
SCISIP – Program for Switched Circuit Analysis in Matlab
Tomas Lukl

Department of Telecommunications
Brno University of Technology
Purkynova 118, 612 00 BRNO

CZECH REPUBLIC
+42054114 9217

thomlu@eabrno.cz

Jaroslav Vrana
Department of Telecommunications

Brno University of Technology
Purkynova 118, 612 00 BRNO

CZECH REPUBLIC
+42054114 9217

xvrana02@stud.feec.vutbr.cz

Jiri Misurec
Department of Telecommunications

Brno University of Technology
Purkynova 118, 612 00 BRNO

CZECH REPUBLIC
+42054114 9200

misurec@feec.vutbr.cz

ABSTRACT
The article deals with the SCISIP program, which is a program for
analysis of switched as well as general type electronic circuits.
SCISIP is being developed in mathematical and programming tool
Matlab. The reader can find the description of an open and
modular structure of the program as well as the algorithms used in
the simulation core. In the end one can find an example of the
analysis of SI lossless integrator and its graphical results.

1. INTRODUCTION
General switched circuits are circuits with quantized signal
processing. The switch is the most frequently used electrical
element in these circuits. In real world, switches are usually
realized by transistors in the CMOS technology (as IC in most
cases). This is the case of externally controlled switches
(electronic filters) while in internally controlled switches (Switch
Mode Power Supplies) diodes and thyristors are the most
frequently used elements for switching. There is also a third group
of switched circuits – mixed controlled switches (internally as
well as externally controlled switches), which are used in �-�
converters.

During the testing stage of the development of a new switched
circuit we want to analyze it using a computer. We can use Spice-
like simulators and transistor-level circuit models. But in this
case, the simulator spends a lot of computing time to calculate a
circuit response in the switching instants (which we are not so
interested in) because of the nonlinear character of switch models.
Using linear or even ideal models of switches is not so time
consuming and not so inaccurate. But in this case, most Spice-like
simulators have problems using ideal switch models. This leads to
the need to develop a new tool for the analysis of switched
circuits. A lot of these tools have been developed in the past, e.g.
MALINSC, MATSC, COCOSC, WATSCAD, CPPSIM and
SWANN. But these tools are either old (or thus no longer
supported) or very specific (for a closed group of switched
circuits, e.g. switched capacitors – SC or just linear SC).

In the previous paragraph the main reason why to start the
development of a new switched circuit analysis tool was

presented. The following most important properties were
declared:

• ability to analyze general switched circuits,

• ability to analyze even general electronic circuits,

• open and modular structure,

• easy-to-use command line and graphical environment with
simple text input and output structures (files),

• availability to the universities.

Its name is SCISIP – Switched CIrcuit SImulation Program.

2. PROGRAM STRUCTURE

2.1 Matlab environment
SCISIP is still being developed in the Matlab environment (at this
moment, Matlab r14sp1), because Matlab is widely used at
universities, so students and professors know how to work with it.
The decision to use Matlab as the development environment was
based on the following pros and cons:

• C++ or Java programming language similarity,

• many predefined mathematical functions,

• vector-and-matrix-based Matlab core (useful for methods
for numerical analysis, e.g.: modified nodal analysis –
MNA, Newton-Raphson iteration method – NR or the other
methods for numerical integration),

• effective creation of graphical user interface (GUI),

• classical OOP technique available.

• installed and running Matlab is needed,

• complicated (or even impossible) Matlab code compilation
of big projects,

• limited group of GUI objects,

• problems with OpenGL graphical rendering mode (very
effective otherwise) and large amount of GUI objects,

• very high demand on hardware for new versions of Matlab,

• mutual incompatibility of previous major releases of Matlab
(especially between versions 4 and 5) - this can be quite a
big problem in large projects.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

0-7803-9742-8/06/$20.00 © 2006 IEEE. 61

2.2 Modularity
The most important requirement was the modular and open
structure. Each module represents logically separated parts of
whole system. Open structure represents the fact that a new
module can be easily “plugged” into the existing system so its
functionality can be extended. Additionally, the source code of the
program will be (after completion) available (except the source
code of the system core).

The main part of system structure is the system core. Its main
purpose is to accept events from all modules and perform a
requested action. A schema of the system core is shown in Figure
1. There are four function blocks in the system core:

EHS – Event Handler System. A module calls (using a public
function invokeEvent) this block and passes an event ID. EHS
looks for this ID in the event table and performs the requested
operation (e.g. startup of another module). This structure can be
explained by the following example: the simulation module
finishes the analysis and sends an event to inform that the analysis
is complete. EHS looks at the event table and calls a module,
which displays the results in a graph). Event ID is a number of
class “uint16” – 16bit unsigned integer.

DSS – Data Storage System. The big issue is how to store data for
next calls of a Matlab function. For this purpose we can use either
the globally declared or the persistent variable.
Persistent variable is the only acceptable possibility because
globally declared variable is simultaneously a public variable and
thus accessible from the Matlab command line. There is also a
possibility to use functions guidata or setappdata (standard
Matlab functions) but these functions are intended to store GUI
data, so we would always have to have a graphical object (e.g. a
window) created. DSS provides data storage for all modules
during the entire time SCISIP is running. EHS event table or
EMHS (error and message handler system) data are stored using
DSS. This block also simplifies access to HDD files, especially
text files.

SE – SCISIP Exec provides a Matlab command line interface for
executing SCISIP functions. SE is the first point where users enter
the SCISIP system. They can either execute the GUI or the
analysis procedure using SE.

MIR – Module InstalleR provides a user-friendly tool for
upgrading an existing module or installing a new one.

Modules themselves are another part of program structure. There
are naturally two types of modules. Internal – predefined modules,
which cannot be removed (they can be only updated) and external
(user defined) modules. The simulation core, the already
mentioned EMHS module, LSM (language support module) and
GHM (GUI Handler Module) are internal modules.

EMHS module provides a uniform way of displaying error,
warning and other messages based on events (see EHS). The text
and description of these messages are saved in a text file, which
comes with each module.

LSM module provides language support for GUI and EMHS
through language definition files (the default language of SCISIP
is English and another language definition file comes with the
Czech language).

Figure 1. Schema of the designed system structure.

There is no strictly defined or required structure of user modules.
They just have to offer necessary functions for accessing public
module data (e.g. in the case of simulation core a data structure
with analysis results).

2.3 Input Files Definition
There are two main input files: netlist file and model file. Both
these files are saved in clear text format which has simple and
intuitive syntax (structure). In the following two paragraphs you
can see a description of a new simple modeling language. And
that was the idea – simple and intuitive utilization. Due to the
modular structure of the SCISIP program, one can program a
module to handle widely used complex modeling languages such
as Spice language or VHDL-AMS.

2.3.1 Netlist
Netlist is a structure that contains all the necessary data for
analysis. Netlist has two main parts: the analysis definition block
and the circuit definition block.

Analysis definition block tells the Simulation core “what to do”.
It contains several key words with their parameters. You can see
the list of several keywords in Table 1. There are very simple
syntax rules for writing an analysis definition block:

• Each key word, introduced with character $, must be on a
separate line. If there is more than one keyword used, you
can enclose all keywords between two $ characters.

• Unknown keywords are ignored (skipped).

• The character % introduces a comment text when used
wherever on the line.

There are a few possibilities how to write a keyword and its
parameters, so the documented syntax need not be strictly
observed. Syntax errors, which occur during parsing the netlist
file, are skipped (except errors that could cause incorrect parsing
or syntax errors in required keywords). For a deeper insight into
the netlist syntax, see an example in Table 2.

Table 1: The list of netlist keywords.

Keyword name Description

�����������	�
� Defines the type of analysis. The
bias or tran strings can be used as
parameters. Both parameters can
be written at the same time

62

(delimited by white space).

����	��
���	�
� Tells the simulation core which
algorithm to use.

�������	�����	�
�

�������	�����	�
�

�������	�����	�
�

�������	�����	�
�

Defines the relative error of
solution for current variables (i),
voltage variables (u), charge
variables (q) and magnetic flux
variables (f).

����
�����	�
� Defines the maximum error of the
solution.

����	���	�
� Defines the maximum number of
iterations (for numerical
methods).

��	�����������	�
� Boolean parameter, which tells
the simulation core whether to use
the variable-step algorithm or not
(numerical integration).

���������	�
� Sets the initial step length.

��������	�
� Sets the maximum step length.

��������	�
� Sets the minimum step length.

�������	�
� Defines the time range of
transient analysis plus user-or-
system-defined time instants
within this time range.

�
�
��	���� Enables or disables the
measurement of analysis time.

�������	�
� Defines output of analysis results.
The following strings can be used
as parameter: file (saves the
results into a file), graph (uses a
module to display analysis
results), structure.

����	�����	�
� Defines the digital clock for
driving externally driven
switches. The parameters can be:
d – delay; r – ratio; T – period or
f – frequency; name – a name of a
“clock wire”. Parameters written
in bold are required. More than
one digital source can be defined.

Circuit definition block defines how electrical parts are
interconnected, how they are modeled, and it can provide their
(user-defined) parameters. Each line which begins with an English
letter is parsed as a circuit definition line. Each circuit definition
line has the following structure:

	���������
��������	�
��,

where

	�� is the reference name of electrical element. It can contain
English letters and numbers, but must begin with letters.

����� are numbers of nodes, delimited by white space, where
electrical elements are connected to.

���� is the name of a model. The character “!” in the model
name introduces an internal model.

���	�
�� is an optional parameter. One can redefine one or more
model parameters. This parameter consists of pairs in the form
��	�
��	���
������	�
��	������.

The following rules apply to numerical values, used wherever in a
Netlist file:

• Floating-point double precision (IEEE 754 standard) format
can be used.

• Characters “.” or “,” stand for decimal point.

• Basic mathematical operators (+,-,*,/) can be used.

• Commonly used prefixes can be used as shown in the
following list: f = 1e-15, p = 1e-12, n = 1e-9, u = 1e-6, m =
1e-3, k = 1e3, M = 1e6, T = 1e9. Only the prefixes mili (m)
and Mega (M) are case-sensitive.

An example of a netlist file, which describes a circuit in Figure 2,
follows.

��

��������������

�����	��
����

�
����	��

�����
������

���������	���

�����	��
�!"�

�
����	�# �

������ �$
�%&��'�

����	�����
��'&��'�!�(��

��

)��� �)��)�*��

"���$�"��"��+��

,����$�,��,�(���

,#���#�,��,�# ���

,$���-�������,�����$ �.�����+��

!��*�#� �/�
����0���# �.��#�.1�# ���

!#�(�#� �/�
����0���# �.��#�.1�# ���

!$�(�$� �/�
����0����# �.��#�.1�(���

2��-�#��3��"�����."���� 4�5.��+�%6���'��

2#�#�*��3��"�����."���� 4�5.��+�%���'��

2$�#�(��3��"�����."���� 4�5.��+�%6���'��

2.3.2 Model
The model of an electrical element mathematically describes its
properties. There are a few types of models used in SCISIP:

• Ideal models are defined by a matrix. There are many
models, defined in SCISIP: resistor, capacitor, inductor,
OpAmp, CCs, CFA, etc.

• Nonlinear models are defined by a mathematical
expression. Models of a diode, bipolar and unipolar
transistor and thyristor are predefined.

63

• Macro models are in fact circuits in a circuit. Their
definition is similar to the definition of a circuit. Real-world
electrical elements are modeled as macro models, e.g.
nonlinear dynamic model of a diode.

• “Plot models” are models defined by a table of measured
values. The simulation core then uses this table to
automatically generate an expression, which describes a
given element.

In the model file we can use the following keywords (they are
used without the character �):

�������
� – each model file must contain this keyword as an
identifier of model name.

�������� ��
� defines the type of model. The following
strings for parameter name are acceptable (see the list of model
types above): stamp, matx, math, plot, macro.

�������� ��� sets the type of model function (for math

model type only). Acceptable types are lin and nlin.

������ ��	�
 defines internal names of element pins (English
letter or a number).

����� ��	�
 defines input variables (port voltages, pin
currents).

����� ��	�
 defines output variables and their derivatives
with respect to input variables (if applicable).

�����:: introduces a block which defines the given model itself.
This block then must end in the keyword �������. There is a
different format of this block for each type of model, but its
description is beyond the scope of this contribution.

In the example below, you can see the static nonlinear model of
an NMOS transistor.

������
���

��������
���

��������������

�������5�&�2�

�������&2��52�

�������&7�&��&27�&��52�

�����88�

��)��� .�

��1���# 9��:-.�

������#9��:-.�

��+������0��;#�9�1;�.�

�

������52<)�

���������&��� .��&��&2��� .��&��52��� .�

����������&2�<��=�52:)>�

���������&��52���#9+�9�&2.�

���������&��&2���#9+�9=�52:)>:#9+�9�&2.�

���������&���+��9�=#9=�52:)>9�&2�:��&2?#>.�

�������

����������&��&2��&��52����� �#9+�9=�52:)>�.�

���������&���+��9�=�52�:�)>?#.�

������

��������

3. UTILIZATION OF ANALYSIS

METHODS
The simulation core contains a mathematical apparatus which can
solve the system of nonlinear differential equations which
mathematically describes the circuit analyzed. The commonly
used method for forming circuit equations is called Modified
Nodal Analysis (MNA). Using this method one can write the
following system of equations [1], which describes the general
type of a circuit

() ()
()

() ()
()

I I II
I I II II II

II II II
II II

, , , , ,

, , , , .

+

=

� �
� �
� �

� �
� �
� �

n

n

n

n

d d
t

dt dt

d d
t

dt dt

q u � i
A f u i s A i = 0

q u � i
f u i s 0

 (3.1)

where A is the incidence matrix, f is the vector of functions which
describe each electrical element, u is the vector of nodal voltages,
i is the vector of currents, s is the vector of sources, q is the vector
of charges and � is the vector of magnetic fluxes. Indexes I and II
denote current- and voltage-defined branches, respectively.

System (3.1) is generally nonlinear and differential. Numerical
methods for solving this type of equations are used.

3.1 Numerical integration
Numerical integration is the first step while solving system (3.1).
During numerical integration (solving differential equations) we
convert a system of differential equations into a system of
nonlinear algebraic equations. Most of integration methods
substitute all the derivatives in the system by the following
general formulae

()0 ,γ= −�

n n xx x d (3.2)

.=n xx d (3.3)

In equations (3.2) and (3.3) the coefficients
0

γ and xd determine

the numerical integration method. A method defined by eq. (3.2)
is called implicit, while substitution by (3.3) is called explicit.

In the Simulation Core, the backward Euler method, trapezoidal
method or BDF methods are used (see (3.4), (3.5) and (3.6)
respectively). For a more detailed description see [1].

1 .−= + �

n n n nx x h x (3.4)

()1 1 .
2

− −= + +� �

n

n n n n

h
x x x x (3.5)

()

0

.γ −
=

=��

l
l

n k n k

k

x x (3.6)

3.2 Nonlinear equations
From the previous step we have a system of nonlinear algebraic
equations, generally in the form

() .F x = 0 (3.7)

64

In the Simulation core, two methods are used to solve system
(3.7): the Newton Raphson method (NR) and the Homotopy
method.

The NR method is the most common method used. It is described
by the system of equations

()() () ()()
() () ()

1

1 1

,

.

k k k

k k k

+

+ +

⋅ = −

= +

J x �x F x

x x �x

 (3.8)

This form of the NR method is called incremental. It has a few
advantages over the standard form. The biggest disadvantages of
the NR method are local convergence and ability to find just one
root of system (3.7).

The Homotopy method is a less known method, which is
described by the equation [4]

() ()()
2

, ,

1 0,
t

s sλ

λ

=

+ − =

H x 0

x x �

� �

 (3.9)

where the point over vector x means the derivative of x with
respect to variable s (the same for variable �). The Homotopy
function H is a function such that H(x,0) = 0 is simply solvable
and the root of H(x,1) = 0 is also the root of (3.7). There are a few
methods how to solve homotopies. Eq. (3.9) is called the Arc
length method and its big advantages are global convergence and
ability to find multiple roots of (3.7). In the Simulation core, this
method is used in the case when the NR method fails.

After this step we have a system of linear algebraic equations,
which is solvable very simply, using known methods such as LU
decomposition.

3.3 Methods for switched networks analysis
It is simpler to analyze externally controlled networks than
internally controlled ones. Inconsistent initial conditions are a big
problem during switched networks analysis. In the case of linear,
externally controlled switched circuits, the backward Laplace
transform is used for analysis. During an analysis of nonlinear
switched networks, the following procedures are used according
to the way the switches are controlled [8], [7].

Externally controlled switches

The situation is here a little bit simpler because we know the exact
time instants, when the switches change their state. The analysis
of nonlinear switched networks with ideal switches consists of
two steps:

• Determining the initial conditions just after the switching
instant.

• Determining the presence of the Dirac impulses.

The numerical integration method used must be auto-starting at
the times the switches are changing their state. In the Simulation
Core, 1st order BDF method or the Trapezoid method is used.

Internally controlled switches

Because internally controlled switches can change their state at
each time instant (they are controlled by the value of a circuit
variable) so after each integration step an algorithm must check
whether to change the state of a switch or not. For this checking,

the sign of control functions p
i
(t) is used. If the sign changes, the

algorithm has to find this time instant ts precisely (using the NR or
the Homotopy method). The algorithm then computes the
response of the circuit in time ts+hmin and checks the state of the
switches again. If a switch has changed its state, the response
values of the circuit at the instant ts+hmin are canceled, the circuit
topology is changed, and a new response is calculated. This loop
is repeated until all the switches are in steady state. The initial
conditions and the area of the Dirac impulse are computed by
two-step backward integration. After that the numerical
integration can proceed.

Prof. Vlach has defined 6 types of internally controlled switches
[9]:

• An ideal diode,

• an ideal thyristor,

• a voltage-controlled switch,

• a current-controlled switch,

• a switch controlled by a diode,

• an inverse switch controlled by a diode.

4. EXAMPLES
You can see a schematic diagram of SI lossless integrator (which
is a block frequently used in SI filters) in Figure 2. In this figure
you can also see a window of the Schematic Editor tool. This is an
external (user defined) module, which contains all the necessary
functions, methods and graphical object to draw and edit an
electrical schematic diagram. Individual parameters of models of
used electrical elements can be changed directly in the Schematic
Editor. The output of this module is a netlist file or structure (see
chap. 2.3.1).

Figure 2: Schematic diagram of the SI (switched currents)

lossless integrator drawn in the Schematic Editor tool.

When the simulation is complete, we need to display its results
somehow. There are a few possibilities according to parameter
�����(see Netlist parameters in chap. 2.3.1). To plot a graph is
the most user-friendly way how to display the results. There is a
module called Presentation Module in SCISIP. It contains all the
necessary functions, methods and graphic objects for displaying
the time response in a graph or the bias point values of the

65

analyzed circuit. You can see the time response of the circuit from
Figure 2 in Figure 3. The green curve is input current ii3 and the
red one is output current iR, which flows through resistor R.

Figure 3: Results of the analysis of SI integrator (see Figure 2)

in the Presentation Module window – iI3 (green) and iR (red).

5. CONCLUSION
A new simulation tool for switched circuits in Matlab was
presented in the paper. The tool is still being developed, so the
results presented are the main functional fragments of the whole
program. After SCISIP is completed, it can be used in some
theoretical classes (like Circuit Theory, Analogue Circuits,
Electronic Filters, etc.) and their computer practices even during
switched circuit design. It will be available and utilizable at
universities, because Matlab is a widely used mathematical and
programming environment there.

6. ACKNOWLEDGMENTS
This paper was worked out with the support of FRVŠ
3248/2006/G1 project.

7. REFERENCES
[1] Ogrodzki, J. Circuit Simulation Methods and Algorithms.

CRC Press 1994, ISBN 0-8493-7894-X.

[2] Lukl, T., Novotny, V., Misurec, J. Computer-Aided Circuit
Analysis with Respect to Switched Circuits. WSEAS

Transactions on Electronics, ISSN 1109-9445, 2005, vol. 2,
p. 139 - 143.

[3] Vlach, J., Bedrosian, D. Analysis of Switched Networks.

International Journal of Circuit Theory and Applications.

vol. 20, p. 728.1-728.17, 1992.

[4] Lukl, T. Utilization of homotopy methods for analysis of not

only switched circuits; in Czech - Elektrorevue – Internet

magazine. http://www.elektrorevue.cz, ISSN 1213-1539,
2005.

[5] Vlach, J., Singhal, K. Computer Methods for Circuit

Analysis and Design. Second Edition. New York:
International Thomson Publishing Co., 1994. 712 pages.
ISBN 0-442-01194-6.

[6] Toumazou, C., Lidgey, F.J., Haigh, D.G. Analogue IC

design: the Current-mode approach. Peter Peregrinus Ltd.,
England, 1998. ISBN 0-86341-297-1.

[7] Novotny, V., Lukl, T. Algorithms for Non-linear Switched
Network Simulation in Telecommunications and Signal

Processing TSP-2003. Intrn.Conference TSP 2003 –

Telecommunications and Signal Processing. Brno, CR:
FEKT VUT Brno, 2003, p. 205 - 208, ISBN 80-214-2433-8.

[8] Vlach, J., Wojciechowski, J.M. Analysis of Nonlinear
Networks with Inconsistent Initial Conditions. In IEEE

Transaction on Circuits and Systems – I: Fundamental

Theory and Applications. vol. 42, no. 4, p. 195-200, 1995.

[9] Vlach, J., Bedrosian, D. Time-Domain Analysis of Networks
with Internally Controlled Switches. IEEE Transaction on

Circuits and Systems – I: Fundamental Theory and

Applications, vol. 39, no. 0, p. 1-14, 1992.

66

