System-Level Time-Domain Behavioral Modeling for a Mobile WiMax Transceiver

2006. 9. 15

Additional terration and the sense of the se

Brian Y. Kim, Ph. D.

Telecomm. R&D Centre

Samsung Electronics

Agenda

- Background
- RF Time-domain Behavioral Modeling
- Modeling Methods
- Simulation Results
- Conclusion

Background

- Industry Trend Highly Integrated SoC/SiP
 - » RF Ckt, ADC/DAC & Digital baseband
- Design Methodology
 - *Top-down* vs. *Bottom-up*
 - *Top-down* methodology becomes necessary for SoC/SiP
- Simulation & Verification
 - System-level vs. Transistor-level
 - System-level simulation & verification play a key role in Top-down methodology

Background

- Time-domain vs. Frequency-domain
 - System-level Specification <-> Time-domain
 - Constellation, EVM, BER, FER,...
 - » RF Performance <-> Frequency-domain
 - Nonlinearity, Noise Figure, Phase noise, ...
 - System-level simulation
 - > Full signal path and time-consuming simulation
 - > Time-domain behavioral models are required
 - > Frequency-domain model -> Time-domain mode
 - Application Example
 - Mobile WiMax IEEE 802.16e (WiBro) in Simulink

RF Time-domain Behavioral Modeling

Passband vs. Baseband

- Real signal processing -> passband model
- Complex signal processing -> baseband equivalent model

RF Time-domain Behavioral Modeling

Nonlinearity

- Polynomial memoryless model
- Passband expression

$$y(t) = k_1 x(t) + k_2 x^2(t) + k_3 x^3(t) + k_5 x^5(t)$$

• x(t) is the passband signal, and able to expressed as $x(t) = C(t)e^{-j \omega ct} + C^*(t)e^{j \omega ct}$,

C(t) is the complex baseband equivalent signal.

Baseband equivalent expression

$$y_{BB}(t) = \left[k_1 + \frac{3}{4}k_3 \left|C(t)\right|^2 + \frac{5}{8}k_5 \left|C(t)\right|^4\right] \cdot C(t)$$

the polynomial coefficients changed in baseband model

RF Time-domain Behavioral Modeling

Noise

- Noise figure (NF) Frequency-domain
- > RMS noise power (P_n) Time-domain

$$P_n = \sigma_n^{2} = 4kRT \cdot f_s \cdot (10^{NF/10} + 1)$$

• Where k is the Boltzmann constant, T is the noise temperature,

R is the source impedance and f_s is the sampling frequency.

- Other Noise source
 - Flicker noise
 - Phase noise
 - Quantization noise

Amplifier

- > LNA
 - Polynomial nonlinearity model with hard saturation
 - Noise model
- > Power Amplifier
 - Polynomial nonlinearity model with hard saturation
 - Phase distortion model by AM-PM conversion

> Amplifier Model Verification

Mixer

- Same nonlinearity and noise model as LNA
- > Nonlinearity
 - Equivalent to the RF input
- > Noise
 - Equivalent to the output port

> LO Model Verification

- Phase noise: -50dBc/Hz @10kHz, -80dBc/Hz @100kHz ,&
 - -120 dBc/Hz @Noise Floor.
- Loop bandwidth: 100kHz

Nonlinearity:

■ INL and DNL: Modeled as non-uniform quantization level

DNL is generated by Gaussian random noise

INL is the integration of DNL

Non-uniform Quantization leve

- Signal Source generation by m-coding
 - Downlink modulation : 64QAM/ 16QAM/ QPSK
- Uplink modulation : 16QAM/ QPSK
- Cell ID : 2
- Segment number : 0
- DL/ UL ratio : 27/15 symbols

System Performance

Constellation and Spectrum for 16QAM

Constellation and Spectrum for 64 QAM

> System Performance for Various Cases

Table.1. Simulated system-level constellation performance

RF Behavioral Modeling Examples			RMS_Constellation_Err or (dB)	Notes
Case 1	16 QAM	Ideal TX	-51.032	тх
Case 2	16 QAM	Nonideal TX LO	-45.449	тх
Case 3	16 QAM	Nonideal TX Mixer	-33.672	тх
Case 4	16 QAM	Nonideal PA	-21.311	ТХ
Case 5	64 QAM	Ideal TX	-50.056	тх
Case 6	64 QAM	Ideal TX and RX	-22.179	RX
Case 7	64 QAM	Nonideal RX LO	-20.766	RX
Case 8	64 QAM	Nonideal RX	-19.722	RX

Simulation Efficiency

The whole simulation for one frame OFDM signals takes about 4 minutes on a Pentium 4 3.0GHz PC with 1GB memory.

Conclusion

- Behavioral Mobile WiMax Transceiver design has been implemented on Matlab/Simulink platform.
- Overall Functionality and block specification could be validated based on 802.11e standard.
- The impact of nonlinearity and noise from RF/Mixed-signal building blocks is addressed by the time-domain system simulation.

The proposed baseband equivalent model technique is able to be applied by wide range of the system-level simulation covering RF nonlinearity and noise effects

SAMSUNG

© SAMSUNG Electronics Co., Ltd.