
ABSTRACT

An event-driven modeling and simulation technique, imple-

mented in Matlab is presented in this paper. It enables rapid

and accurate simulation as it only calculates the time instants

of interest. This technique is successfully  applied to behav-

ioral modeling and simulation of an digital phase-locked

loop. The simulation environment retains the flexibility of

modeling and mathematical manipulation that characterizes

Matlab. For example, it allows time-domain modeling phase

noise of each component of a digital PLL.

1.  INTRODUCTION

Phase-locked loops (PLLs) have been widely  used in fre-

quency synthesis and timing recovery for many years. To

date, most PLLs in the literature are in analog form, where

analog loop filters (ALFs) and voltage controlled oscillators

(VCOs) are employed, and they are difficult to be integrated

in a noisy digital environment and are not portable for new

processes. Now, deep-submicron CMOS processes allows

digitizing many conventional analog circuits, including the

analog PLLs, to overcome above problems and enable more

desired features that are not achievable in an analog imple-

mentation. In fact, digital PLLs (DPLLs) gain increasing

interests in both frequency synthesis and the data recovery

fields in recent years [1][2][3][4][5].

The block diagram of a DPLL is shown in Figure 1. It con-

sists of a digital phase/frequency detector (DPFD), a digital

loop filter (DLF), a digitally controlled oscillator (DCO) and

a frequency divider (FDIV). The DPFD compares the clock

from the reference source (REF) and the clock from FDIV,

and provides digitalized phase error (PE) for the DLF. DLF

tunes the digital frequency control word of the DCO accord-

ing to the phase error information. In such a system, the phase

error digitizing, finite word length of the DLF, the finite fre-

quency resolution of the DCO and so on, result in truncation

error and phase/frequency quantization error. In addition, the

DLF might include other features, such as automatic loop

bandwidth adjustment. Consequently, the modeling and simu-

lation of those systems at the system level is essential to con-

firm the feasibility and optimize the system architecture and

parameters. To simulate the noise performance of the entire

DPLL in time domain, the simulation has to be able to pro-

vide precise positions of transition edges. In this case, time-

driven type simulators, such as Simulink, Hspice, and so on,

are not efficient because the accuracy is limited by the step

size, and using a small step size, corresponding to the

required accuracy, normally results in excessively long simu-

lation times. For systems such as clock multipliers, clock and

data recovery circuits, many time steps calculated by a time-

driven simulator are not useful for the end user. Only some

special time points of interest, such as, the transition time

points of a clock signal, the sampling outputs right after each

sampling operation, and so on are needed for loop analysis. In

[6], the simulation and modeling of phase noise in an RF

oscillators in time-domain, using an event driven VHDL sim-

ulator, is studied. However, simulating a DPLL using VHDL

simulator requires creating VHDL models for all blocks, and

it is not feasible in the system-level design stage, where a

simple high-level modeling approach is desired.

This paper presents an event-driven modeling and simulation

technique to simulate and analyze the behavior of the whole

digital PLL shown in Figure 1. It calculates only  the time

points of interest, and provides precise edge position informa-

tion. This modeling and simulation technique can be imple-

mented in various computer languages. In this work, Matlab

script is selected to implement this technique because it pro-

vides various data processing functions and simplifies model-

ing of  each function block and post-processing of  the

simulation output data. For a 2 GHz digital PLL as given in

the following sections, the simulation speed is approximately

2 µs per second of CPU time on a P4-2G PC. The simulation

speed can be further significantly  increased by using pre-

compiled computer languages, such as C language. Because

this technique allows high-level modeling of function blocks,
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Figure 1.  The block diagram of a digital PLL
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it is extremly helpful for the system level design and optimi-

zation of system parameters. 

This paper is organized as follows, the basic concept of event-

driven method is given in the section 2, and the implementa-

tion of the event-driven engine using Matlab is given in Sec-

tion 3. In Section 4, the modeling of a DPLL is given together

with the simulation results. Finally, some conclusions are

drawn in Section 5.

2.  THE CONCEPT OF EVENT-DRIVEN

Conventional oversampling simulation tools do a time-sweep

with a certain time step, and calculate signals at each time

point. To achieve a good time resolution, the time step has to

be sufficiently small, which means the simulation needs to

calculate a large a number of time points. In event-driven

simulation, however, only time points of interest are calcu-

lated. The concept of event driven has been widely used for

many years. An event-driven program basically consists of

three parts, the event generators, the event dispatcher and the

event handlers as shown in Figure 2. Event generators gener-

ates the events. For example, in a computer system, an event

can be generated by a mouse click, a key press, a timer and so

on. The event dispatcher receives and stores all events and

calls corresponding event handlers based on a certain order.

This is normally  achieved by maintaining an event queue

inside the event dispatcher. The program always returns to the

event dispatcher after a call to an event handler is completed.

In some cases, the event handlers also generate some events,

like an event generator, when they are executed and those

events will be processed in the same manner by the event dis-

patcher.

3.  EVENT-DRIVEN ENGINE

The principle of  the event-driven modeling is shown in

Figure 3, in which each building block (Block A, B ...) of the

system to be simulated is represented as an event handler. The

event starter generates some initialization events for each

building block then the event dispatcher calls each function

block according to the event queue, maintained inside the

event dispatcher. Those event handlers are responsible for

generating all subsequent events to be added to the event

queue. Each event includes four fields, event ID, event han-

dler, event time and event parameter. The later two are to be

passed to the event handler so that the event handler can pro-

cess the event correctly. In addition, some top-level signals or

variables are shared among building blocks as shown in

Figure 3.

3.1.  Event Dispatcher

As shown in Listing 1, the event dispatcher is basically  a

loop, which always picks up the earliest event in the event

queue and calls the corresponding event handler. The sub-

function “event” defined as “Result=event(Task, Func, Time,

Para)” is responsible for managing the event queue and,
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Figure 2.  Concept of the event driven program

Listing 1. Matlab code for the event dispatcher.

%start the event-driven engine

h=waitbar(0,'Simulation is running, please wait...');

Proc=0; EventCount=0; t=cputime;

Result=event('RUN');

while (Result<=EndTime)

    EventCount=EventCount+1;

    if floor(Result/EndTime*50)>Proc

    Proc=Proc+1;

    waitbar(Result/EndTime);

    end

    Result=event('RUN');

end

close(h);

disp(sprintf('Simulation is done!\n  Total number of events: 

%i',EventCount));

disp(sprintf('  Total CPU time used: %f (s)',cputime-t));

Event starter

Event Dispatcher

Function blocks of the system to be modelled

. . . . . .

some top level signals

Block A Block B Block X

Figure 3.  Principle of the event driven simulation
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depending on the parameter of Task, it performs one of the

following tasks:

1. Initialize (INIT) the event queue.

2. Insert (INS) an event to the event queue and return an

event ID. This task is called whenever an event is gener-

ated by the event starter or an event handler. The event is

inserted to the event queue and sorted by event time.

3. Remove (DEL) an event specified by the event ID from

the event queue.

4. Run (RUN) the earliest event in the event queue and

remove it from the event queue. It returns the event time

so that the main program can determine the progress of

the simulation. To avoid possible errors, the earliest event

has to be temporaily stored and removed from the event

queue before the corresponding event handler is called

because the event handler may call this event manange-

ment function recursively to add or remove events.

3.2.  Event Starter

In event-driven simulation, almost all events are generated by

building blocks of a system to be modelled, except for some

events at the beginning of the simulation. Those events, gen-

erated by the event starter, are to initialize all building blocks

so that more subsequent events can be generated by those

blocks. The event starter first requests the initialization of the

event queue, and then generate initialization events for each

building block. The Matlab code given in Listing 2 is the

event starter for the model of the digital phase locked loop as

shown in Figure 1. It generates the initialization events for

REF, DCO, FDIV, DPFD and DLF.

3.3.  Modeling of Building Blocks

The modeling of each building block is actually done by writ-

ing a Matlab function for each block. As given in Listing 3,

this function processes different events specified by para. In

the process of an event, some new events might be generated

if necessary. The event ‘0’ is assumed to be always the initial-

ization event. Other events are pre-defined for each building

block. The models of each building block of a DPLL are pre-

sented in the following section.

4.  MODELING OF DPLL

4.1.  Reference Clock Source

The PFD compares the edge (rising edges are considered in

the paper) of the reference clock and the edges of the divided

clock, so only the time instant of each rising edge of the refer-

ence clock is of interest. The reference clock source is mod-

eled as follows: In the initialization part of the model, the first

rising edge event is generated, and during the process of each

rising edge, the event of next rising edge is generated so that

the clock signal can be continuously  provided to the loop.

Obviously, all rising edge events are sent to the PFD so that

the PFD can compare them with the divided edges. Conse-

quently, the model of the reference source is written as given

in Listing 4, where the reference period is defined as Tref, the

time of  the next rising edge is alway s calculated as the

“time+Tref”. Here, it is easy to add some additional timing jit-

ter/noise  to  the ref erence clock source by  replacing

“time+Tref” with “time+Tref+Tj”, where Tj is the timing jit-

ter to be added.

Listing 2. Matlab code of the event starter.

event('INIT');

%Reset all blocks by passing a parameter of '0' at time of 0 to 

those blocks

event('INS', @REF, 0, 0);

event('INS', @DCO, 0, 0);

event('INS', @FDIV, 0, 0);

event('INS', @DPFD, 0, 0);

event('INS', @DLF, 0, 0);

Listing 3. Matlab code of a build block

function Block_Name(time,para)

persistent Var1 Var2 ...;

switch para

    case 0 %Initialize the block

        <Initialization>;

    case 1

        <Process of event type 1>;

    case 2

        <Process of event type 2>;

        <...>;

    case N

        <Process of event type N>;

end

Listing 4. Matlab code of the model of the reference clock.

function REF(time,para)

persistent Tref;

switch para

    case 0 %initialization

        event('INS', @REF, 0 ,1);

        Tref=5e-9; %reference period

    case 1 %process of edges

%Add next reference edge        

event('INS', @REF, time+Tref,1); 

%Send edges to DPFD

        event('INS', @DPFD, time, 1); 

end
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4.2.  Phase and Frequency Detector

In the DPLL, the phase and frequency detector compares the

reference clock edges and the divided clock edges to get the

phase error, which is quantized to form the output of  the

DPFD. The structure of the DPFD [3] modelled in this paper,

is shown in Figure 4. A conventional tri-state PFD is used to

obtain the phase error (the difference in duration of UP/DN

pulses). This error is converted to digital domain by time to

digital converter (T2D). In this example, a T2D converter

with a time resolution of 100ps is modelled. The output of the

T2D is carried by a global variable PFDout, which is accessi-

ble to the digital loop filter.

In addition to initialization, the DPFD processes three events:

the rising edge of the reference clock, the rising edge of the

divided clock from the frequency divider, and the internal

reset event. Listing 5 shows the Matlab code for the PFD

model. At the reference signal rising edge event, if UP is

zero, it changes UP to one and stores the current time to

RefTime. It also checks if DN is already one to determine

whether it is necessary to generate a reset event. If DN is one,

a reset event is generated with a delay of 50ps in the reset

path. Similar process is done at the event of the divider edge.

In the reset event, the time error is calculated and the output

of T2D, with a time resolution of 100ps, is obtained and

stored in the variable PFDout. A new event, with another

20ps delay, is inserted to the event queue so that the DLF can

process this phase error.

4.3.  Digital Loop Filter

The digital loop filter tunes the control word of the DCO

based on the phase error information (PFDout) provided by

the DPFD. A conventional Type II loop filter, as shown in

Figure 5, is modelled in this work. After initialization, DLF

processes the events generated by DPFD whenever a time

error is obtained. During the process, the DLF adjusts the

DCO control word according to the quantized phase error

(PFDout). Once the new control word is obtained, the DLF

generates an event for the DCO to update the DCO frequency.

The control word is transferred to DCO using global variable

Dcontrol. Listing 6 shows the model of the digital loop filter,
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Figure 4.  The digital phase and frequency detector

Listing 5. Matlab code of the model of the PFD

function DPFD(time,para)

global PFDout;

persistent UP DN RefTime DivTime;

switch para

  case 0  %Initialization

    UP=0; DN=0; P1=0;

  case 1  %Referece edge

    if UP==0

      RefTime=time;

      UP=1;

      if DN==1

        event('INS', @DPFD, time+50e-12,3);

      end

    end

  case 2  %Divider edge

    if DN==0

      DivTime=time;

      DN=1;

      if UP==1

        event('INS', @DPFD, time+50e-12,3);

      end

    end

  case 3  %PFD reset

    UP=0; DN=0;

    PFDout=2*round((DivTime-RefTime)/100e-12)-1;

    event('INS', @DLF, time+20e-12,1); 

end

Listing 6. Model of the digital loop filter

function DLF(time,para)

global PFDout Dcontrol;

persistent Int;

switch para

    case 0 %Initialization

        Int=400; Dcontrol=400; %Initial value of the DLF output.

        event('INS', @DCO, time, 2); %Update the DCO period

    case 1  %When the PFDout is ready, Calculate the output

        Int=Int+PFDout*0.1;

        Int=min(max(Int,5),2043);

        Dcontrol=round(Int+PFDout*5);

        event('INS', @DCO, time+50e-12,2);

 end
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+
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z
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PFDout

Dcontrol

Figure 5.  A type II digital loop filter
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in which the gain of integration path is 0.1 and the gain of

proportional path is 5. The propagation delay of the DLF is

assume to be 50ps. 

4.4.  Digitally-Controlled Oscillator

The digitally-controlled oscillator can be modelled in the sim-

ilar way as the reference source, but now the frequency or the

period is controlled by its digital control words. Conse-

quently, one more event type DCO should respond to is the

event of frequency updating. In the process of frequency

updating, the new frequency is calculated based on the con-

trol signal and then compared with the previous frequency. If

two frequencies are the same, nothing needs to be done. Oth-

erwise, the event of the next VCO edge, previously inserted

into the event queue, should be replaced with a new edge

event based on the new frequency. The Matlab code for the

frequency update is given in Listing 7. Here, an ideal DCO

with 50kHz frequency resolution, a frequency tuning range of

102.4MHz (50kHz*2048) and a center frequency of 2GHz is

modelled. Similarly with the model of the reference source,

the jitter or phase noise can be easily included in the model to

simulate the noise performance of the loop.

4.5.  Frequency Divider

The frequency divider accepts the rising edge events gener-

ated by the DCO and generates a divider edge event for the

DPFD once every N DCO periods. The Matlab code for the

frequency divider model is given in Listing 8. The time of the

DPFD event is calculated as “time+100e-12” so that a 100ps

time delay of the frequency divider is modelled. Again, some

additional noise can still be added here if necessary.

4.6.  Simulation Results

With the models and the event-driven engine created above,

various types of analysis can be performed to examine the

performance of a digital PLL. In this section, the locking

behavior and the jitter transfer characteristic (from the refer-

ence source to the DCO output) of the loop are analyzed.

Locking behavior can be observed by plotting the DCO’s

control word magnitude and the magnitude of the PFD out-

put. The DPLL modelled above is simulated for 10µs within

5 seconds CPU time, and the results are shown in Figure 6.

The Figure shows that the loop acquires locking within 3.5µs,

and 4 cycle slips occur during the locking process. Due to the

finite frequency resolution of the DPFD/DLF/DCO, after the

loop is locked. the control word typically is not constant, but

jumps among several discrete frequency levels. The average

frequency equals to the desired frequency.

Digital PLL shows significant non-linear characteristics for

small phase noise amplitude originating in the PFD/DLF/

DCO. The noise transfer characteristics, for different noise

amplitude levels, are examined using the event-driven envi-

ronment. As an example, a given amplitude/frequency single-

tone phase variation is added in the reference source and the

edge timing jitter of the DCO output is examined. To add

some timing jitter, the model of the REF is modified as given

in Listing 9. The reference edge locations stored in the array

REF_Edges include the additional phase noise or edge jitter

of a given noise frequency and noise amplitude.

Listing 7. Frequency update in the DCO model.

NewFreq=(1024-(Dcontrol))*50e3+2e9;

NewPeriod=25/NewFreq;

if(NewPeriod~=Tvco)

  event('DEL', @DCO, 0, EventID); %Remove the old next 

edge

  NextEdge=(NextEdge-time)/Tvco*NewPeriod+time;

  event('INS', @DCO, NextEdge ,1);%Add the new edge

  Tvco=NewPeriod;

end

Listing 8. Model of the frequency divider.

function FDIV(time,para)

global Div_Edges 

persistent COUNT N;

switch para

  case 0

    COUNT=0; N=25; %Initialize the counter

  case 1  %DCO edge event

    COUNT=COUNT+1;

    if (COUNT==N)

      COUNT=0;

      event('INS', @DPFD, time+100e-12, 2);

    end

end
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Figure 6.  Locking behavior simulation result
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A simulation with two-dimensional parameter sweep for the

noise amplitude and noise frequency, is done and the RMS jit-

ter at the output of the DCO is calculated. The ratios between

the output noise power and input noise power for different

input noise amplitudes (An) are plotted as shown in Figure 7.

It shows that the DPLL exhibits different loop bandwidth for

different input noise amplitudes, which is due to the non-lin-

ear/quantization operation of the loop. In this figure, the out-

put noise includes not only the noise caused by the reference

noise but the quantization noise of the DPLL. At higher fre-

quencies, the noise caused by the reference clock decreases

and finally the output noise is dominated by the quantization

noise. For reference jitter with low amplitudes, 1ps or less,

the output noise of the DCO is almost dominated by the quan-

tization error for the entire frequency band. The simulation

yielding results of Figure 7, required 64 sub-simulations and

some data processing. It took less than 10 minutes of CPU

time. Similarly, the capability of the DPLL to suppress DCO

noise can be obtained by adding extra noise component in the

model of the DCO and examining the output jitter.

5.  CONCLUSIONS

An event-driven modelling and simulation technique using

Matlab, is applied to a digital PLL. The proposed technique

achieves a rapid and accurate time-domain simulation, and

allows various noise sources to be easily included and ana-

ly zed. With this technique, a simulation of  a sy stem is

invoked by a function call in Matlab script, so mulitple vari-

able sweeps, parameter optimization and post-processing of

the output data can be easily achieved. An an example, the

locking behavior and the noise transfer characteristic of the

loop are obtained. The modeling of each block is essentially

writing the functional description of that block so that one can

focus on the functionality design of each component.
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Listing 9. Model of the reference with edge timing jitter

function REF(time,para)

global REF_Edges;

persistent Tref n;

switch para

  case 0 %initialization

    event('INS', @REF, 0 ,1);

    Tref=5e-9; %reference period

    n=0;

  case 1 %process of edges

    %Add next reference edge        

    n=n+1;

    event('INS', @REF, REF_Edges(n),1); 

    %Send edges to DPFD

    event('INS', @DPFD, time, 1); 

end
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Figure 7.  Reference noise transfer characteristic

72


