numbers of inputs and outputs are
quite different. We analyze the passivity requirement for
combined terminal and model order reduction and show the
passivity enforcement may significantly hamper the termi-
nal reduction effects. We also improve the computation ef-
ficiency of SVDMOR. Our experimental results show that
ESVDMOR outperforms the SVDMOR in terms of accu-
racy for the similar reduced model sizes in a number of in-
terconnect circuits when the input and output terminals are
different.

1. INTRODUCTION
Compact modeling of passive RLC interconnect circuits

by model order reduction (MOR) techniques has been inten-
sively studied in the past due to the urgent need to reduce
the increasing circuit complexity. The most efficient and
successful algorithms are based on Krylov subspace projec-
tion [8, 2, 9, 6, 4].

But existing MOR methods mainly focus on the reduc-
tion of the internal nodes. When there are many terminal
nodes, the efficiency of the existing Krylov subspace meth-
ods will degrade significantly. There are several reasons for
the low efficiency. First, the time complexity of PRIMA [6]
is proportional to the number of terminals of the circuits
as moments excited by every terminal need to be computed
and matrix-valued transfer functions are generated. Second,
the poles of the reduced models are linearly increasing with
the number of terminals, which make the reduced models
much larger than necessary.

One way to mitigate this problem is by means of combined
terminal reduction and model order reduction. Terminal or
port reduction is to reduce the number of terminals/ports
of given circuits under the assumption that some terminals
are similar in terms of their timing information. Such simi-
lar terminals are justified by the facts that many terminals
are indeed close to each other structurally. So their timing
responses are similar also. Several terminal reduction algo-
rithms has been proposed recently [1, 3, 5]. Method pro-
posed in [1, 3], called SVDMOR, are based on the low-rank
approximation of input and output position matrices before
the model order reduction process. The low-rank approxi-
mation can be carried out on the DC [1] or a specific order
of moments of responses [3]. However, our experimental re-

sults show that SVDMOR does not perform well when the
input and output terminals are quite different. The SVD
approximation is performed on the block moment matrix,
which represent the response for both input and output ter-
minals at the same time. So the approximation will not work
well when the numbers of inputs and outputs are different
dramatically. Basically the low-rank approximation or the
number of independent terminals may not be same for both
input and output terminals. This typically happens when
the numbers of input and output terminals are quite differ-
ent. This maybe the case for clock networks/meshes where
you have a few driver (inputs) and many sinks (outputs).

Terminal reduction by SVD-based rank computation and
terminal clustering via K-means method on terminal timing
was proposed in [5]. The clustering is based on the higher
order timing information. The method uses representative
terminals to represent the reduced terminals. This method
is very suitable for circuits with separate input and out-
put terminals. But this method loses the timing difference
between the representative terminals and their suppressed
terminals.

In this paper, we propose a new SVD-based terminal re-
duction algorithm, called Extended SVDMOR or ESVD-

MOR method. Our approach is based on the SVDMOR
method [3]. But the new method uses higher order moment
information during the SVD approximation process to en-
sure that we can find the true numbers of independent input
and output terminals. Also the ESVDMOR performs the
SVD on input and output moment responses separately so
that they can approximate the input and output responses
better when they are different. Experimental results show
that ESVDMOR outperforms SVDMOR in terms of accu-
racy under same or similar reduced model sizes when the
input and output terminals are quite different.

The paper is organized as follows. In section 2, we re-
view the SVDMOR method for model reduction with large
number of terminals and show its weakness with experimen-
tal results. Section 3 presents our new ESVDMOR method.
We first present main idea of the new terminal reduction
method. Then we show how higher order moment informa-
tion is represented for input and output terminal responses.
After that we discuss some practical issues associated with
the implementation, and present the whole terminal reduc-
tion and model order reduction flow of ESVDMOR. We also
present a short discussions on the passivity issue in terminal
reductions 4. The experimental results and conclusions are
presented in section 5 and section 6, respectively.

2. REVIEW OF THE SVDMOR METHOD
In this section, we briefly review the SVDMOR method

for terminal reduction, which was proposed recently for re-
ducing the terminals of interconnect circuits [1, 3].

For a linear RLC interconnect network with p input and
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q output terminals, we can apply Modified Nodal Analysis
to formulate it into the state space equation form

Gx(t) + Cẋ(t) = Bu(t)
y(t) = Lx(t),

(1)

where G ∈ Rn×n and C ∈ Rn×n are the conductive and
storage element matrices. L ∈ Rq×n and B ∈ Rn×p are the
output and input position matrices. y(t) ∈ Rq, u(t) ∈ Rp.
State variables x(t) ∈ Rn can be nodal voltages or branch
currents of the linear circuit.

The circuit transfer function is

H(s) = L(G + Cs)−1
B. (2)

Then the ith block moment of the system is defined as

mi = L(−G
−1

C)i
G

−1
B, (3)

which is a q × p matrix function.
The block moment mi can be directly computed in a re-

cursive way

x0 = G−1B; m0 = Lx0

x1 = −G−1Cx0; m1 = Lx1

· · ·

xi = −G−1Cxi−1; mi = Lxi for i > 0,

(4)

SVDMOR basically exploits the fact that many terminals
are not independent in terms of their timing information,
which can be reflected in their frequency domain moments.
As a result, we can perform the singular value decomposition
(SVD) on a block moment of specific order. For instance, if
we perform the SVD on the 0th order block moment (DC
response) m0, we have

m0 = LG
−1

B = UΣV
T
, (5)

where U and V are orthogonal matrices and Σ is a diagonal
matrix with singular values in the diagonal in a decreasing
order. If there are k dominant singular values and we can
use a k-rank matrix (a k×k full rank matrix) to approximate
the original m0 based on the SVD theory as

m0 = UΣV
T
≈ UkΣkV

T
k . (6)

Notice that Uk is q×k matrix and V T
k is a k×p matrix and

Σk is a k × k matrix. After this, we can have the following
expressions

B = BbV
T

k , (7)

L
T = LcU

T
k , (8)

where Bb ∈ Rn×k and Lc ∈ Rn×k are obtained using the
Moore-Penrose pseudoinverse of Vk.

Bb = BVk(V T
k Vk)−1

, (9)

Lc = L
T
Uk(UT

k Uk)−1
. (10)

The circuit transfer function now becomes

H(s) = UkL
T
c (G + Cs)−1

BbV
T

k . (11)

Notice that the transfer function Hr(s), which is inside (11)

Hr(s) = L
T
c (G + Cs)−1

Bb, (12)

is a k × k matrix transfer function, which actually is the
terminal-reduced transfer function of (2) and can be reduced
by the traditional Krylov subspace based model order re-
duction methods. If the reduced transfer function of (12) is

Ĥr(s), then the final order reduced transfer function is

Ĥ(s) = UkĤr(s)V
T
k . (13)

SVDMOR performs the terminal reduction on the both
input and output responses at the same time. This reflects

on the q × p block moment mi, where the column vectors
of mi represent the ith moments from the p inputs and row
vectors of mi represent the ith moments at the q outputs.
The k-rank approximation in (6) can approximate well only
one smaller-rank space spanned by either the column vec-
tors or row vectors of mi. If two spaces have quite different
ranks due to significant different numbers of input and out-
put terminals, the approximation will not work well. This
reflects the accuracy loss at the high frequency.

Fig. 1 shows the SVDMOR reduction results for a inter-
connect circuit, net1026, in frequency domain. This circuit
has 6 inputs and 256 outputs. We perform both terminal
reduction and following Krylov subspace based MOR. SVD-
MOR based on m0 reduces the terminals to only one input
and one output terminals based on the singular values as
shown in Table 2. From Fig. 1 we can see that results from
SVDMOR are quite different from the original circuit at high
frequencies (this is not due to model order reduction as will
be shown in the experimental section).
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Figure 1: Frequency responses from SVDMOR
method for net1026 circuit.

Accuracy loss at high frequency after terminal reduction
reflects the fact that the input and output terminals have
different numbers of independent terminals. But SVDMOR
can only approximate well one type of terminals as the SVD
process is performed on the specific order of block moment
matrix, which consists of both input and output terminal
response information.

In the next section, we show how this problem can be
mitigated by the new proposed ESVDMOR method using
the higher order moment information.

3. THE NEW EXTENDED-SVDMOR METHOD
In this section, we present our new terminal and model or-

der reduction algorithm, ESVDMOR. The basic idea of the
new method is to perform the SVD low-rank approximation
for the input and output terminals separately and use higher
order moment information during the SVD approximation
to find true terminal independency to ensure the accuracy
of reduced model.

3.1 The New Terminal Reduction Algorithm
The main idea of the new terminal reduction method is

to perform the SVD approximation on the input and out-
put moment response separately with the use of high order
moment information. We basically follow the terminal re-
duction framework of SVDMOR method [3] but with dif-
ferent moment matrices. But we improve the efficiency of
SVDMOR by saving one computation steps as shown later.
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The major problem for the SVDMOR method is that both
input and output responses are considered at the same time
during SVD due to the use of the specific order of block mo-
ments mi. So we can’t accommodate higher order moment
information. To mitigate this problem, we create new mo-
ment matrices for input and output terminals separately. In
this way, we can use higher order moments during the SVD
process for input and output responses.

Specifically, let’s look at one specific moment block first.
For a general linear system with p inputs and q outputs,
each moment mi is a q × p matrix,

mi =

2
6664

mi
1,1 mi

1,2 . . . mi
1,p

mi
2,1 mi

2,2 . . . mi
2,p

...
...

...
...

mi
q,1 mi

q,2 . . . mi
q,p

3
7775 (14)

where each column j in mi represents the moment vector of
all output terminals due to the input terminal j and each row
k in mi represents the moment vector at the output terminal
k due to all input terminals. Then a moment matrix, which
consists of 0th to (r − 1)th order of block moments, can be
written as

M =
ˆ

m0 m1 . . . mr−1

˜
. (15)

In order to perform terminal reduction for inputs and out-
puts separately, different moment matrices are constructed.
Specifically for the output terminal reduction, we define the
output moment response matrix MO as:

MO =

2
6664

mT
0

mT
1

...
mT

r−1

3
7775 , (16)

where MO is a rp × q matrix and each column j represents
a moment series of output node j due to all input’s impulse
stimuli. Typically we expect the number of rows in MO will
be larger than the number of its columns so that the rank of
the MO is determined by the column vectors of MO, which
represents the q output terminals.

Similarly, for input terminal reduction, the input moment
response matrix MI is defined as:

MI =

2
6664

m0

m1

...
mr−1

3
7775 , (17)

where MI is a rq×p and each column k represents a moment
series at all output’s nodes due to an input node k.

For both MO and MI , we require that the column vec-
tors represents the responses for outputs and due to inputs
respectively and the rows in both MO and MI will lose the
terminal-related information as they represent the different
orders of moments.

Next, we perform singular value decomposition to both
input moment response matrix MI and output moment re-
sponse matrix MO .

MI = UIΣIV
T
I ≈ UIki

Σki
V

T
Iki

, (18)

MO = UOΣOV
T

O ≈ UOko
Σko

V
T

Oko
, (19)

where Σki
is a ki × ki diagonal matrix and ki is the number

of significant singular values for matrix MI . V T
Iki

is a ki × p

matrix. Similarly, Σko
is a ko × ko diagonal matrix and ko

is the number of significant singular values for matrix MO .
V T

Oko
is a ko × q matrix.

Then we can perform the low-rank approximation for the
input and output position matrix B and C respectively.

B = BrV
T

Iki

, (20)

L = VOko
Lr, (21)

where Br ∈ Rn×ki and Lr ∈ Rko×n are obtained by com-
puting the Moore-Penrose pseudoinverses of VIki

and VOko

respectively.

Br = BVIki
(V T

Iki

VIki
)−1

, (22)

Lr = (V T
Oko

VOko
)−1

V
T

Oko
L. (23)

Notice that both VIki
and UOko

are orthonormal matrices,

i.e. V T
Iki

VIki
= I and UT

Oko
UOko

= I . Therefore, (22) and

(23) can be further simplified as

Br = BVIki
, (24)

Lr = V
T

Oko
L. (25)

So we save one computation step compared to the SVDMOR
method [3].

As a result, the circuit transfer function now becomes

H(s) = VOko
Lr(G + Cs)−1

BrV
T

Iki

. (26)

Consequently we get a terminal reduced subsystem with
transfer function Hr(s).

Hr(s) = Lr(G + Cs)−1
Br. (27)

For this subsystem, the standard model order reduction
techniques [8, 2, 9, 6, 4] can now be applied.

Consider both terminal and model order reductions, we
can obtain the order reduced transfer function Ĥr(s),

Ĥr(s) = L̂r(Ĝ + Ĉs)−1
B̂r, (28)

where

Ĝ = V T GV ; Ĉ = V T CV

B̂r = V T BVIki
; L̂r = V T

Oko
LV

(29)

where V is the projection matrix for reducing system of (27).
The final reduced transfer function becomes

Ĥ(s) = VOko
L̂(Ĝ + Ĉs)−1

B̂V
T

Iki

. (30)

3.2 Practical Observation and Considerations
One important issue for the proposed method is to select

the proper order of moments for the terminal reduction and
for the model order reductions.

For the terminal reduction, our experimental results show
that when the ranks of input and output moment response
matrices are similar, SVDMOR typically performs well also.
For the RC circuits tested in the experimental result section,
we observe that the DC or first moments are typically suffi-
cient for determining the ranks of input and output moment
response matrices when they are similar. However, when the
ranks of the input and output moment response matrices are
different, higher order moment information can be useful for
determining the true ranks of input and output moment re-
sponse matrices, which typically happens when the input
and output terminal numbers are quite different and SVD-
MOR does not perform well. In this case we need the high
order moment information to compute the true ranks of the
input and output moment response matrices separately.

Specifically, we use the following rule:

rp ≥ q for MO when q > p, (31)

p ≤ rq for MI when p > q, (32)
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where r is the order of moments used. For MO, if output
terminal number q is larger than the input terminal number
p, we need to add all moments up to (r − 1)th order such
that we have an equal or larger number of rows than the
number of columns in MO. This is true for MI when the
input terminal number p is larger than the output terminal
number q. This determination process considers the worst
case that all terminals are independent to others.

When p = q, r is set to 1 to satisfy (31) and (32). Under
this condition, the higher order moment information is not
necessary.

3.3 ESVDMOR Algorithm Flow
In this subsection, we give the whole combined terminal

and model order reduction flow of the ESVDMOR method.
Extended-SVDMOR Algorithm

1. Compute the block moments mi up to the (r − 1)th
order using (4).

2. Construct the input and the output moment response
matrices defined in (17) and (16) respectively.

3. Perform the SVD-based low-rank approximation on
the position matrices B and L in (1) using (24) and
(25).

4. Perform the normal Krylov subspace based MOR on
the terminal reduced system (27) and perform the trans-
formations using (29).

5. Compute the final reduced system Ĥ(s) using (30).

4. PASSIVITY DISCUSSIONS
For model order order reduction, the input and output

position matrices B and LT are required to be the same for
ensuring passivity with projection based reduction. When B
and LT are not the same, passivity may not be ensured with
existing projection methods. We notice that reduction by
Truncation Balanced Realization (TBR) can make passive
reduction of RLCK circuits with different B and LT [7]. But
passive TBR is a very expensive process and does not scale
to solve large problems.

One may think that one can make all the terminals as bidi-
rectional ones by making B and LT equal. But we show in
the experimental section, such a simple strategy for enforc-
ing passivity may significantly reduce the terminal reduction
qualities. One obvious reason is that many output terminals
now become input terminals. So the responses excited by
those terminals have to be considered for all the other termi-
nals, which make the reduction more difficult and sometime
impossible, which is evidently demonstrated by the full rank
of the moment matrices in one example circuit.

Considering the terminal reduction, passivity further re-
quires that Br are LT

r are the same and VOko
and VIki

are
identical as well due to the requirements of the congruence
transformation. As a result, the moments mi must be sym-
metric. This is required for both SVDMOR and ESVDMOR
methods. It can be proved that when the inputs to the origi-
nal models consist of only current sources or voltage sources
for RLCK circuits, mi is symmetric. If both current and
voltage sources are present, mi will not be symmetric and
terminal reduction by both SVDMOR and ESVDMOR will
not ensure the passivity.

In general, we observe that for efficient terminal reduc-
tions, the input and output terminals can not be bidirec-
tional, which means B and LT will be different.

5. EXPERIMENTAL RESULTS
The proposed method has been implemented in MAT-

LAB. We tested our algorithm on a number of real industry
interconnect circuits from our industry partner. For these

examples, We apply both SVDMOR and ESVDMOR ter-
minal reduction methods along with Krylov subspace based
model order reduction for internal node reduction. And we
only consider the DC moment for the SVDMOR method.

The first example, net27, has 14 inputs and 118 outputs
with model order of 182. Because there are more outputs
than inputs, the number of the independent input termi-
nals can be determined by using only DC moment as MI .
However, higher order moment information is needed to find
the number of the independent output terminals. Here we
use first 9 order block moments to construct the output mo-
ment matrix MO , which considers the worst case that all
the output terminals are independent to each other.

The singular values for m0, which is used by SVDMOR,
MI , MO are shown in Table 1. From the table we can see
that we only need one input and one output terminal after
terminal reduction by using SVDMOR method. By using
MI and MO in the ESVDMOR method, we find that there
are more than one dominant singular values of MO . We
choose one input and five outputs to make the reduced model
more accurate.

Table 1: The singular values of DC moment, Input
moment matrix and Output moment matrix of the
circuit net27.

� m0 MI MO

1 5.1587 5.1587 19.828
2 3.9883 × 10−14 3.9883 × 10−14 4.4677
3 1.6681 × 10−14 1.6681 × 10−14 1.6517
4 – – 0.3045
5 – – 0.0348
6 – – 2.4611 × 10−3

7 – – 1.6134 × 10−4

To compare accuracy between the SVDMOR and ESVD-
MOR methods in a fair way, we make sure the reduced mod-
els for both algorithms have the same number of poles. If
we use the same order of block moments, then more termi-
nals will lead to more poles using the Krylov subspace MOR
methods.

For circuit net27, 6 poles are used to approximate the
original model for both SVDMOR and ESVDMOR meth-
ods. The results are shown in Fig. 2, which is the frequency
responses corresponding to the second input and the 10th
output.
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Figure 2: Frequency responses from SVDMOR and
ESVDMOR for net27 circuit.
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From these frequency response results, we can see that
our ESVDMOR model could match the original model up
to 5GHz. In contrast, SVDMOR reduced model can only
match frequency up to 500MHz. This clearly shows the
advantage of the ESVDMOR over SVDMOR method when
the input and output terminals have different dependency
(different ranks in their moment responses matrices).

One may argue that we are more accurate since we use
more terminals. Actually if we use five inputs and five out-
puts in SVDMOR method, the results are still not good
comparing to our ESVDMOR method under the 6 poles.
The results are shown in Fig. 3, where SVDMOR model #2
refers to the SVDMOR results with 5 input and 5 output
terminals. So simply increasing the number of terminals in
SVDMOR does not help to improve the model accuracy.
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Figure 3: Frequency Response from SVDMOR and
ESVDMOR with different terminals for net27 circuit

The second example is circuit net1026, which has 6 in-
puts and 256 outputs with model order of 522. Since the
number of output terminals is also larger than the number
of input terminals, we use r = 43 order moments to con-
struct the output moment matrix MO . After we obtain the
singular values as shown in Table 2, the terminal reduced
subsystem for SVDMOR becomes a single-input and single-
output (SISO) system, and the terminal reduced subsystem
for ESVDMOR is a one-input and five-output (SIMO) sys-
tem. We still use projection subspace based MOR with the
same reduction order (5 poles) for both methods.

Table 2: The singular values of DC moment, Input
moment matrix and Output moment matrix of the
circuit net1026.

� m0 MI MO

1 7.5175 7.5175 2097.6
2 2.7376 × 10−15 2.7376 × 10−15 10.501
3 7.5742 × 10−16 7.5742 × 10−16 1.6625
4 – – 0.12577
5 – – 0.00134
6 – – 8.278 × 10−6

7 – – 3.9216 × 10−8

We choose the response between the first input and the
first output and show the frequency domain response results
in Fig. 4. This example have the similar situations with
the first example: it has larger number of output terminals
than the input terminals. As a result, input and output
terminals have different numbers of independent terminals.
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Figure 4: Frequency responses from SVDMOR and
ESVDMOR for net1026 circuit.

By just using one terminal for both input and output does
not approximate well for the model order reduced system.

Again, if we use five inputs and five outputs for the SVD-
MOR model, the accuracy does not improve much as shown
in Fig. 5(SVDMOR model #2).
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Figure 5: Frequency responses from SVDMOR and
ESVDMOR with different terminals for net1026 cir-
cuit.

To compare the terminal reduction effects when all the
terminals are treated as bidirectional for net1026 circuits,
we list the singular value results with decreasing order after
the SVD on the 0th and 1th moment matrices in Table 3:

From the Table 3, we can see that the singular values
decay very slowly and the terminals can’t be reduced very
much. Actually the rank of the moment matrix m0 (given
by Matlab rank command) is 261, which is close to the full
rank of the moment matrix. And the rank of the moment
matrix m1 is the full rank.

One obvious reason for this problem is that many out-
put terminals now become input terminals. As a result, the
responses due to those output terminals have to be consid-
ered during the terminal reduction process, which make the
reduction process more difficult.

The third example is also a RC interconnect circuit, net55,
which has 59 input terminals and 31 output terminals with
model order of 187. Both the DC moment and the first
moment are used to determine the number of independent
inputs for the ESVDMOR method.

Table 4 gives the singular values for m0, MI , MO. We
notice that both MI and MO have the same ranks as m0.
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